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Attribution of summer 2022 extreme
wildfire season in Southwest France to
anthropogenic climate change
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Summer 2022was exceptionally hot and dry in Europe and especially in Southwest France, where the
most importantwildfires since 1949 had serious environmental and socio-economic impacts. Herewe
conduct an impact-oriented climate change attribution study by first investigating which climate
indices are the most correlated with the burnt area between 2003 and 2022. We find that an index
combining soil moisture integrated over 6 months and temperature and vapour pressure deficit
integrated over 3months is correlated with large burnt areas. Using the index developed, we estimate
that anthropogenic climate changemade climate conditions propitious for wildfire development, such
as the ones of July 2022, two times more likely, with a return period of 13 years in the current climate.
Our study raises the question of the sustainability of the Landes Forest and stresses the urgent need to
mitigate greenhouse gas emissions and adapt to climate change.

In the summer of 2022, Europe experienced record heatwaves and
drought with strong positive anomalies of geopotential height in mid
atmosphere1. In particular, three successive heatwaves hit France in June,
July andAugust, and frommid-July, the surface soil moisture dryness hit
record levels2,3 (see Figs. S1 to S3 in Supplementary information). These
severe climate conditions had a significant impact on the regional eco-
system, leading to the most extensive wildfires in the Landes Forest since
1949, burning more than 30,000 hectares2. It might seem a relatively
small area compared with the wildfires that burnt more than 1 million
hectares in 2019 in Australia4,5 or in June and July 2023 in Canada, for
instance (https://earthobservatory.nasa.gov/images/151985/tracking-
canadas-extreme-2023-fire-season), but it is a very exceptional event
by its size and intensity in this region of Europe, as illustrated in Fig. 1.
The region is densely populated (more than 86,000 inhabitants in an area
of around 1.4 million hectares) with rapid rise (the population doubled
between 1970 and 2015) (https://www.insee.fr/fr/statistiques/4172625),
and it attracts many tourists in July and August (around 19 million
tourist overnight stays in 2019)6,7. The wildfires led to tremendous eco-
logical and socio-economic damages: 50,000 people were evacuated, five
camping sites were destroyed, the peak season of local tourism was
seriously troubled, and wood production was damaged. 3,000 firefighters
were mobilised from all over France and from seven European
countries2,8. National and local authorities are concerned about the
possible evolution of the frequency and intensity of wildfires with climate
change and arewilling to better understand the relation betweenwildfires
and extreme climate events to be prepared in terms of equipment, human

resources, prevention, and operations. This event raises the question of
the role that anthropogenic climate change plays in the occurrence of
such wildfires.

This is what attribution studies aim to achieve, with their general
objective to understand how climate change influences the intensity of an
extreme event, to quantify its likelihood of occurrence, and to assess the
evolution of trends. They can provide valuable information to raise aware-
ness and foster mitigation and adaptation strategies9. Attribution meth-
odologies can be categorised into risk-based approaches or storyline
approaches10. The risk-based approach estimates the likelihoodof an event in
the factual worldwith anthropogenic climate change, and in a counterfactual
world or the preindustrial period11. The storyline approach aims at analysing
the influence of climate change on physical processes leading to an event10.

The compound hot and dry summer of 2022 across the Northern
Hemisphere has been analysed with the risk-based approach using tem-
perature and precipitation12. It is shown that the drought extent in the
Northern Hemisphere would have been virtually impossible without
human-induced climate change. Another study focused more specifically
on the 2022 European-Mediterranean drought using a circulation-based
approach with the Standardised Precipitation Evapotranspiration Index
integratedon9months (SPEI9), temperature, precipitation, and the500hPa
geopotential height13. It reveals that the 2022 drought was associated with a
persistent anticyclonic anomaly over Western Europe. Strong January-to-
August sea level pressure and 500 hPa geopotential height anomalies, both
in extent and magnitude, are detected. These anomalies extend further
westward over the Atlantic and southeastward towards the Mediterranean
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basin. With the view to plan adaptation strategies, it is relevant to not only
analyse themeteorological conditions but to link them to their impacts. For
instance, the influence of anthropogenic climate change on heat-related
deaths in summer 2022 in Switzerland was quantified14, as well as mortality
related to high and low-temperature extremes in Stockholm during 1980-
200915. Another study focused on the social inequalities in climate change-
attributed impacts of Hurricane Harvey and revealed that vulnerable
populations were disproportionately affected16.

