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When is a trend meaningful? Insights to
carbon cycle variability from an initial-
condition large ensemble

Check for updates

Gordon B. Bonan 1 , Clara Deser 1, William R. Wieder 1,2, Danica L. Lombardozzi1,3 &
Flavio Lehner 1,4,5

Internal climate variability (ICV) creates a range of climate trajectories, which are superimposed upon
the forced response. A single climate model realization may not represent forced change alone and
may diverge from other realizations, as well as observations, due to ICV. We use an initial-condition
large ensemble of simulations with the Community Earth System Model (CESM2) to show that ICV
producesa rangeof outcomes in the terrestrial carboncycle. Trends ingrossprimaryproduction (GPP)
from 1991 to 2020 differ among ensemble members due to the different climate trajectories resulting
from ICV.Wequantify how ICV imparts onGPP trends and apply ourmethodology to the observational
record.Observedchanges inGPPat two long-running eddy covariance flux towers are consistentwith
ICV, challenging the understanding of forced changes in the carbon cycle at these locations. A
probabilistic framework that accounts for ICV is needed to interpret carbon cycle trends.

Climate change is evident in numerous disparate observations of the
Earth system. The increase in atmospheric CO2measured atMauna Loa,
Hawaii, since 1959, is one of the iconic records of global change1,2, as is
the planetary warming seen in the time series of surface temperature
measurements3–5 and reflected in Arctic sea–ice loss6. Multidecadal
changes in the biosphere, both greening and browning, are found in
satellite-derived vegetation indices7–9. Further evidence for a changing
biosphere is obtained from the worldwide network of eddy covariance
flux towers, which measure energy, water, and CO2 exchange between
the biosphere and atmosphere10–12. Analyses of flux towermeasurements
find temporal increases in terrestrial productivity at many locations13–22.
The time period over which eddy covariance flux towers have operated is
comparatively short, however, and the datasets typically span 10–20
years of data. Carbon cycle trends observed over 24 years at Harvard
Forest (1992–2015) and 25 years at Howland Forest (1996–2020) are the
longest analyses to date19,20. Although the trends have been interpreted in
terms of changes in climate, CO2 concentration, and other forcings, the
extent to which unforced variability internal to the climate system
influences carbon cycle trends is unknown.

The changing state of the Earth system reflects the forced change in
response to rising greenhouse gas concentrations and other anthropogenic
forcings23. Superimposed on the forced response is naturally occurring
variation in climate at timescales from several days to decades24–27. This

variation, known as internal climate variability, is unforced and arises from
chaotic behavior intrinsic to the coupled atmosphere, ocean, sea ice, and
land system. Internal climate variability is random behavior overlayed onto
the long-termresponse to anthropogenic forcings. It canbe thoughtof as the
climate that is realized in contrast to the climate that is expected from the
forcings alone, and it means there can be periods of cooling or minimal
warming during a long-term warming trend or periods of accelerated
warming that exceed the expected warming28.

Internal climate variability is studiedusing climate simulations over the
historical era and projections of future climate change over the 21st century.
The sensitivity of weather forecasts to small perturbations in initial condi-
tions is the behavior of nonlinear deterministic systems identified by
Edward Lorenz in his foundational study of chaos theory and popularized
by a butterfly flapping its wings29. Similar behavior occurs in climate
simulations, where small perturbations of the initial atmosphere tempera-
ture field (e.g., 10−14 K) produce different climate trajectories24,26,30. Large
ensembles (typically 30–100 members) performed with a single model
quantify the range of outcomes due to internal climate variability24,26,30–32.
Each ensemblememberhas identical anthropogenic forcings, but theydiffer
in initial atmosphere and/or ocean states. Each simulation is a unique
expression of the random sequence of unforced variability, and each is an
equally plausible depiction of climate. The spread among ensemble mem-
bers is due solely to internal climate variability, but the ensemble mean,
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which averages the random variability among ensemble members, shows
the forced response.

Internal climate variability produces a large spread among
ensemble members in multidecadal temperature and precipitation
trends at regional scales24–27,30,31,33–35. It is a large source of uncertainty
in climate projections at regional spatial scales and decadal
timescales27,31,36,37. Internal climate variability can mask anthropogenic
influences on climate, seen in the concept of time of emergence, which is
the time when the forced signal emergences from the noise38,39. The
observational record, itself, is just one of many possible trajectories by
which temperature and precipitation trends could have unfolded as a
result of internal climate variability35,40–42.

