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Revisiting the reanalysis-model
discrepancy in Southern Hemisphere
winter storm track trends
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Southern Hemisphere (SH) storminess has increased in the satellite era and recent work suggests
comprehensive climate models significantly underestimate the trend. Here, we revisit this reanalysis-
model trend discrepancy to better understand the mechanisms underlie it. A comprehensive like-for-
like analysis shows reanalysis trends exhibit large uncertainty, and coupled climatemodel simulations
exhibit weaker trends than most but not all reanalyses. However, simulations with prescribed sea
surface temperature (SST) exhibit significantly greater storminess trends, particularly in the South
Pacific, implying SST trend discrepancies in coupled simulations impact storminess trends. Using
pacemaker simulations that correct Southern Ocean and tropical east Pacific SST trend
discrepancies, we show that storminess trends in coupled simulations are underestimated because
they do not capture the enhanced storminess resulting fromSouthernOcean cooling and La-Nina-like
teleconnection trends. Our findings emphasize large reanalysis uncertainty in SH circulation trends
and the impact of regional SST trend discrepancies on circulation trends.

The extratropical circulation in the Southern Hemisphere (SH) is char-
acterized by a strong storm track related to tracks of cyclones and
anticyclones1,2. The intensity of the storm track, hereafter the storminess, is
tightly connected to surface weather in the SH3,4 Understanding how stor-
miness will change under anthropogenic forcing is important formitigating
the impacts of climate change2. Climate models project that the SH storm
track will intensify by the end of the 21st century under climate change2,5–9,
bringing increased precipitation10 and stronger surface winds11.

Recent work has shown that SH storminess has increased significantly
in the satellite era (1979 topresent) in reanalysis data9,12.However, the trends
in reanalysis data were 2–3 times larger than the multi-model mean trends
from models participating in the Coupled Model Intercomparison Project
Phase 5 and Phase 6 (CMIP5 andCMIP6)13,14. Thus, recent work concluded
that climate models significantly underestimate the storminess trend in the
reanalysis datasets in the satellite era. This reanalysis-model trend dis-
crepancy in the SH winter storm track calls into question the ability of
climate models to predict future weather in the SH.

A discrepancy between the climate model and observed trends can
have multiple causes that can be categorized into three factors15,16: (I) The
observations are in error, (II) The observation-model comparison is flawed,
(III) The models are deficient.

For (I), the trends can differ substantially across observational
datasets17 and lead to observational uncertainty. The use of up-to-date
observational data can be important in reconciling observation-model
trend discrepancies18,19. For storminess, the observed trend is quanti-
fied using reanalysis datasets, which involve uncertainties arising from
data assimilation techniques, physical parameterizations, and evolu-
tion of observational systems20,21. The reanalysis uncertainty can be
particularly important in the SH where ground-based observations are
limited22,23. For example, recent work showed that trends in SH winter
weather-scale temperature variance differ by a factor of 5 across rea-
nalysis datasets24.

For (II), there are two important aspects to consider. First, reana-
lysis trends involve a single realization of internal variability whereas
model simulations reflect a distribution of realizations. Thus, it is
important to properly sample the internal variability by using a large
number of model simulations25,26. Second, a like-for-like comparison
whereby the observations and climate models are compared with the
same temporal and spatial sampling has been important for reconciling
previous discrepancies27,28. A like-for-like comparison is especially
important for storm tracks, which sample specific time and spatial
scales29.
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For (III), themodels can be deficient in either the forced response or
the internal variability because they are incapable of simulating the
physical mechanism responsible for the observed trend. For example,
CMIP6 models fail to simulate recent sea surface temperature (SST)
trends in the tropical Pacific and Southern Ocean30–34. The tropical SST
trends in CMIP6 models are characterized by an El Nino-like trend in
the tropical Pacific, as opposed to a La Nina-like trend in the observa-
tions, with the observed trends lying at the edge or outside of the model
trend distribution30–32. The observed cooling trend in the Southern
Ocean is also not well captured by CMIP6 models30,33 and it has been
suggested that this is also related to the SST trend difference in the
tropical Pacific33,35. Previous work concluded that coupled models
exhibit a systematic bias in the representation of SST trends and that
differences between observed and modeled trends are very unlikely to
occur due to internal variability30.

The reanalysis-model discrepancy in the SHwinter storm track trends
should be revisited following the three factors described above. (I) It is
currently unclear how increasing the number of reanalysis datasets to
address reanalysis uncertainty would affect the discrepancy. (II) It is also
unknown how expanding themodel ensemble size and addressing like-for-
like comparison (calculating storminess using the same time and spatial
grids) would affect the discrepancy. (III) Lastly, the impact of observation-
coupled model SST trend discrepancy on the SH winter storminess trends
has not been quantified, although SST trends are related to other large-scale
circulation trends in the SH30,36,37.