In the case of wildfires, most attribution studies are based on the
Canadian Forest Fire Weather Index (FWI), a daily index estimated from
temperature, relative humidity, wind speed and precipitation17. In addition
to the FWI, some studies analysed its five components (Fine Fuel Moisture
Code (FFMC),DuffMoisture Code (DMC),Drought Code (DC), Build-Up
Index (BUI) and Initial Spread Index (ISI)), the McArthur Forest Fire
Danger Index (FFDI), drought indices, or meteorological variables such as
the potential evapotranspiration, vapour pressure deficit (VPD), tempera-
ture, precipitation, wind speed and relative humidity18–26. The FWI is one of
the most widely used fire weather indices in the world27. Its relevance has
been demonstrated in different contexts, such as, for instance, to identify
and predict spread days28. However, the FWI was originally created to
characterise the forestfire danger inCanada, and is thus adapted to a specific
ecosystem29. It has been shown that the predictive skill of the FWI varies
depending on the location30. The FWI is computed daily, using the index
value from the day before. It accounts for the conditions of the day con-
sidered, especially with the ISI, as well as weekly to seasonal dryness, in
particular with its DC component. Two main factors control the extent of
burnt area: extremely hot or dry days, defined as “weather anomalies”, and
relatively long dry periods, defined as “climate anomalies” at themonthly or
seasonal scale31. In the summer of 2022 specifically, Southwestern France
experienced prolonged dry and hot anomalies that started in winter3 (see
Figs. S1 to S3 in Supplementary information), while daily wind speed was
not particularly strong when the daily burnt area was themost extreme (see
Figs. S4 and S5 in Supplementary information). Complementary indices to
the FWI, focusing specifically on long-term dryness, are necessary to assess
the impact of prolonged drought on fuel moisture, and consequently on

wildfire risk. When analysing the impacts of climate change on the wildfire
risk, local specificities must be considered. Developing new indices tailored
to different regional contexts is a step toward this goal.

Therefore, to meet our objective in assessing the role of anthropogenic
climate change in the occurrence of prolonged extreme climate conditions
favourable for the development of summer 2022 Landes wildfires, investi-
gating which seasonal climate index might be relevant to carry out this
impact attribution study is needed first.

Results
Definition of a wildfire index to characterise the event
Soil moisture is known to have an important influence on the occurrence of
wildfires32,33.We analyse a Standardised SoilMoisture Index (SMI) on seven
different timescales (1, 3, 6, 9, 12, 24 and 36 months) to characterise short
and long-term seasonal droughts. Many studies also linked the increase in
temperature and VPD to an increase in the wildfire risk34–37. Therefore, the
same method is applied to these two meteorological variables to build the
Standardised Temperature Index (STI) and the Standardised Vapour
Pressure Deficit Index (SVPDI) on the seven same timescales as SMI.
Because precipitation is often integrated into predictive statistical models to
evaluate wildfire risk, the Standardised Precipitation Index (SPI) on the
seven timescales is also added to the analysis38–43. By using different inte-
gration periods (from 1 to 36 months), the objective is to investigate the
potential impact of prolonged high temperature and dry conditions on fuel
moisture44,45, and consequently on the wildfire risk46,47. In this analysis, we
focus on the wildfire risk induced by seasonal extreme climate conditions.
Integrating wind speed on several months would not allow to provide
physical understanding on theweather-fire relationship as differentweather
regimes would be mixed. Southwestern France is a coastal area. Westerly
winds bring moisture from the Atlantic, while easterly winds are dryer48.
Therefore, we do not include a standardisedwind speed index integrated on
1 to36months in our analysis.However, at a daily timescale, wind speedcan
be an important parameter to evaluate wildfire risk in some regions and
seasons48. This contribution to the risk is notably assessed by the ISI com-
ponent of the FWI28.

Fig. 1 | Burnt area in Southwest France from 2003 to 2022. Daily burnt area each year from 2003 to 2022 estimated using the MCD64A1 fire product from the MODIS
satellite instrument (a) and July-to-September total burnt area during 2003–2022 in the region of interest (black rectangle) (b).
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To these 28 univariate indices, we add multivariate indices to account
for compound events, such as, for instance, a combination of an agricultural
drought, atmospheric dryness and high temperature. Nine multivariate
indices are retained and added to the analysis: SMI1-STI1-SVPDI1, SMI3-
STI1-SVPDI1, SMI3-STI3-SVPDI1, SMI3-STI3-SVPDI3, SMI6-STI1-
SVPDI1, SMI6-STI3-SVPDI1, SMI6-STI3-SVPDI3, SMI6-STI6-SVPDI3,
SMI6-STI6-SVPDI6 (see Methods for details). These 37 indices are com-
puted from ERA549 daily data from 1991 to 2022, using 1991–2020 as the
period of reference to standardise data, to be coherent with Météo France
reference period3. The daily FWI provided by ERA5 is also added to this set
of indices as a reference for comparison, as well as its five components
(FFMC, DMC, DC, BUI and ISI).