Internal climate variability imparts unforced variability in other
componentsof theEarth system including sea ice43–45, snowmelt46,47, sea level
rise48,49, and ocean biogeochemistry50–52. Less studied is whether internal
climate variability manifests in the terrestrial carbon cycle. Previous studies
have found a signature of internal climate variability in the terrestrial carbon
cycle53, which masks the forced signal of change54 and confounds the
interpretation of observed changes in the carbon cycle55.

Two analyses of annual gross primary production (GPP) at the Har-
vard Forest EMS eddy covariance flux tower (AmeriFlux US-Ha1;
42.5378°N, 72.1715°W) illustrate the variability inGPP trends.AnnualGPP
increased over the period 1992–2004 at a rate of 36.3 g Cm−2 yr−1 per year13.
A longer time series that extends the observations to 2015 has a smaller
annual trend equal to 23.3 g Cm−2 yr−1 per year over the 24-year period19.
One interpretation is that the post-2004 data evidence a change in the
carbon cycle11. An alternative but untested interpretation is that the two
trends differ as a result of internal climate variability.

We use a 50-member initial-condition large ensemble for the Com-
munity Earth System Model version 2 (CESM2) driven with historical
forcing for 1850–2014 and SSP3-7.0 forcing for 2015–2100 (ref. 32) to
examine how internal climate variability influences trends of annual GPP.
We analyze the 30-year period 1991–2020. Thirty years is comparable to the
longest observational records in the AmeriFlux network of eddy covariance
flux towers12. We document the variability among ensemble members in
GPP trends and show that the standard error of the linear regression trend
obtained from the time series of a single ensemble member estimates the

variability in trends across all 50 ensemble members. We apply this finding
to estimate the internal variability of the AmeriFlux GPP data for Harvard
Forest over the period 1992–2020 (ref. 56) and calculate the probability of
obtaining the different trends reported for 1992–2004 and 1992–2015. We
demonstrate that internal climate variability generates sampling differences
over the two time periods consistent with the observed trends. We sup-
plement this observational analysis with additional AmeriFlux data for
Morgan-Monroe State Forest (US-MMS; 39.3232°N, 86.4131°W) for
1999–2020 (ref. 57) and Howland Forest (US-Ho1;45.2041°N, 68.7402°W)
for 1996–2020 (ref. 20).

Results
Simulated GPP trends
Across much of North America, the CESM2 ensemble mean, which is
indicative of the model’s forced response to anthropogenic emissions,
has a statistically significant increase in annual GPP from 1991 to 2020
(Fig. 1a). However, there is considerable variability among ensemble
members. The ratio of the ensemble mean trend to the standard
deviation of trends across ensemble members provides a measure of
signal-to-noise (Fig. 1b). The forced signal (i.e., the ensemble mean)
exceeds the noise (i.e., ensemble standard deviation) by a factor of four
across portions of eastern Canada, Northeast US, and Southeast US.
Elsewhere, the signal-to-noise ratio is less than two in Alaska and much
of the contiguous US, and it is less than one in the Southwest extending
into Mexico and in a broad region extending from the Canadian prairie
toMidwestUS. Two ensemblememberswith small and large continental
mean trends illustrate the ensemble variability (Fig. 1c, d). Much of
Canada has a statistically significant positive GPP trend in both mem-
bers, though the magnitude varies between members. In contrast, GPP
trends across Alaska are small and not statistically significant in
ensemble member 1281.015 but are large and significant in 1231.018.
GPP trends are negative in portions of Midwest US extending into the
Canadian prairie in 1281.015, but not in 1231.018. Supplementary Fig. 1
further highlights ensemble variability in trends for 18 members chosen
at random. Large ensemble variability is evident in Alaska, Northwest
Canada, and the US west of the Mississippi River, and not all members
have a statistically significant GPP trend in these regions.

Fig. 1 | Trends in annual GPP for 1991–2020.
aMean trend for the 50-member ensemble obtained
from the ensemble mean time series. The colored
circles indicate the location of 8 grid cells analyzed in
Fig. 2 and Supplementary Fig. 2. b Signal-to-noise
ratio is defined as the ensemblemean trend (absolute
value) divided by the standard deviation of trends
across the 50 members. Also shown are trends for
two members with small (c) and large (d) con-
tinental mean trends. Ensemble members 1281.015
and 1231.018 are the members at the 3rd (6th per-
centile) and the 47th (94th percentile) ranks,
respectively, based on continental mean trends.
Stippling denotes statistical significance (n = 30
years; p ≤ 0.05) using the ensemble mean time series
or the individual ensemble member time series.
Trends are multiplied by 10 to report the change in
annual GPP per 10 years.
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Histograms of trends across the 50 ensemble members for individual
grid cells further illustrate the ensemble variability (Fig. 2). In theNortheast,
all of the members have a statistically significant trend, but the 95% con-
fidence interval of the trend (obtained from the ensemble spread) ranges
from45 to 100 g Cm−2 yr−1 per 10 years. Ensemble variability is larger at the
Taiga location, where only half of the ensemble members (52%) have a
statistically significant trend, and the 95% confidence interval is
12–109 g Cm−2 yr−1 per 10 years. Only one-quarter (26%) of the members
have a statistically significant trend at the Mid-Atlantic grid cell, where the
trend varies from negative in twomembers to greater than 100 g Cm−2 yr−1