Here we revisit the reanalysis-model discrepancy in the Southern
Hemispherewinter storm track trendswith additional reanalyses, expanded
model ensembles, and like-for-like calculations.Wealsoquantify the impact
of SST trend discrepancy on the storm track trends, including the
mechanisms connecting them.

Results
Revisiting the SH winter storminess trend discrepancy
We revisit the SH winter storminess trends in reanalyses and CMIP6 and
AMIP6 multi-model ensembles (see Methods and Table S1), quantified
using vertically integrated bandpass-filtered eddy kinetic energy (hereafter
EKE, seeMethods) as in previouswork9. To address (I) and (II), we calculate
EKE using a larger number of reanalysis data (expanding from 3 to 8) and
model ensemblemembers (expanding from16 to26 forCMIP6and from13
to 32 for AMIP6, seeMethods).We also ensure that EKE is calculated using
the same time frequency and spatial grids: daily-mean, 8 pressure levels, and
1.5° by 1.5° horizontal grids (see Methods).

Expanding thenumberof reanalysis datasets shows the zonal-meanSH
storminess trend exhibits large observational uncertainty (Fig. 1a and see
Fig. S1 for time series). The reanalysis trend spread is larger than the multi-
model ensemble spread, and not all trends are statistically significant. The
largest and the smallest trends come from older generation reanalyses
(NCEP2 andMERRA1), whereas the newer generation reanalyses are closer
together (ERA5 and JRA3Q). The large spread in reanalysis trends is not
significantly affected by start and end dates (Fig. S2), and a large spread is
also found using a different metric for storminess (e.g., sea-level pressure
variance11, Fig S3). Note that storminess climatology does not exhibit
similarly large uncertainty, except for NCEP2 which has about 28%weaker
climatology than other reanalyses (Fig. S1).

Six out of eight reanalysis trends, including the newest reanalysis
trends, fall outside the 10–90% range of the trend distribution of coupled
CMIP6 ensemble which predicts SST (Fig. 1a, Table S2). For five reanalysis
trends, no more than one CMIP6 ensemble member simulates a trend as
high. Thus, while there is large observational uncertainty, CMIP6 ensemble
seems to be underestimating the storminess trends. Although weak, the
CMIP6 trend is dominated by greenhouse gas forcing according to the

Fig. 1 | Revisiting the reanalysis-model storminess
trend discrepancy for CMIP6 and AMIP6
ensembles. a Linear trends of SH JJAEKE (40–75°S)
in 8 reanalysis datasets (blue colors, 1979–2018) and
26 CMIP6 (1979–2018) and 32 AMIP6 (1979–2014)
model simulations (diamonds). Statistically sig-
nificant trends at the 95% confidence level are filled.
The box represents the full spread of reanalysis
trends and the 10–90% range of model ensemble
trends. The horizontal line inside the box shows the
median trend in the model ensemble. b Similar
results to (a), but for the South Pacific (40–75°S,
170°E–60°W). Spatial pattern of SH JJA EKE trend
for (c) reanalysis mean, (d) CMIP6 and (e) AMIP6
multi-model ensemble mean. Stipples indicate
where reanalysis-mean or multi-model ensemble
mean trends are significant at the 95% level. The
green dashed lines indicate the South Pacific sector
(40–75°S, 170°E–60°W).
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Detection and Attribution Model Intercomparison Project simulations
(DAMIP38, see Fig. S4).

Four reanalysis trends fall within the 10–90% range of the trend dis-
tribution of prescribed-SST AMIP6 ensemble (Fig. 1a, Table S2). Con-
sistently, comparing the distributions of storminess trends between the two
ensembles, the trends in the AMIP6 are significantly greater than those in
CMIP6 (p value = 0.01 see Methods), indicating that prescribing observed
SST trends significantly increases the storminess trends in the models.
Similar results were found in previous work37, where annual-mean atmo-
spheric energy transport trends from transient eddies were greater in the
AMIP6 than the CMIP6 ensemble.

The spatial pattern of the storminess trends provides insights into
understanding the different trends in CMIP6 and AMIP6 ensembles
(Fig. 1c–e).Themulti-reanalysis-mean storminess trend is significant across
most SH regions including high latitudes of the IndianOcean, SouthPacific,
and South Atlantic (Fig. 1c and Fig. S5 for individual reanalysis). However,
the CMIP6 ensemble-mean storminess trend in the South Pacific
(170°E–60°W) is negligible (Fig. 1d). The AMIP6 ensemble-mean trend
better captures the reanalysis trend, especially in the South Pacific, where
CMIP6 ensemble shows a near-zero ensemble-mean trend (compare
Fig. 1d, e). Formore quantitative comparison, storminess trend distributions
in the South Pacific are examined for the CMIP6 and AMIP6 ensembles
(Fig. 1b). Five reanalysis trends fall outside the 10–90% range of CMIP6
ensemble trend distribution in the South Pacific (Fig. 1b). In contrast, seven
reanalysis trends fall within the 10–90% range of AMIP6 ensemble trend
distribution (Fig. 1b). Comparing the storminess trenddistributions between
the two ensembles, the trends in AMIP6 are significantly greater than those
in theCMIP6 in the South Pacific (p value < 0.01).Overall, this demonstrates
that prescribing observed SST trends significantly increases the South Pacific
storminess trends in the models. These results are not sensitive to different

years used in calculating trends inCMIP6 andAMIP6, and consistent results
are obtained over 1979–2013 (Fig. S6).