To analyse fire characteristics, we use daily burnt areas between 2003
and 2022 derived from observations by the MODIS satellite-borne
instrument50 (see “Methods”). The daily total burnt area on the studied
domain (latitude between 43.27° North and 45.72° North, longitude
between 1.76° West and 0.51° East) is used (see Fig. 1), as it is linked to the
equipment and number of firemen that need to be deployed in the region at
a given time.Thenumber offires is another characteristic that canbeused to
describe wildfires. However, it seems more dependent on human factors in
the Landes Forest as the ignition is most often caused by intentional or
unintentional human action. Twowildfire seasons exist in the Landes Forest
(see Fig. 1). In spring, the previous year’s vegetation, consisting of heather,
gorse and grasses, is dry, making it highly flammable, and the ground is
saturatedwith water, making it difficult for fire-fighting equipment to reach
the fire. In summer, drought and increased tourist activity increase the risk
of wildfires. Here we focus on the summer season. The burnt area in July,
August and September represents 74.2% of the total annual burnt area on
average between 2003 and 2022. Therefore, a correlation analysis between
thedaily total burnt area and themeteorological indices is carriedout only in
July, August and September. ERA549 daily meteorological data are spatially
averaged over the studied region. Using daily values enables to have a
sufficient amount of data to compute correlations.However, thenew indices
presented in this article, because they integrate the weather conditions of
several previous months, reflect seasonal conditions rather than daily var-
iations.We are not focusing on the ignition, which again partly depends on
human factors, but rather on the magnitude of the wildfire. Thus, we esti-
mate the Pearson and Spearman correlation coefficients of the non-null
daily total burnt area with all the indices (665 samples). We perform the
same analysis with only the daily total burnt area larger than the mean total
burnt area on the studied domain (79.4 hectares, corresponding to per-
centile 82), to study which indices correlate the most with the most intense
wildfire activity (113 samples). Pearson and Spearman correlations provide
complementary information on the relation between burnt area and climate

indices51,52. The first compares values, while the second compares ranks.
Standardisation preserves the rank. Therefore, whether variables are stan-
dardised (like our indices) or not (like the FWI) does not impact correlation
results when using Spearman’s correlation.

The set of multivariate indices developed partially correlates with
wildfire activity: for burnt area abovemean, Pearson correlation coefficients
are significant (p-value < 0.05) and range between −0.38 and −0.55, while
the Pearson correlation coefficients between the FWI and burnt area are
slightly higher in August, reaching 0.60 (p-value < 0.05). Using Spearman
rank correlation, the correlation coefficients between multivariate indices
and burnt area above mean are significant (p-value < 0.05) and range from
−0.36 to −0.56 in July and from −0.56 to −0.63 in August, while the
Spearman correlation coefficients between the FWI and burnt area above
mean are not significant (p-value ≥ 0.05). Table 1 displays the Pearson and
Spearman correlation coefficients of the FWI, the ISI, and four of the nine
multivariate indices with burnt area above mean, for the three months (see
Tables S1 and S2 in Supplementary information for detailed results).

The five components of the FWI show contrasting results: the corre-
lation coefficients between DC and the burnt area above the mean are not
significant. The Pearson correlation coefficient of the DMC and the BUI
with burnt area above mean are significant and higher than 0.50 in August
only. However, the Pearson correlation coefficient of the ISI with burnt area
abovemean is higher than0.50 in July,August and September. This suggests
that the FWI seems to partly capture short-term and instantaneous drivers
of large wildfires with the ISI, but that its longer-term components (DC,
DMC and BUI) have difficulties in capturing long-term drivers of large
wildfires in summer in Southwestern France. In this article, we focus on
long-term dryness. However, it should be underlined that daily conditions
are also major drivers of the wildfire risk, as demonstrated by the Pearson
correlation coefficients between the ISI and burnt area above the mean (see
Table 1).

Excluding smaller fires might partly filter out the human factor linked
to the ignition, thus reducing the noise in the data. This could explain the
increase in the correlation coefficients between the two categories of burnt
area considered (see Tables S1 and S2 in Supplementary information).
Several studies underlined the concomitant impacts of long-termand short-
termdrivers on thewildfire risk inother regions31,53. In thewildfire literature,
soil moisture is often integrated over months prior to the event, but usually
temperature and VPD are not54,55. Our results show that in some cases it
might be relevant to also investigate these two climate variables on longer
timescales in combination with other climate variables.