per 10 years in two members. Only 10 ensemble members (20%) have a
statistically significant trend at the Northern Plains grid cell, and the trend
ranges from negative (8 members) to positive (2 members). Similar
ensemble variability is seen at other locations (Supplementary Fig. 2). The
variability in GPP trends is comparable whether the ensemble members
differ in start year or differ only in a 10−14 K perturbation to the initial air
temperature field (Supplementary Fig. 3).

InBritishColumbia, easternportionsofCanada, theNortheastUS, and
parts of the SoutheastUS,more than 90%of themembers have a statistically
significant positive GPP trend (Fig. 3a). Other regions show large variability
among ensemble members. In Alaska, the ensemble mean trend is statis-
tically significant (Fig. 1a), but only about half of the members (40–60%)
have a statistically significant trend across much of the region (Fig. 3a). A
wide region of the interior continent has a significant positive trend in at

least one but less than 10 (20%) of themembers. The negative GPP trend in
the Canadian prairie extending into the Midwest US is statistically sig-
nificant in only 10–30% of the members (Fig. 3b).

The 95% confidence interval for annual GPP trends obtained from
the 50-member ensemble shows a wide range of trends amongmembers
(Fig. 4a). The confidence interval spans more than 100 g Cm−2 yr−1 per
10 years across portions of Alaska, northern Canada, the Canadian
prairie extending into Midwest US, the Mid-Atlantic region, and the
Central Plains extending into Mexico. GPP trends at the low and high
ends of the confidence interval range from negative to positive in some
regions, most prominently in the Canadian prairie extending into the
Midwest US (Supplementary Fig. 4).

The standard error of the linear regression trend (sb1, Eq. 3), which
quantifies the interannual variability of the linear trend within a single
ensemble member, is also an estimate of the variability in trends among
ensemble members. That sb1 samples internal climate variability has been
shown previously for temperature and precipitation58, and we find that a
similar result pertains toGPP.The95%confidence interval of theGPPtrend
obtained using sb1 for a single ensemblemember (Fig. 4b) approximates the
95% confidence interval of the trend for the 50-member ensemble (Fig. 4a).
This is also evident for other ensemble members (Supplementary Fig. 5).
Differences between the 95% confidence interval of the 50-member
ensemble and the sb1-estimated confidence interval are mostly within ±
25 g Cm−2 yr−1 per 10 years (Supplementary Fig. 6). Aprominent exception

a b

c d

Significant trend

Non-significant
trend
95% CI

72.4 ± 15.1 50.6 ± 24.9

42.5 ± 28.7

D01: Northeast D19: Taiga

D02: Mid-Atlantic D09: Northern Plains

80% n.s.

48% n.s.0% n.s.

74% n.s.
–13.3 ± 33.5

Fig. 2 | Histogram of annual GPP trends for 1991–2020 at four grid cells. Grid
cells correspond to the location of core terrestrial sites for four domains in the
National Ecological Observatory Network (NEON). See Fig. 1 for the location of the
sites. Panels show a D01: Northeast, b D19: Taiga, c D02: Mid-Atlantic, and dD09:
Northern Plains sites. The left axis is the frequency distribution for the n = 50
ensemble members, and the black line is the cumulative distribution (right axis).

Yellow shading shows members with a statistically significant trend (n = 30 years;
p ≤ 0.05), and light blue shading shows non-significant trends. Themean ± standard
deviation and the percentage of members with a non-significant (n.s.) trend are
provided in the upper left of each panel. Also shown is the 95% confidence interval
(red circles) obtained as the range of trends (n = 48) after excluding the smallest and
largest trends.
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is a region of Canada extending from the Northwest Territories into Sas-
katchewan, where the difference is larger.