To better understand the role of internal variability related to (II) for
SH winter storminess trends, we perform similar analyses using the 50-
member Community Earth System Model version 2 Large Ensemble
(CESM2-LE) simulations (Fig. 2)39,40. We also use the 10-member pre-
scribed (observed) SST CESM2 simulations, namely Global Ocean Global
Atmosphere (GOGA) simulations (Fig. 2). Both CESM2-LE and GOGA
simulations are forced with the same radiative forcing as CMIP6 and
AMIP6ensembles from1979 to 2014.Herewe focus on trends from1979 to
2013 (see Fig. S6 for CMIP6 and AMIP6). The CESM2-LE simulations also
do not capture the observed SST trends (compare Fig. 3a, b).

For CESM2, EKE is defined from monthly anomalies due to data
availability (see Methods). The zonal-mean storminess trend in reanalyses
quantified using this definition of EKE also exhibits large observational
uncertainty (Fig. 2a). It is also notable that the reanalysis trends are greater
(especially the statistically significant ones) compared to Fig. 1a by roughly
4–5 times. This is related to using monthly anomalies instead of 2.5–6 day
bandpass-filtered anomalies, which includes a broader spectrum of kinetic
energy. Nevertheless, changing the EKE definition does not impact the
result that storminess trends are greater in the AMIP6 than CMIP6
ensemble (Fig. S7).

Five reanalysis trends, including the newest reanalyses (ERA5 and
JRA3Q), fall outside the 10–90% range of the 50-memberCESM2-LE trend
distribution (Fig. 2a), similar to CMIP6 ensemble in the zonal mean. The
CESM2-LE simulations also show a smaller ensemble-mean storminess
trend in the South Pacific compared to reanalyses (compare Fig. 2c, d).
Similarly, five reanalysis trends fall outside the 10–90% of the CESM2-LE
trend distribution in the South Pacific (Fig. 2b). Thus, CESM2-LE simula-
tions underestimate reanalysis trends similar to CMIP6 ensemble, and

Fig. 2 | Revisiting the reanalysis-model storminess
trend discrepancy using CESM2-LE and GOGA
simulations. a–e Similar results to Fig. 1, but using
CESM2-LE and GOGA simulations. Note that EKE
is defined differently from Fig. 1 and trends are
calculated from 1979 to 2013.
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internal variability cannot fully account for the reanalysis-modelmismatch.
We also find similar results for CESM2-LE andGOGA comparison (Fig. 2)
as the CMIP6 and AMIP6 comparison (Fig. 1, Figs. S6, S7), where the
storminess trends in prescribed SST simulations are significantly greater
than those in coupled simulations, particularly in the South Pacific.

The analysis above which accounts for (I) and (II) reveals large
uncertainty in reanalysis storminess trends in SH. However, most of the
coupled simulations (CMIP6 and CESM2-LE) simulate trends that are
smaller thanmost of the reanalyses, including the newest ones, thus they
could be underestimating the reanalysis storminess trends. The simu-
lations with prescribed observed SST (AMIP6 and GOGA), on the other
hand, show statistically significantly greater storminess trends than the
coupled simulations in the zonal mean and the South Pacific. This
indicates that (III) coupled simulation’s deficiency in simulating
observed SST trends impacts the prediction of SH storminess trends. In
what follows, we show that the important factor impacting the stormi-
ness trend underestimation in the coupled simulations is their mis-
representation of the SST trends, particularly in the Southern Ocean and
tropical Pacific.

Impact of SST trend discrepancies on storminess trends
SST trend discrepancies can impact the storminess through different
mechanisms. Southern Ocean SST trends reflect changes in surface fluxes
and equatorward ocean energy transport41. Recent work suggested CMIP6
models underestimate annual-mean SH storminess trends because they do
not capture the surface energy flux trends connected to Southern Ocean
cooling12. Furthermore, tropical Pacific SST trends likely impact the SH
through Rossby wave teleconnections. More specifically, interannually La
Nina leads to a stronger South Pacific storminess42–44, thus a La-Nina-like
SST trend would be expected to strengthen the South Pacific stormi-
ness trend.