Based on this correlation analysis, the SMI6-STI3-SVPDI3 is selected
to conduct the attribution study as for burnt area above mean in July and
August, on average (over the two types of correlation and the twomonths) it

Table 1 | PearsonandSpearmancorrelation coefficients of theFWI, the ISI, and fourmultivariate indiceswith the total burnt area
above mean

July Aug. Sept.

FWI
Pearson 0.45 0.60 0.49
Spearman NS NS NS

ISI
Pearson 0.51 0.61 0.59
Spearman NS NS NS

SMI1-STI1-SVPDI1
Pearson -0.42 -0.43 -0.55
Spearman -0.56 -0.57 -0.30

SMI3-STI3-SVPDI3
Pearson -0.41 -0.40 -0.42
Spearman -0.53 -0.58 -0.34

SMI6-STI3-SVPDI1
Pearson -0.40 -0.40 -0.38
Spearman -0.53 -0.60 NS

SMI6-STI3-SVPDI3
Pearson -0.47 -0.41 -0.40
Spearman -0.48 -0.63 -0.29

Correlation coefficients are computedondaily total burnt area and indices from2003 to2022.NS:Non-significant (p-value ≥ 0.05).Coefficientswhoseabsolutevalue is above0.5are in green.Coefficientswhose
absolute value is between 0.3 and 0.5 are in yellow. Coefficients whose absolute value is between 0.1 and 0.3 are in red.
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shows the highest correlation coefficient (−0.50). Three other multivariate
indices are also selected to perform the attribution study to evaluate the
uncertainty of the results due to the choice of the multivariate index: SMI1-
STI1-SVPDI1, SMI3-STI3-SVPDI3, and SMI6-STI3-SVPDI1.

Attribution
Weuse the risk-based approach to compare the probability of occurrence of
climate conditions propitious for the development of wildfires such as the
one of July 2022,with (all: all forcing in historical and SSP2-4.5) andwithout
(nat: natural forcing in historical and SSP2-4.5) anthropogenic climate
change, using five climate models following the protocol defined by the
Detection and Attribution Model Intercomparison Project (DAMIP)56:
CanESM5, GISS-E2.1-G, IPSL-CM6A-LR, MIROC6, and NorESM2-LM
(see “Methods”). The five model simulations have been validated against
ERA5 data by comparing the probability distributions of the climate indices
with Kolmogorov–Smirnov tests andQQplots57 (see “Methods”). Based on
the analysis of SMI6-STI3-SVPDI3, and using the median result of the five
climate models, we estimate that climate conditions like the ones of July
2022have an annual probability of 0.08 to occurwith anthropogenic climate
change and a probability of 0.04 without. It means that human-induced
climate change made extreme climate conditions like the ones of July 2022
two timesmore likely.More precisely, the return period of such event is 12.7
years in the factual world, whereas it is of 29.3 years in the counterfactual
world without anthropogenic climate change. Finally, the fraction of attri-
butable risk (FAR) is 0.49 (see Table S5 in Supplementary information for
detailed results and uncertainties). Several studies quantified the impact of
anthropogenic climate change on the increase in fire weather. These studies
focus on different regions and different events and use different meth-
odologies based on the analysis of the FWI. However, their results are
coherent with our study, suggesting the emergence of a climate change
signal on the evolution of thewildfire risk globally: in thewesternUS forests,
the FAR associated with the increase in fuel aridity from 1979 to 2015 is
around 0.5518, climate change is estimated to have made the 2017 extreme
wildfire season in British Columbia 2 to 4 times more likely 20, the most
extremefire seasons inWesternCanadaduring2011–2020 aremade1.5 to 6
times more likely23, and in the Mediterranean region in France, the

probability of a 2003-like season occurring under today’s climate is
increased around 10-fold24.

The same attribution analysis is made on the three sub-indices (SMI6,
STI3, SVPDI3) to disentangle the role of the different climate variables
composing the SMI6-STI3-SVPDI3.The influence of climate change on the
likelihood of occurrence of climate conditions such as the ones of July 2022
is much more pronounced on temperature (FAR of 0.92) than on VPD
(FAR of 0.03), and to a lesser extent, on soil moisture (FAR of 0.22) (see
Tables S6 and S7 in Supplementary information for detailed results).

The same attribution analysis is made on three other multivariate
indices to evaluate the uncertainty linked to the choice of index: SMI6-
STI3-SVPDI1, SMI3-STI3-SVPDI3, and SMI1-STI1-SVPDI1. The risk
ratio (RR) associated with summer 2022 ranges from 1.37 to 1.97, while
the FAR ranges from 0.24 to 0.45. RR and FAR estimated by the five
climate models with the four multivariate indices and their sub-indices
are presented in Figs. 2 and 3.