The magnitude of sb1 varies among ensemble members, and therefore
the estimated 95% confidence interval obtained from the linear regression
varies among members. However, the statistical distribution of confidence
intervals obtained from sb1 includes the 95% confidence interval of the 50-
member ensemble. This is evident at the Northeast location, where all
ensemble members have a statistically significant trend (Fig. 2a) and the
variability among members in sb1 (and therefore 95% confidence intervals)
is small (Fig. 4c). Ensemble variability is larger at theTaiga location andonly
half of the ensemble members have a statistically significant trend (Fig. 2b),
but the 95% confidence intervals obtained from sb1 still encompass that
obtained from the 50-member ensemble (Fig. 4d). Similar results are found
at the other locations (Supplementary Fig. 7).

Correlation of GPP with temperature and precipitation
The CESM2 Large Ensemble has internal variability in temperature and
precipitation, which manifests in the GPP trends. Although all regions of
North America have a statistically significant warming trend in the
ensemblemean (i.e., the forced trend), the amount of warming varies across
the 50-member ensemble due to internal climate variability (Supplementary
Fig. 8). Annual precipitation increases in some regions of North America in
the ensemble mean, but with considerable variability among ensemble
members (Supplementary Fig. 9). The 30-year trends for GPP and tem-
perature are positively correlated in seasonally cold climates and negatively
correlated in the dry climates of the interior plains region (Fig. 5a). TheGPP
trends are positively correlated with precipitation trends across much of
North America, with largest correlations in the interior region of the US
(Fig. 5b). In this region, warm years tend to have low rainfall and vice versa
(Fig. 5c).

Internal variability of observed GPP trends
Annual GPP at the AmeriFlux Harvard Forest EMS eddy covariance flux
tower (US-Ha1; 42.5378°N, 72.1715°W) increased at a rate of
127.1 ± 41.3 g C m−2 yr−1 per 10 years for the period 1992–2020 (Fig. 6a).
The CESM2 Large Ensemble underestimates annual GPP at the grid cell
corresponding to Harvard Forest over the 1992–2020 observational period,
as well as the interannual variability (Fig. 6b). The trend across the 50

a

b

Fig. 3 | Percentage of ensemble members with statistically significant trends in
annual GPP for 1991–2020. Percentages are given for a positive and b negative
trends. Non-significant trends (n = 30 years; p > 0.05) are masked.

Fig. 4 | 95% confidence interval in annual GPP
trends for 1991–2020. a The 95% confidence
interval was obtained from the 50-member ensem-
ble. It is the range of trends (n = 48) after excluding
the smallest and largest trends for each grid cell.
b The 95% confidence interval obtained from the
standard error of the regression trend (sb1, Eq. 3).
The confidence interval is 2 � 2:048 � sb1, where
t0:975;28 ¼ 2:048 is the critical t-value for n ¼ 30
years of data. Shown is an ensemble member chosen
at random. Stippling shows where the trend is sta-
tistically significant (n = 30 years; p ≤ 0.05).
c Frequency distribution of the 95% confidence
interval obtained from sb1 for the n = 50 ensemble
members at the grid cell corresponding to the D01:
Northeast location. The confidence interval for each
ensemble member is calculated as in (b). The thick
black line is the 95% confidence interval obtained
from the 50-member ensemble as in (a). d As in (c),
but for D19: Taiga.

a b

c d

95% confidence interval (g C m-2 yr-1 per 10 years)

Full ensemble Ensemble member 1251.013

D01: Northeast D19: Taiga

95% confidence interval (g C m-2 yr-1 per 10 years) 95% confidence interval (g C m-2 yr-1 per 10 years)
40 60 80 100 120 140 40 60 80 100 120 140

25

20

15

10

5

0

Fr
eq

ue
nc

y

https://doi.org/10.1038/s41612-024-00878-w Article

npj Climate and Atmospheric Science |           (2024) 7:320 4

www.nature.com/npjclimatsci


members is 73.0 ± 14.1 g Cm−2 yr−1 per 10 years (mean ± standard devia-
tion), with a range of 48–114 g Cm−2 yr−1 per 10 years. Although the mean
trend is less than the observations, the distribution of trends obtained from
the ensemble falls within the observational uncertainty (Fig. 6c). However,

the variability of CESM2 trends (14.1 g Cm−2 yr−1 per 10 years) is one-third
the observed variability (41.3 g Cm−2 yr−1 per 10 years).

Comparable analyses at Morgan-Monroe State Forest (US-MMS;
39.3232°N, 86.4131°W) show broad overlap between model and observed
GPP trends (Fig. 7a), but not at Howland Forest (US-Ho1; 45.2041°N,
68.7402°W) (Fig. 7b). At both locations, the variability of trends in the
CESM2 Large Ensemble is comparable to the observed variability.