In order to test the hypothesis that SST trend discrepancies contribute
to the underestimation of SH winter storminess trends in coupled simula-
tions, we utilize the Southern Ocean (SOPACE) and tropical Pacific (Pac-
PACE) CESM2 pacemaker simulations (see Methods). The pacemaker
simulations nudge the Southern Ocean and tropical east Pacific SST
anomalies to observations (Fig. 3d, e). Thus, comparing pacemakers to the
free-running CESM2-LE simulations allows us to quantify how SH

storminess trends in the coupled simulations would change if they correctly
simulated the observed Southern Ocean cooling and La-Nina-like SST
trend. Since the SOPACE and PacPACE simulations are forced with the
same radiative forcing as CESM2-LE simulations, their ensemble-mean
differences with the CESM2-LE simulations (ΔSO and ΔPac) quantify the
impact of capturing SST trends in the Southern Ocean and the tropical
Pacific, respectively (see Methods).

Impact of Southern Ocean SST trend discrepancy on
storminess trends. When CESM2 simulations are forced with historical
radiative forcings and SST anomalies are nudged to observations in the
Southern Ocean (Fig. 3d), zonal-mean storminess trends increase com-
pared to the CESM2-LE simulations (Fig. 4a). Most of the members in
SOPACE simulations exhibit larger trends than the CESM2-LE median
trend (compare green box and black dashed line in Fig. 4a). More
quantitatively, the SOPACE zonal-mean storminess trends are sig-
nificantly greater than those from the CESM2-LE simulations
(p value = 0.02). The strengthening is noticeable across all longitudes in
SH, especially at higher latitudes (compare Figs. 2d, 4c).

From an energetic perspective, storminess trends are affected by sur-
face energy flux, top-of-the-atmosphere radiation, and stationary circula-
tion trends (see Eq. 1 in Shaw et al.12). Among these factors, Shaw et al.12

hypothesized the underestimation of annual-mean SH storminess in the
CMIP6models was due to an underestimated surface energy flux trends in
CMIP6 models in the SH, which is connected to Southern Ocean cooling
trends. The surface energy flux trends reflect ocean heat transport diver-
gence and storage trends45. Thus, if the surface energy flux implies equa-
torward ocean heat transport, it also strengthens the SH storminess because
it steepens the atmospheric equator-to-pole energy gradient (i.e., energy is
moved away from the South Pole to the equator by the ocean). This influ-
ence of surface energy flux trends on the storminess reflecting ocean heat
transport trends can be quantified through themoist static energy budget7,46

with the poleward atmospheric energy transport implied from surface
energy flux (FSFC, see Methods).

The poleward atmospheric energy transport (FSFC) induced from
surface energy flux shows positive ensemble-mean trends across SH in
SOPACE simulations (green, Fig. 5a), which is consistent with strength-
ening SH storminess, similar to ERA5 (blue, Fig. 5a). In contrast, the

Fig. 3 | Sea surface temperature trends in CESM2-LE and the impact of pace-
making. a–e Spatial pattern of ensemble-mean JJA SST trends from 1979 to 2013 for
(a) CESM2-LE, (b) GOGA, (c) SUM = CESM2-LE + ΔPac + ΔSO, (d) ΔSO =
[SOPACE]− [CESM2-LE], and (e) ΔPac = [PacPACE]− [CESM2-LE] simulations.

Stipples indicate where ensemble-mean trends are significant at the 95% level. In
(d, e), the dashed black lines represent where the SST anomalies are nudged to
observation.

https://doi.org/10.1038/s41612-024-00801-3 Article

npj Climate and Atmospheric Science |           (2024) 7:252 4

www.nature.com/npjclimatsci


ensemble-mean trends in CESM2-LE simulations are negative across SH
indicating storminess weakening (black, Fig. 5a). Most of the ensemble
members in the SOPACE simulations and ERA5 show positive FSFC trends,
whereasmostof themembers in theCESM2-LEhavenegative trends (Fig.5b).
Thus, the FSFC trends from the SOPACE simulations are significantly
greater than those from CESM2-LE simulations (p value < 0.01, compare
green and black in Fig. 5b). Consistent results are found from the CMIP6
ensemble where most of the models simulate negative FSFC trends (black
dashed, Fig. 5b).

Thus, the SOPACE simulations simulate surface energy flux trends
consistent with reanalysis trends, which the CESM2-LE simulations
struggled to simulate. Consequently, storminess trends are larger in
SOPACE than CESM2-LE due to surface energy flux trends that better
capture reanalysis trends. The causality is less likely to be the other way
around since temperature at the surface is being nudged in the SOPACE
simulations.

Note that while surface energy flux and FSFC trends indicate
storminess weakening in CESM2-LE and CMIP6, other factors such as
top-of-the-atmosphere radiation trends strengthen the storminess
(Fig. S8), leading to weak but positive ensemble-mean storminess trends
(e.g., Figs. 1, 2).

While nudging SST anomalies in the Southern Ocean significantly
strengthens storminess trends in the zonal mean, its impact in the South
Pacific is weak. Quantitatively, the SOPACE and CESM2-LE trend dis-
tributions in the South Pacific (Fig. 4b) are not significantly different
(p value = 0.29). This suggests that other processes are important for stor-
miness trends in the South Pacific.