Attribution results can vary a lot from one model to the other.
CanESM5 and IPSL-CM6A-LR estimate a significative impact of anthro-
pogenic climate change on the occurrence of climate conditions propitious
for the development of wildfires in July 2022 with most indices. With these
two models, the climate change signal is strong when assessed with STI3
(FAR of 0.98 and 0.97, respectively) and lower when evaluated with SMI6
(FAR of 0.12 and 0.42, respectively).MIROC6 detects amoderate impact of
climate change (FAR of 0.49 with SMI6-STI3-SVPDI3). However, GISS-
E2.1-G estimates a decrease in the probability of occurrence of such an
event, even with temperature (contrary to NorESM2-LM) (see Table S7 in
Supplementary information for detailed results). A comparison of surface
air temperature from one simulation with all forcing and one simulation
with natural forcing from GISS-E2.1-G shows a decrease in temperature in
mid-latitudes of the Northern Hemisphere in 1991–2020, which raises
questions on the consistency of GISS-E2.1-G DAMIP simulations on the
localisation and period we study.

Finally, we carried out a similar attribution study on August 2022, to
partly evaluate the impact of the temporal scale on the attribution. Results
are rather close, except for SMI1 whose RR is 1.8 for July 2022 and 7.6 for
August 2022 (see Fig. S11 in Supplementary information).

Fig. 2 | Risk ratios (RR) assessed by the 5 climate
models with each of the 11 indices, for July 2022.A
RRof 1 is represented by a red dashed line. The black
horizontal bars indicate the median of the models
for each index. One RR outlier estimated with STI3
is not shown in the figure (see Fig. S11 in Supple-
mentary information).

https://doi.org/10.1038/s41612-024-00821-z Article

npj Climate and Atmospheric Science |           (2024) 7:267 4

www.nature.com/npjclimatsci


Discussion
The FWI has been widely used in the literature for wildfire attribution and
assessment of risks. It is particularly relevant to study daily variations of the
risk, while also accounting for seasonal droughts. Summer 2022 wildfire
season in Southwestern France was characterised by early and prolonged
dry and hot anomalies. A correlation analysis between the burnt area above
mean and the FWI and its five components reveals that the short-term
components of the FWI (especially the ISI) capture the variability in burnt
area, highlighting the impact of short-term variations in weather conditions
on wildfire risk. However, the long-term components of the FWI, such as
theDC, are less correlatedwith burnt area. Consequently, we aim to identify
an appropriate index to quantitatively attribute the seasonal drought of
summer 2022, which was conducive to the development of wildfires in the
Landes Forest. 37 indices are developed and analysed in this local impact-
oriented study, which allows us to select seasonal climate indices that cor-
relate with summer wildfires in the region. The ad hoc index that we con-
structed, SMI6-STI3-SVPDI3, appears to be relevant for this regional
impact attribution study. The SMI6-STI3-SVPDI3 is the index combining
soilmoisture anomaly on6months, temperature anomaly on3months, and
VPD anomaly on 3 months. It enables to characterise compound extreme
events featuring long-term agricultural drought, high temperature, and
atmospheric dryness. The indices we developed are standardised, which
makes them easily interpretable as their physical meaning can be directly
retrieved and interpreted as the anomaly to the normal conditions in their
standard deviation. They also ease the comparison of different locations and
times. In addition, they have the advantage of being easily computed as the
calculationmethodology is relatively simple, and the inputdata areprovided
by most climate models. The SMI6-STI3-SVPDI3 and the FWI are com-
plementary, as they relate to phenomena associated with different temporal
scales, which are all important drivers of wildfires.

After the seasonal climate index is defined, we conduct the attribution
study following the risk-based approach, which enables us to compare the
likelihood of summer 2022 with and without human-induced climate
change. We evaluate the uncertainty of our results by performing the
attribution on different indices, five climate models, and two summer

months. We show that climate change made summer 2022 climate condi-
tions that were favourable for wildfire development two times more likely.
The analysis of the three sub-indices (SMI6, STI3 and SVPDI3) shows that
this increase in likelihood ismainly drivenby temperature. It also shows that
depending on the index selected to perform the attribution, results can vary
a lot. Attribution studies might be used to inform climate-related litigation
cases that could feature loss and damage estimates or economic
compensation58–61. In these cases, the question of the climate index used to
conduct the analysis, as well as the index used to communicate the attri-
bution result (e.g. FAR or RR) have to be raised and discussed. Similarly, the
choiceof the spatial and temporal scalesused todefine the extremeeventwill
influence the results of the attribution study. Events defined over longer
timescales and larger spatial scales often yield stronger attribution due to
enhanced signal‐to‐noise ratios62. Finally, the five climatemodels used yield
very different results, showing that the uncertainty across models is
substantial.