The Harvard Forest data show considerable variability in GPP trends
dependingon the timeperiod sampled (Fig. 6a).AnnualGPP increasedover
the period 1992–2004 at a rate of 362.1 ± 65.0 g Cm−2 yr−1 per 10 years
usingdata reportedbyUrbanski et al. (ref. 13).A subsequent datasetbyFinzi
et al. (ref. 19) that extends the observations to 2015 has a smaller trend for
1992–2015 (232.8 ± 46.9 g Cm−2 yr−1 per 10 years). We used Monte Carlo
methods to determine the conditional probability of obtaining these
two GPP trends given the long-term forced trend. We calculated the
probability of obtaining a trend of 362.1 g Cm−2 yr−1 per 10 years over
the 13-year period 1992–2004 and a trend of 232.8 g Cm−2 yr−1 per 10 years
over the 24-year period 1992–2015 if the long-term forced trend is
127.1 ± 41.3 g Cm−2 yr−1 per 10 years.

Figure 8a shows annual GPP from 1992 to 2004 in two Monte Carlo
simulations that drawGPP for eachyear as a randomdeviate about the long-
term forced trend. Both time series have a forced trend of 127.1 g Cm−2 yr−1

per 10 years, but annual GPP decreases by−143.7 g Cm−2 yr−1 per 10 years
in one time series and increases by 397.9 g Cm−2 yr−1 per 10 years in the
other. Figure 8b shows the statistical distribution of trends obtained from
100,000 Monte Carlo simulations with randomly sampled time series. The
mean trend (127.0 g Cm−2 yr−1 per 10 years) is comparable to the forced
trend, and the standard deviation is larger as expected (138.2 vs.
41.3 g Cm−2 yr−1 per 10 years) because of the smaller number of years
sampled. The 95% confidence interval of the trends obtained from the
Monte Carlo simulations spans−144 to 398 g Cm−2 yr−1 per 10 years (the
time series in Fig. 8a show simulations in which the trends are the 2.5 and
97.5 percentiles of the Monte Carlo simulations). The observed trend of
362.1 g Cm−2 yr−1 per 10 years falls within the 95% confidence interval.
There is a 4.4% chance of obtaining a trend equal to or greater than the
observed trend if the forced trend is 127.1 g Cm−2 yr−1 per 10 years. There is
a 5% chance of a value equal to or greater than 354 g Cm−2 yr−1 per 10 years
and a 10% chance that the trend equals or exceeds 304 g Cm−2 yr−1 per 10
years. With a longer time series spanning 1992–2015, the 95% confidence
interval for trends is 20–235 g Cm−2 yr−1 per 10 years (Fig. 8c). The
observed trend of 232.8 g Cm−2 yr−1 per 10 years for this time period falls
within the uncertainty range (Fig. 8d). There is a 2.7% chance of obtaining a

a

b

c

GPP and temperature trends

GPP and precipitation trends

Temperature and precipitation trends -0.8

-0.4

0.4

0.8

0
C

or
re

la
tio

n 
co

ef
fic

ie
nt

Fig. 5 | Correlation across the 50 ensemble members of the 30-year trends
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c temperature and precipitation. Stippling denotes statistically significant correla-
tions (n = 50, p ≤ 0.05).
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Fig. 6 | Observed and simulated annual gross primary production (GPP) at the
AmeriFluxUS-Ha1 (Harvard Forest)flux tower. aObserved time series atHarvard
Forest published by Urbankski et al. (ref. 13) for 1992–2004, Finzi et al. (ref. 19) for
1992–2015, and the AmeriFlux data (ref. 56) for 1992–2020. TheUrbanski et al. data
are indistinguishable from the Finzi et al. data over the same time period. Shown are
the linear regression slope ± standard error for the three datasets. See Supplementary
Table 1 for the data. b Simulated time series from the 50-member CESM2 Large
Ensemble for the grid cell corresponding to the Harvard Forest tower location. The
black line is the ensemble mean, the dark gray shading shows ± one standard

deviation across all ensemble members, and the light shading shows the ensemble
range. Also shown are four ensemblemembers. The red line is the ensemblemember
with the largest trend, and the blue line is the ensemble member with the smallest
trend. The dashed magenta and cyan lines are the ensemble members with high and
low temporal correlation with the AmeriFlux data, respectively. c Statistical dis-
tribution of trends from the CESM2 Large Ensemble in comparison with the
AmeriFlux data for 1992–2020. The model trends are normally distributed
(mean ± standard deviation, 73.0 ± 14.1 g Cm−2 yr−1 per 10 years). Also shown is the
trend estimated using the AmeriFlux data (127.1 ± 41.3 g Cm−2 yr−1 per 10 years).
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trend equal to or greater than the observed trend. The 5% and 10%
thresholds are 217 and 197 g Cm−2 yr−1 per 10 years, respectively. Despite a
forced trend of 127.1 g Cm−2 yr−1 per 10 years, interannual variability in
GPP can by chance give rise to the larger trends observed for both the
1992–2004 (362.1 g Cm−2 yr−1 per 10 years) and the 1992–2015
(232.8 g Cm−2 yr−1 per 10 years) time periods.