Impact of tropical Pacific SST trend discrepancy on storminess
trends. When CESM2 simulations are forced with historical radiative
forcings and SST anomalies are nudged to observations in the tropical
east Pacific (Fig. 3e), South Pacific storminess trends increase compared

Fig. 5 | Southern Ocean pacemaker improves
surface energy flux induced atmospheric energy
transport trends. a Linear trends in JJA zonal-mean
FSFC from 1979 to 2013 for ERA5 (dark blue),
ensemble-mean SOPACE (green) and CESM2-LE
(black) simulations. Statistically significant trends at
the 95% level are dotted. b Linear trends of SH JJA
FSFC (40–75°S) from 1979 to 2013 for ERA5,
SOPACE, CESM2-LE, and CMIP6 ensemble (dia-
monds). Statistically significant trends at the 95%
confidence level are filled. The box represents the
10–90% range of model ensemble trends. The hor-
izontal line inside the box shows themedian trend in
the model ensemble.

Fig. 4 | Storminess trends when SST trends are
corrected in coupled simulations. a–e Similar
results to Fig. 2, but using SOPACE, PacPACE, and
SUM simulations. In (a, b), the median trend from
theCESM2-LE andGOGAsimulations are shown in
dashed lines. The reanalysis trends are repeated
from Fig. 2.
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to the CESM2-LE simulations (Fig. 4b, d). Most of the ensemble
members in the PacPACE simulations show larger trends than the
CESM2-LE simulation median trend (compare red box and black
dashed line in 4b). Thus, the South Pacific storminess trends from the
PacPACE simulations are significantly greater than those from the
CESM2-LE simulations (p value = 0.02). Note that the zonal-mean trend
distribution from the PacPACE simulations is not statistically different
(p value = 0.35) from the trend distribution from the CESM2-LE
simulations (Fig. 4a).

We hypothesized that the La Nina-like SST trend in the tropical Pacific
induces a Rossby wave teleconnection trend to the South Pacific, character-
ized by weaker subtropical jet and strengthened storminess in the South
Pacific, similar to what is seen interannually42–44. Specifically, during La Nina
winters, the colder tropical Pacific temperature leads toweaker subtropical jet
directly via thermal wind balance.Weaker subtropical jet then leads to upper
tropospheric eddy momentum flux convergence, which induces adiabatic
descent to warm the midlatitudes (see Eq. 7 in Seager et al.42). The poleward
eddyheatflux in themidlatitudes increases to alleviate the adiabaticwarming,
strengthening the storminess in the South Pacific42. As such, the subtropical
jet weakening can lead to South Pacific storminess strengthening.

The 250-hPa zonal wind and eddy geopotential (deviation from the
zonalmean) trends in the reanalyses andPacPACE simulations showa clear
La Nina-like teleconnection pattern that is absent in the CESM2-LE
simulations (Fig. 6a–c). In particular, all reanalyses and all members in
PacPACE simulations have weakening subtropical jet trends across the
South Pacific. The subtropical jet trends in PacPACE simulations are sig-
nificantly different (p value < 0.01) from those in the CESM2-LE simula-
tions wheremost of themembers have strengthening subtropical jet similar
to CMIP6 ensemble (dashed box, Fig. 6d). This confirms that PacPACE
simulations exhibit stronger South Pacific storminess by capturing LaNina-
like teleconnection trends in reanalysis.

Combined impact of SouthernOcean and tropical PacificSST trend
discrepancies on storminess trends. To investigate the combined
impact of both pacemakers (ΔPac + ΔSO) on the coupled simulations, we
create a synthetic large ensemble named SUMwith 50members, which is
defined as:

SUM ¼ CESM2� LE þ ΔPac þ ΔSO ð1Þ

Note that we are adding ensemble-mean impacts (ΔPac+ΔSO) to individual
ensemblemembers ofCESM2-LE. This synthetic large ensemble ismeant to
estimate the results for ensemble simulations that nudge the Southern
Ocean and tropical Pacific SST simultaneously. It assumes the ensemble-
mean impacts of pacemaker simulations are combined with the forced
response and internal variability in the CESM2-LE simulations and that the
impacts of pacemakers can be added linearly. A similar approach was taken
in Kang et al.33 to create synthetic ensemble simulations using SOPACE
simulations.

The SUM ensemble provides valuable insights since it captures the
observedSST trend in the ensemblemean (compareFig. 3b, c). This is due to
the remote impacts of the pacemaker simulations on SST trends outside the
nudged area (see dashed lines in Fig. 3d, e). The SOPACE simulations affect
the SST trend in the Southeast Pacific and around Antarctica33 while the
PacPACE simulations reverse the trend in the tropical Pacific and enhance
the warming in the Southwest Pacific (Fig. 3e).

The SUMensemble shows storminess trends are larger than individual
pacemaker simulations both in the zonalmean and South Pacific (Fig. 4a, b)
and exhibit significant storminess trends across the SH (Fig. 4e). More
importantly, the trends in the SUM ensemble are not statistically different
from the prescribed-SST GOGA simulations in both zonal mean
(p value = 0.41) and South Pacific (p value = 0.26).