The methodology developed to perform this impact-oriented attri-
bution study canbe easily applied to other regional contexts but also to other
extreme events and their local impacts, such as floods for instance. Indeed,
the climate indices definition and selection methodology are relatively
straightforward and flexible: several timescales can be studied, allowing for
the analysis of long-term or short-term phenomena, other climate variables
can be standardised, and the standardised indices are relevant to analyse
both sides of the distribution, that is to say, both wet and dry conditions, or
both hot and cold conditions for example. In a context where the public,
media and authorities often ask for rapid statements on the role that climate
changeplayed in the occurrence of various extreme events, it is interesting to
have a flexible methodology applicable to several regions and impacts.

A complementary attribution study based on a storyline approach, for
instance, could also be conducted to investigate the influence of climate
changeonphysical processes leading to summer2022 extreme conditions in
Southwestern France63,64. To help the establishment of adaptation strategies,
the next step would be to investigate with climate projection scenario the
possible evolution of the intensity and likelihood of extreme climate con-
ditions propitious for wildfires development. In addition to our correlation

Fig. 3 | Fraction of attributable risk (FAR) assessed
by the 5 climatemodels with each of the 11 indices,
for July 2022. A FAR of 0 is represented by a red
dashed line. The black horizontal bars indicate the
median of the models for each index.
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analysis, it would be interesting to investigate in detail the reasons why
summer 2022 wildfires were so extreme compared to previous years, by
analysing the seasonal cycle to study, for instance, whether the dry and hot
summerwas preceded by conditions favourable to vegetation growthwhich
provided more fuel than usual. It would also be interesting to investigate
whether spring wildfires are driven by similar climate conditions or not.

Wildfires are complex issues raising challenges for their analysis and
understanding because they depend a lot on human factors: ignition is often
caused by intentional or unintentional human intervention, and the
developmentof awildfirewill partlydependon landand forestmanagement
prior to the event (especially in the Landes Forest which is a planted forest).
However, climate conditions highly influence the ignition potential and the
capacity of the fire to develop and spread rapidly. Thus, in the context of
planning and building adaptation strategies, it remains relevant to assess the
influence of anthropogenic climate change in the increase in occurrence
likelihood. Our results show that in Southwest France, the return period of
climate conditions favourable for the development of wildfires like the ones
of summer 2022 is of 13years in the current climate. The Landes Forest is an
exploited plantation wheremaritime pines are cut and collected around the
age of 40 years. This raises the question of the sustainability of this forest if
nothing is done on the one hand to reduce greenhouse gas emission to limit
global warming, and on the other hand to adapt to climate change locally, as
for now it is highly probable that wildfire environmental and socio-
economic impacts will increase65–70.

Methods
Calculation of the vapour pressure deficit (VPD)
VPD is defined as the difference between the saturated water vapour
pressure (es, Pa) and the actual one (e, Pa), and calculatedwith the following
formula:

VPD ¼ es � e ¼ qs
εþ ð1� εÞqs

P � q
εþ ð1� εÞq P ð1Þ

where qs and q are the saturated and actual specific humidity in kg/kg, P the
atmospheric pressure in Pa, and ε is the ratio of the molecular weight of
water vapour to the molecular weight of dry air (ε = 0.622).

Definition of the univariate standardised climate indices to
characterise the event
The definition of the univariate standardised indices is inspired by the
methodology developed to create the Standardised Precipitation Index
(SPI)71. The SMI is computedby averaging soilmoisture on one of the seven
timescales (1, 3, 6, 9, 12, 24or 36months), estimating the cumulative density
function (CDF) with the Gringorten plotting position, and applying the
inverse CDF of the normal distribution to obtain an index following a
normal distribution centred on zero, with a standard deviation of one. The
Gringorten plotting position method is a non-parametric approach to
compute empirical CDF: p ¼ ðr � 0:44Þ=ðnþ 0:12Þ, where p is the
cumulative probability, r the rank of the sorted data and n the number of
data72. This normalisationmethodology is applied to eachmonth separately
to reflect anomalies for a given month, not the seasonal difference in
meteorological conditions. Indeed, our objective is to analyse the evolution
of the wildfire risk with anthropogenic climate change each month inde-
pendently. We analyse how July 2022 conditions differ from mean July
conditions. The same standardisation technique is applied to precipitation,
temperature and VPD.