Annual GPP observations at Morgan-Monroe also show variability in
trend estimates. Dragoni et al. (ref. 14) found that carbon storage increased
over the 10-year period 1999–2008. Our analysis of the AmeriFlux dataset
for Morgan–Monroe (ref. 57) finds that annual GPP increased by
208.7 ± 89.9 g Cm−2 yr−1 per 10 years during 1999–2008, decreasing to
43.0 ± 35.3 g Cm−2 yr−1 per 10years for the full 22-year time series spanning

1992–2015
127.2 ± 54.8 2.7%

GPP trend (g C m-2 yr-1 per 10 years)

1992–2004
127.0 ± 138.2 4.4%

GPP trend (g C m-2 yr-1 per 10 years)

a b

c d

Fig. 8 | Conditional probability of GPP trends at the AmeriFlux US-Ha1 (Har-
vard Forest) tower obtained using Monte Carlo methods. a Annual GPP for
1992–2004 for twoMonte Carlo simulations in which GPP for each year is chosen as
a random deviate about the 1992–2020 forced trend. The time series are the end-
points of the 95% confidence interval for trends in 100,000Monte Carlo simulations.
The brown squares and dashed line show the simulation with a trend at the 2.5th
percentile, and the dark green open circles and solid line show the simulation with a
trend at the 97.5th percentile. b Conditional probability distribution of trends.

Shown is the cumulative distribution of trends for 1992–2004 obtained from the
100,000 Monte Carlo simulations. The trends are normally distributed with a mean
and standard deviation of 127.0 ± 138.2 g Cm−2 yr−1 per 10 years. The gray shading
is the 95% confidence interval, and the two-time series in panel (a) show the end-
points. The red line is the probability of a trend greater than that observed for
1992–2004. Dashed lines show the values for which there is a 20% (orange line), 10%
(green line), and 5% (blue line) chance of a greater trend. c, d Same as (a) and (b), but
for 1992–2015.

Fig. 7 | Observed and simulated annual GPP
trends at two AmeriFlux sites. a Statistical dis-
tribution of trends at US-MMS (Morgan-Monroe
State Forest) for 1999–2020. Trends from the
CESM2 Large Ensemble are normally distributed
(mean ± standard deviation,
11.6 ± 42.3 g Cm−2 yr−1 per 10 years). Also shown is
the trend estimated using the AmeriFlux data
(ref. 57). See Supplementary Table 2 for the data.
(b) As in a, but for US-Ho1 (Howland Forest) for
1996–2020 with observations from Hollinger et al.
(ref. 20). See Supplementary Table 3 for the data.
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1999–2020 (Fig. 9a).MonteCarlo analysis similar to those atHarvardForest
show that a forced trend of 43.0 ± 35.3 g Cm−2 yr−1 per 10 years has a 95%
confidence interval of−184 to 270 g Cm−2 yr−1 per 10 years when sampled
over the 10-year period 1999–2008 (Fig. 9b). The observed trend for
1999–2008 falls within the 95%uncertainty range. There is a 7.6% chance of
obtaining a trend equal to or greater than the observed trend if the forced
trend is 43.0 g Cm−2 yr−1 per 10 years. There is a 5% chance of a value
greater than 233 g Cm−2 yr−1 per 10 years and a 10% chance that the trend
exceeds 191 g Cm−2 yr−1 per 10 years.

Discussion
Our analysis of the 50-memberCESM2Large Ensemble shows that internal
climate variability creates ambiguity in the magnitude and sign of GPP
trendswhenonly a singlemodel realization is analyzed.The ensemblemean,
however, reflects the forced response. The key inference pertains to how to
interpret carbon cycle trends, both in model simulations and in
observations.