Fig. 6 | Pacific pacemaker improves La-Nina-like teleconnection trends in the
South Pacific. Spatial pattern of 250-hPa zonal wind (colors) and eddy geopo-
tential height (contours) trends for (a) reanalysis mean, (b) PacPACE and (c)
CESM2-LE simulation ensemble mean. The positive and negative eddy geopo-
tential height trends are respectively depicted in solid and dashed contours in 0.3
m yr−1 intervals (zero contour is suppressed). Stipples indicate where reanalysis-
mean or ensemble-mean trends are significant at the 95% level. The magenta box

indicates the South Pacific subtropical jet sector (15–30°S, 170°E–110°W).
d Linear trends of South Pacific subtropical jet from 1979 to 2013 for reanalyses
(blue colors), PacPACE, CESM2-LE, and CMIP6 ensemble (diamonds). Statis-
tically significant trends at the 95% confidence level are filled. The box represents
the full spread of reanalysis trends and the 10–90% range of model ensemble
trends. The horizontal line inside the box shows the median trend in the model
ensemble.
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Discussion
Our study revisits the reanalysis-model SH winter storminess trend dis-
crepancy and examines factors underlying the discrepancy (observational
uncertainty, flawed observation-model comparison, andmodel deficiency).
Expanding the number of reanalysis datasets compared to previous work9

shows that there is significant observational (reanalysis) uncertainty. The
results show that simulations with SST prescribed from observations
(AMIP) have significantly greater storminess trends, particularly in the
South Pacific, than the coupled simulations (CMIP), which do not capture
the observed SST trends. Our results further imply that AMIP6 model
trends are not significantly different from reanalysis trends, but CMIP6
model trends are still likely discrepant due to SST trend discrepancies. Our
conclusion thatAMIP6models capture storm track trends in reanalysis data
differs from previous work9 because we used additional reanalysis and
model datasets and ensured a like-for-like comparison. This also demon-
strates that, amongmany factors, SST trend discrepancies are an important
factor underlying the reanalysis-model SH winter storminess trend
discrepancy.

We use the Southern Ocean and tropical Pacific pacemaker simu-
lations to demonstrate the underestimated SH storminess trends in the
coupled simulations are connected to SST trend discrepancies through
well-understood mechanisms. When the coupled simulation SST trends
are corrected across the Southern Ocean, the zonal-mean storminess
trends strengthen significantly. The improvement of zonal-mean stor-
miness trends involves simulating surface energy flux trends closer to
reanalysis that lead to equatorward ocean energy transport and
increased storminess. When the coupled simulation SST trends are
corrected across the tropical Pacific, the South Pacific storminess trends
strengthen significantly. The improvement of South Pacific storminess
trends is a result of capturing a teleconnection trend connecting the La
Nina-like SST trend to South Pacific storminess trend, consistent with
previous work on interannual timescales42–44. Thus, the pacemaker
simulations show, when the coupled simulation SST trend discrepancies
are corrected, the storminess trends strengthen significantly across the
SH and are in better agreement with trends in most reanalyses and the
newest reanalyses in particular. This highlights the importance of SST
trend discrepancies on the SH winter circulation trends.

Our results show that observational uncertainty is large in the SH
circulation trends. Since the SH exhibits a significant observation uncer-
tainty (large spread in reanalyses trends), it is important to use all available
reanalysis data as in previouswork19,24 until there is good reason to rule out a
certain product. The large spread in reanalyses trends, which is comparable
to that in the large ensemble simulations, also poses a challenge for
reanalysis-model comparison in the SH. Reducing the spread is important
and may be helped by looking at direct observations rather than reanalysis
products.

The proposed mechanisms connecting SST trends and storminess
enhance our understanding of the SH winter storminess trends. Southern
Ocean cooling involves equatorward ocean heat transport and storage,
which strengthens the SH zonal-mean storminess by changing the equator-
to-pole energy gradient. Thus, if the coupled simulations correctly repre-
sented Southern Ocean cooling and equatorward ocean heat transport and
storage, then storminess trends are stronger12. When the coupled simula-
tions properly represent the tropical SST trends, the subtropical jet weakens,
which can affect the barotropic growth rate of storminess making them
stronger9.

The pacemaker simulations show thatwhen the SST trend discrepancy
is corrected the coupled simulation circulation trend becomes significantly
stronger. Thus, it is important to understand the SST trend discrepancy and
its underlyingmechanisms. For the tropical Pacific,manymechanismshave
been proposed31,32,34. For the Southern Ocean, proposed mechanisms
involving Antarctic meltwater seem to be important47,48 as well as multi-
decadal variability49. Understanding the mechanisms underlying the
emergent responses is important for having confidence in climate model
projections50.