Definition of the multivariate climate indices to characterise
the event
Thousands of combinations of the 28 univariate indices can be made to
build multivariate indices. Combining three indices is a compromise
between encompassing several climate information in an index, keeping
computing time reasonable, and limiting the complexity of the index. We
choose to include soil moisture, and not precipitation, as soil moisture will

partly, integrate precipitation information. Therefore, soil moisture, tem-
perature and VPD are combined. The choice of the indices and the inte-
gration timescales is not exhaustive, but it is based on our physical
understanding of the relation of climate variables with the wildfire risk. Soil
moisture varies on longer timescales than temperature and VPD (see Figs.
S1 to S3 in Supplementary information), andprevious studies demonstrated
the influence of prolonged drought on wildfire risk53,73. Therefore, in our
multivariate indices, soilmoisture is integrated on longer or equal timescales
as temperature and VPD. This also enables us to reflect the concurrence of
phenomena characterised by different timescales (e.g. long-term soil
moisture drought, short-term atmospheric drought, etc.). Other combina-
tions of univariate indices or timescales were tested, but they did not add
any value.

Themultivariate indices are computed from three univariate indicesX,
Y ,Z (e.g. SMI6, STI3, SVPDI3). Let’s calln thenumber of datapoints. For all
the possible combinations of values of the three indices (X ¼ xi, Y ¼ yj,
Z ¼ zk) with 1≤ i; j; k≤ n, the number m of data points verifying the
condition (X ≤ xi \ Y ≤ yj \ Z ≤ zk) is determined. Then, the empirical
joint cumulative probability is estimated using the Gringorten plotting
position formula generalised to the trivariate case74–76:

PðX ≤ xi; Y ≤ yj; Z ≤ zkÞ ¼
m� 0:44
nþ 0:12

ð2Þ

Finally, the inverse function of the normal distribution CDF is applied
to obtain the multivariate index values.

ERA5 data
ERA549 variables used are daily surface air temperature (2-metre height),
total soilmoisture, relative humidity, specific humidity and surface pressure,
with a resolution of 0.25°, from 1991 to 2022. The meteorological variables
are spatially averaged over the domain studied (latitude between 43.27°
North and 45.72° North, longitude between 1.76°West and 0.51° East) (see
Fig.1). For the attribution study, variables are averaged on a monthly
timescale.

Wildfire data
Daily burnt areas are analysed using the MCD64A1 fire product from the
MODIS instrument, carried on the Terra and Aqua satellites50, which
provides the date of burning at 500m horizontal resolution based on the
change in surface reflectance. The MODIS data are processed using the
APIFLAME model version 2.077 to estimate the daily burnt areas in the
Landes Forest between 2003 and 2022. The APIFLAMEmodel allows us to
estimate additional small fires that may not be detected by the MCD64A1
fire product by merging burned scars78 and active fires79. In the studied
region, the estimate of small fires is relatively low from July to September
during the 2003-2021 period (6%), whereas in 2022, the proportion of small
fires is surprisinglyhigh compared toprevious years (44%).Wecompare the
July-to-September burnt area from theMCD64A1 product with three other
datasets: GFED580 (providingmonthly burnt area estimates for 1997−2020
using MODIS, Landsat and Sentinel-2 data), FireCCIS31181 (providing
monthly burnt area estimates for 2019−2022 using Sentinel-3 and VIIRS
data), and BDIFF82 (a national inventory providing burnt area estimates for
each wildfire event listed during 2006−2022). For 2003−2020, GFED5
quantifies 101% more burnt area, while for 2006−2021, BDIFF quantifies
29.2% less burnt area. In 2022, the assessments of the burnt area by BDIFF
and FireCCIS311 are close to that of MCD64A1 (respectively, −6.5% and
−1.1% difference compared toMCD64A1). These two datasets suggest that
APIFLAMEmight overestimate the burnt area from smallfires in 2022 over
the region. When accounting for small fires, APIFLAME estimates a burnt
area 25.9% higher than BDIFF and 29.6% higher than FireCCI311.
Therefore, we use theMCD64A1 fire product, regridded by theAPIFLAME
model and spatially summed over the studied domain, to obtain the daily
total burnt area.
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Climate models data
To carry out this attribution study, we select all the models providing
historical simulations with all forcing, SSP2-4.5 simulations with all
forcing, historical simulations with natural forcing only, SSP2-
4.5 simulations with natural forcing only, for monthly surface tem-
perature, soil moisture, relative humidity, specific humidity and surface
pressure. Five climate models provide these simulations: CanESM5,
GISS-E2.1-G, IPSL-CM6A-LR,MIROC6, andNorESM2-LM. CanESM5
is theCanadian Earth SystemModel version 5 and has a resolution of 2.8°
both in latitude and longitude83. GISS-E2.1-G is the latest version of the
National Aeronautics and Space Administration (NASA) Goddard
Institute for Space Studies (GISS) climate model and has a resolution of
2° in latitude and 2.5° in longitude84. IPSL-CM6A-LR is the latest version
of the Institut Pierre-Simon Laplace (IPSL) global climate model as part
of the sixth phase of the Coupled Model Intercomparison Project
(CMIP6) and has a resolution of 1.3° in latitude and 2.5° in longitude85.
MIROC6 is the sixth version of the Model for Interdisciplinary Research
on Climate (MIROC) developed by a Japanese modelling community
and has a resolution of 1.4° both in latitude and longitude86. NorESM2-
LM is the second version of the coupled Norwegian Earth SystemModel
and has a resolution of 1.9° in latitude and 2.5° in longitude87. Between 8
and 11 simulations are used for CanESM5, IPSL-CM6A-LR, and
MIROC6, 5 simulations are used for GISS-E2.1-G, and one simulation is
used for NorESM2-LM (see Table S3 in Supplementary information for
details on simulations used).