Internal climate variability necessitates caution when comparing a
singlemodel realization to the observational record. At themodel grid cell
corresponding to Harvard Forest, the ensemble average GPP trend over
1992–2020 is 73 g Cm−2 yr−1 per 10 years and the range across ensemble
members is 48–114 g Cm−2 yr−1 per 10 years (Fig. 6c). A single realization
at the lowendof thedistributionwould lead to a conclusion that themodel
is biased low compared with the observed trend of 127 g Cm−2 yr−1

per 10 years, whereas a simulation at the high end would suggest closer
fidelity to the observations. In fact, the distribution of trends across the
50-member ensemble broadly overlaps with the observed trend and its
uncertainty. Similar ambiguity arises in comparison with observations
at Morgan–Monroe State Forest (Fig. 7a). The ensemble mean trend
(12 g Cm−2 yr−1 per 10 years) suggests the model is biased low compared
with the observations (43 g Cm−2 yr−1 per 10 years), but the statistical
distribution of trends from the large ensemble broadly encompasses the
observed trend. Conversely, the high bias at Howland Forest is robust
across all ensemble members, and we can confidently conclude themodel
fails to capture the observed decline in GPP (Fig. 7b).

CESM2 can, in some locations, produce a large positive GPP trend, no
trend, and even a negative trend depending on the temporal sequence of
internal climate variability, which is superimposed on the forced response
(Fig. 1, Supplementary Fig. 1). Improving the component land model’s
process parameterizations or adjusting parameters so that a single realiza-
tion bettermatches observations risks overfitting, with consequent spurious
performance in another realization. Likewise, land models are commonly
evaluated in uncoupled simulations forced with meteorological

observations59,60, but alternative reconstructions of historical meteorology,
which can be thought of as samples of observational uncertainty, produce
different carbon cycle trends61,62. A probabilistic comparison of model
simulations and observations is needed, with the goal of identifyingwhether
a model is plausible rather than singularly right or wrong27.

Internal climate variability complicates interpretation of the observa-
tional record. Harvard Forest is an aggrading forest that is accumulating
carbon as it recovers frompast agricultural land use, hurricane damage, and
wood harvesting13,19. Warmer temperature, a longer growing season, and
greater precipitation have contributed to increased productivity between
1992 and 2015 (ref. 19). Our analysis does not dispute this understanding of
the carbon cycle at Harvard Forest. Rather, we simply show that internal
climate variability superimposed upon a long-term forced response can
produce short-term unforced changes in GPP trends that are consistent
with the observations. Care needs to be taken to distinguish forced vs.
unforced components of GPP trends, as indeed is evident in analysis of
trends in the physical climate system24,30,63. The conclusion that forest pro-
ductivity has increased at Harvard Forest is robust, but the magnitude is
uncertain and is influenced by internal climate variability. Our results show
that the large GPP trends for 1992–2004 and 1992–2015 (Fig. 6a) can be
found by chance despite a smaller long-term forced trend (Fig. 8b, d).
Likewise, there is a long-term positive trend in carbon accumulation at
Morgan-Monroe, which can be attributed in part to longer growing
seasons12,14, but which was reduced by severe drought in 2012 (ref. 64).
Within this long-term trend, internal climate variability generates random
variability, seen, for example, in a wide range of positive and negative GPP
trends (Fig. 7a). The large positive trend found for 1999–2008 is consistent
with a much smaller long-term forced trend (Fig. 9b).

The observational record of GPP is one sample from a distribution of
possible trajectories. The standard error of the regression trend (sb1) pro-
vides an estimate of internal variability for temperature and precipitation58,
and similarly for GPP (Fig. 4). Still unknown, however, is whether the
observed trend at Harvard Forest andMorgan-Monroe is a central estimate
for the forced response or if it is more representative of end-members of the
statistical distribution of trends. Our calculations of conditional prob-
abilities are predicated on the long-term observations as representative of
the forced response (Figs. 8 and 9). Other more advanced statistical tech-
niques are available to estimate the observational internal variability for
temperature andprecipitation40–42. Similarmethodshavebeenused to create
an observational ensemble of ocean chlorophyll, for which internal climate
variability creates a wide range of possible trends52. Whether the same
methods can be applied to create an observational ensemble for the ter-
restrial carbon cycle is unclear.

Fig. 9 | Annual GPP trends at the AmeriFlux US-
MMS (Morgan–Monroe State Forest) tower. aThe
full 1999–2020AmeriFlux time series (ref. 57).Open
circles show the years 1999–2008 and closed circles
extend the dataset to 2020. Shown are the linear
regression (dashed lines) with the regression
slope ± standard error for the two time periods. See
Supplementary Table 2 for the data. b Conditional
probability distribution of trends obtained using
Monte Carlo methods. Shown is the cumulative
distribution of trends for 1999–2008 obtained using
a forced trend of 43.0 ± 35.3 g Cm−2 yr−1 per 10
years. The trends are normally distributed with a
mean and standard deviation of
42.9 ± 115.9 g Cm−2 yr−1 per 10 years. The gray
shading is the 95% confidence interval. The red line
is the probability of a trend greater than that
observed for 1999–2008. Dashed lines show the
values for which there is a 20% (orange line), 10%
(green line), and 5% (blue line) chance of a
greater trend.
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The interannual variability about the forced anthropogenic trend in
GPP is a measure of the magnitude of internal variability. CESM2 under-
estimates interannual variability in GPP compared with observations65,
meaning that the importance of internal climate variability for Earth system
model simulations of the terrestrial carbon cycle may be greater than that
identified inour study.Our analyses providequalifiedfindings as towhether
CESM2 adequately samples the observational internal variability of GPP.
The ensemble spread in GPP trends is one-third the observational uncer-
tainty at Harvard Forest (Fig. 6c), but comparable to the observations at
Morgan-Monroe andHowland Forest (Fig. 7). Greater effort must be given
to quantifying the internal variability of the terrestrial carbon cycle in Earth
systemmodels and in estimating the internal variability of the observational
record.