Methods
Storminess trends
We quantify storminess in the SH winter (June–August) using vertically
integrated eddy kinetic energy (hereafter EKE), which is defined as

EKE ¼ 1
g

Z ps

pt

u02 þ v02dp; ð2Þ

where g is the gravitational acceleration, ps is the surface pressure, pt is
the pressure at the highest vertical level (Table S1), and u and v are daily-
mean zonal andmeridional winds, respectively. Here, the primes denote
2.5–6 day bandpass-filtered anomalies. To produce the bandpass-
filtered anomalies, timeseries of u and v with 92 days of SH winter
padded with 10 days at both ends are first created. We then apply a first-
order Butterworth filter to the time series to obtain 2.5–6 day bandpass-
filtered anomalies. We use ps data that has the same time frequency as u
and v for most datasets, but monthly-mean pswhen high-frequency data
is not available. To ensure like-for-like comparison, both reanalysis and
model u and v are linearly interpolated onto a common 1.5° × 1.5° grid.
Vertical integration is performed using the eight vertical levels available
to the CMIP6models (1000, 850, 700, 500 250, 100, 50, and pt = 10 hPa).
While the standard is tomultiply 1/2 to the right-hand side of Eq. (2), the
factor is not multiplied following Chemke et al.9.

After quantifying storminess each year, the long-term trends are cal-
culated using the least-squares linear regression. The statistical significance
of the trend is evaluated as the 95% confidence level using the Mann-
Kendall test.

When the like-for-like calculation is not performed and EKE is cal-
culated in unprocessed time and spatial grids in Table S1, the zonal-mean
SH winter storminess trends are greater in most reanalyses by about 24%
(Fig. S9). This exemplifies the importance of like-for-like calculation.

Atmospheric energy transport from surface energy fluxes
Toconnect surface energyfluxand storminess,we calculate thepoleward (in
SH) atmospheric energy transport (FSFC) induced from surface energy flux
(S, positive upward) trends. They are related as follows7,12,46:

∇ � f SFC ¼ S; ð3Þ

where S is the zonal-mean surface energy flux (inWm−2) with the global
average removed (defined as positive upward), and FSFC ¼
�2πa cos ϕf SFC (in PW), represents the poleward atmospheric energy
flux induced by surface energy flux gradient at latitude ϕ where a is the
Earth’s radius. In FSFC, 2πa cos ϕ factor represents zonal integration and
a minus sign is multiplied to represent poleward transport in SH. If the
ocean heat storage trends are neglected, FSFC also represents equator-
ward ocean heat transport. The surface energy flux in ERA5 is obtained
by subtractingmass-consistent atmospheric total energy flux divergence
and energy tendency from the top-of-the-atmosphere radiation51. Note
that other reanalyses do not have mass-consistent energy flux datasets
available for this calculation.

Similarly, top-of-the-atmosphere radiation and storminess trends can
be connected. In Fig. S8, FTOA ¼ �2πa cos ϕf TOA is the poleward (in SH)
atmospheric induced from to-of-atmosphere radiation, where ∇ ⋅ fTOA =
RaTOA and RaTOA is the net top-of-atmosphere radiation (positive
downward).

Reanalysis datasets
Storminess trends are quantified in 8 reanalysis datasets (observation-
based products). The 8 reanalysis datasets consist of the two latest rea-
nalysis datasets from four different reanalysis centers. They are
NCEP252, MERRA153, ERA-Interim54, CFSR/CFSv255,56, JRA-5557,
MERRA258, ERA559, and JRA3Q60.We focus on the 40 years from1979 to
2018 as in previous work. MERRA2 starts from 1980 so its trend is
calculated from 1980. MERRA1 ends in 2015 (for JJA) so its trend is
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calculated to 2015. To create daily-mean variables, we use six-hourly
instantaneous data, which is the highest frequency common to all rea-
nalysis datasets, although ERA5 and MERRA2 data are available at
higher frequencies. The CFSR trend is obtained by merging CFSR
(1979–2010) and CFSv2 (2011–2018) datasets.

CMIP6 and AMIP6 model simulations
Storminess trends are quantified in 26 CMIP6model simulations14 using
the historical (1979 to 2014) and SSP5-8.5 (2015 to 2018) scenarios
(Table S1). We use the SSP5-8.5 scenario following previous work9,12.
Scenario uncertainty is a small contributor since the scenarios begin in
2015. In addition, we quantify storminess in AMIP6 simulations (1979
to 2014) in 32 models (Table S1) with observed SSTs prescribed from
1979 to 2014. We refer to the CMIP6 and AMIP6 model simulations as
multi-model ensembles. The difference between the CMIP6 and AMIP6
multi-model ensembles quantifies the impact of discrepancies in SST
trends in the CMIP6 models31,32 on storminess trends. We quantify the
statistical significance of the difference between trend distributions in
the multi-model ensembles using theMann–Whitney U test61 (hereafter
MW test) at the 95% level (p value < 0.05), which is a non-parametric
statistical test (similar results are found using Student’s t test). The
number of models used in each ensemble is based on the availability of
daily-mean zonal and meridional wind data on pressure levels. We use
the ‘r1i1p1f1’ ensemble member for all models to equally weight the
structural uncertainty across different models.