Models validation
The five climate models used are validated against ERA5 data. The
probability distributions of the climate indices calibrated on the
1991–2020 period (to be coherent with Météo France reference) are
compared by performing Kolmogorov–Smirnov tests and by analysing
QQplots. These analyses show a good similarity between the probability
distributions of the indices computed from ERA5 and the probability
distributions of the indices computed from climate models, giving us
confidence in the use of these five climate models to carry out the
attribution study (see Table S4 and Figs. S6 to S10 in Supplementary
information).

Attribution methodology
The domain considered is the same as in the analysis of the correlation of
climate indices with burnt area: latitude between 43.27°North and 45.72°
North, longitude between 1.76° West and 0.51° East (see Fig. 1). ERA5
data are spatially averaged over this domain, similarly to the data pre-
processing performed before the correlation analysis. In addition, ERA5
data are temporally averaged on a monthly timescale to fit the temporal
resolution of climate models. For each of the five models, we perform a
nearest point interpolation to obtain the corresponding simulated cli-
mate conditions over this domain. The climate indices are standardised
on the 1991–2020 period to be coherent with Météo France reference
period, and computed on 1991-2022 with ERA5 data, and with each of
the five climate models, using ensemble simulations when available (see
Table S3 in Supplementary information). The end of the historical
simulations with all forcing (1991–2014) is concatenated to the first years
of the SSP2-4.5 scenario with all forcing (2015–2022). The end of the
historical simulations with natural forcing only (1991–2020) are con-
catenated to the first years of the SSP2-4.5 scenario with natural forcing
only (2021–2022). We estimate from ERA5 data the probability
PERA5_2022 of the extreme event of July 2022 (using 1991–2020 reference
period), when the first important wildfire started, as well as the value of
the index Imodel_2022 in the simulations with all forcing, corresponding to
a probability Pall equal to PERA5_2022, in each of the five models. Then, we
determine the probability Pnat of occurrence of an event of intensity
Imodel_2022 in the simulations with natural forcing only. Finally, the
fraction of attributable risk, defined as FAR = 1− Pnat/Pall, can be esti-
mated. The FAR is an attribution index used to characterise the evolution

of the likelihood of an extreme event. It is interpretable when climate
change leads to an increase in the likelihood of occurrence (Pall > Pnat)

88.
In such cases, it varies between 0 and 1: when Pall is a lot greater than Pnat,
the FAR tends toward 1, meaning the likelihood of a given event
occurring is greatly increased by climate change, while if Pall is close to
Pnat, the FAR tends toward 0. The return period in the factual and
counterfactual worlds are respectively defined as RPall = 1/Pall and
RPnat = 1/Pnat. Finally, the risk ratio is defined as RR = Pall/Pnat.

Confidence interval
We estimate the 95% confidence interval on the probabilities (Pall and Pnat),
the return periods (RPall and RPnat), the FAR and the RR by
bootstrapping19,20,89 (see Table S5 in Supplementary information). The
standard error of these parameters is evaluated for different numbers of
bootstrap samples. Based on the analysis of the evolution of the standard
error with the number of bootstrapped datasets, we decided to create 10,000
bootstrapped samples as it enables the convergence of the standard error at a
reasonable computational cost.

Data availability
CMIP6 data is publicly available through the Earth SystemGrid Federation
(https://esgf-node.llnl.gov/search/cmip6/), ERA5 through the Climate Data
Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels?tab=overview), and MODIS data through NASA’s Land
ProcessesDistributedActiveArchiveCentre (LPDAAC) (https://e4ftl01.cr.
usgs.gov/MOTA/MCD64A1.061/).

Code availability
TheAPIFLAMEmodel v2.0 and associated documentation are available for
download at https://doi.org/10.14768/20190913001.190.
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