CESM2 large ensemble and pacemaker simulations
We use the Community Earth System Model version 2 Large Ensemble
(CESM2-LE) simulations39,40. The CESM2-LE simulations are an initial
condition ensemble with a nominal 1-degree spatial resolution in both
atmosphere and ocean. We use the first 50 simulations from this ensemble
that are forced with historical radiative forcing and standard biomass
burning from 1850 to 2014 consistent with CMIP6 simulations. The SST
trends in the CESM2-LE simulations during this period fail to capture the
observed SST trends in the tropical Pacific and Southern Ocean30,33 con-
sistent with the CMIP6 multi-model ensemble.

We also use the SouthernOcean pacemaker simulations33 (hereafter
called SOPACE) and Pacific pacemaker simulations (hereafter called
PacPACE, see https://www.cesm.ucar.edu/working-groups/climate/
simulations/cesm2-pacific-pacemakerfor details). The SOPACE and
PacPACE simulations have 21 and 10 ensemble members, respectively.
The same CMIP6 historical forcing is used for SOPACE (1979–2013)
and PacPACE simulations (1880–2014). They have the same horizontal
resolution as CESM2-LE. They are fully coupled except in the regions
where SST anomalies (relative to observed 1880–2019 climatology) are
nudged to observed SST anomalies from ERSSTv562. More specifically,
in SOPACE, SST anomalies are nudged to observations poleward of
40°S. In PacPACE, SST anomalies are nudged to observation within a
wedge-shaped area of 20°S–20°N from the American coast to the wes-
tern Pacific. We quantify the impact of pacemaking on the simulated
trends as

ΔSO ¼ ½ SOPACE � � ½CESM2� LE �;
ΔPac ¼ ½PacPACE � � ½CESM2� LE �; ð4Þ

where the squared brackets denote the ensemble mean33.
Finally, we utilize AMIP-style CESM2 simulations, namely Global

Ocean Global Atmosphere (GOGA) simulations, with 10 members. The
GOGA simulations are forcedwith the sameCMIP6 historical forcing from
1880 to 2014 and take observed SSTs from ERSSTv5 as boundary condi-
tions. We quantify the impact of SST trend discrepancy by comparing the
trend distributions in CESM2-LE and GOGA simulations using the
MW test.

For the CESM2 simulations, EKE is calculated using the monthly-
mean kinetic energy output following Kang et al.63 due to data availability:

EKE ¼ 1
g

Z ps

pt

u2 þ v2 � u2 � v2
� �

dp; ð5Þ

where the u2 and v2 are the monthly averages of the square of u and v at
each model time step (every 30 min). Since u02 ¼ u2 � u2 and
v02 ¼ v2 � v2, this method is identical to defining primes in Eq. (2) as
deviation from the monthly mean and using model time step (every
30 min) data. As such, this EKE represents the kinetic energy due to sub-
monthly variations. For most reanalysis datasets except ERA5, u2 and v2

at model time step is not provided and it has to be calculated from six-
hourly data. However, for ERA5, we find that the difference between
calculating u2 þ v2 at model time step versus six-hourly time step is
negligible (about 0.1%, Fig. S10).We extract the 8 CMIP6 pressure levels
from all reanalysis datasets. The CESM2 data are interpolated from
model levels to the 8 pressure levels. Then, both reanalysis and CESM2
data are linearly interpolated onto a common 1.5° × 1.5° grid and
vertically integrated over the 8 pressure levels (pt = 10 hPa). Here we
focus on the trend from 1979 to 2013, which is the common period for
the CESM2 simulations.

Data availability
The reanalysis data used here are available online (CFSR: https://rda.ucar.
edu/datasets/ds093.0/and https://rda.ucar.edu/datasets/ds094.0/, ERA5:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels?tab=form, ERA-Interim: https://www.ecmwf.int/en/
forecasts/dataset/ecmwf-reanalysis-interim, JRA3Q: https://rda.ucar.edu/
datasets/ds640-1/, JRA55: https://rda.ucar.edu/datasets/ds628.1/, MERRA1:
https://goldsmr3.gesdisc.eosdis.nasa.gov/opendap/, MERRA2: https://disc.
gsfc.nasa.gov/datasets?project=MERRA-2, NCEP2: https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis2.html). The CMIP6 and AMIP6 model
data are downloadable from the CMIP6 data search interface https://esgf-
node.llnl.gov/search/cmip6/. The CESM2-LE simulations are accessible
online at https://www.cesm.ucar.edu/community-projects/lens2. The
GOGA and PacPACE simulations are available at https://www.cesm.ucar.
edu/working-groups/climate. The SOPACE simulation data are archived at
https://github.com/yuyuyaoyao/CESM2_SOPACE.

Code availability
The codes to reproduce the main results of the manuscript are accessible at
https://doi.org/10.5281/zenodo.12617000.
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