Internal variability in air temperature and precipitation trends has
been interpreted as irreducible uncertainty in climate projections
because of the limited memory in the atmosphere and surface
ocean26,27,66. Internal climate variability generates comparable irre-
ducible uncertainty in the terrestrial carbon cycle. Further studies are
needed to quantify the internal variability of the carbon cycle in both
models and observations; to develop the necessary probabilistic frame-
work to understand the changing carbon cycle; and to guide efforts to
reduce model uncertainty.

Methods
CESM2 large ensemble
We analyzed 50members of the CESM2 Large Ensemble that differ only
in initial conditions32. The simulations extend over the period
1850–2100 using historical forcings (1850–2014) and SSP3-7.0 CMIP6
forcings (2015–2100). We used the BB_CMIP6_SM simulations
(ensemble members 51–100), in which the prescribed biomass burning
emissions were temporally smoothed over the years 1990–2020. The
smoothing corrects a discontinuity in the magnitude of interannual
variability of the biomass burning emissions used in ensemble members
1–50 that produces spurious warming in northern high latitudes32,67.
CESM2 has a nominal 1° horizontal resolution with active atmosphere,
ocean, sea ice, and land component models. The model was initialized
from particular years of a preindustrial control simulation and with
macro- and micro-perturbations to the initial conditions. The 10-
membermacro-initializations started from years 1011, 1031, 1051, 1071,
1091, 1111, 1131, 1151, 1171, and 1191. Four sets of 10-member micro-
initializations started from years 1231, 1251, 1281, and 1301. Ten
members were run for each micro-initialization start year in which
spread among the members was generated by a random perturbation to
the atmosphere temperature field at initialization of order 10−14 K. The
start years for the micro-initializations were chosen to sample different
states of the Atlantic Meridional Overturning Circulation. Ensemble
members are identified by start year and ensemble number (e.g.,
1281.015 is the 15th member of the micro-initializations at start year
1281; note that the BB_CMIP6_SM simulations are members 11–20).
Rodgers et al. (ref. 32.) provide details of the model configuration,
initialization, and forcings.

Ensemble members with the same start year (e.g., the 10-member
micro-initialization at year 1231) have the same initial carbon states.
Members with different start years have different initial carbon states, but
each start year is drawn from the preindustrial control and the differences
are small53. Memory of initial conditions is minimal by 1991–2020 in that
the different initializations in 1850 generate similar ensemble variability of
GPP trends (Supplementary Fig. 3).

We analyzed the 30-year period 1991–2020 to discern trends in annual
gross primary production (GPP) for each ensemble member. Similar to
studies of climate trends24–27,63, we estimated the trend as the linear fit to the
1991–2020 time series using ordinary least squares regression:

xi ¼ b0 þ b1 � ti ð1Þ

where xi is annual GPP (g Cm−2 yr−1) and ti is year (1991, 1992,…, 2020).
The standard deviation of the residuals is:

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n� 2

Xn

i¼1
ðxi � x̂iÞ2

r

ð2Þ

where x̂i is the predictedGPP from the linear regression. The standard error
of the trend (b1) is:

sb1 ¼ se=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
ðti ��tÞ2

q

¼ se=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn3 � nÞ=12
p ð3Þ

The right-most equation for sb1 is the form given by Thompson et al.
(ref. 58) when time (ti) is expressed as n consecutive integers (n = 30; 1991,
1992, …, 2020). Statistical significance was determined by regressions
with p ≤ 0.05.

We estimated the 95% confidence interval for theGPP trend (b1) using
twomethods. (1)Weobtained the 95%confidence interval directly from the
50-member ensemble. It is the range of trends (n = 48) after excluding the
smallest and largest trends for each grid cell. (2) The standard error of
the regression trend (sb1) obtained for a single ensemble member also
estimates ensemble variability, as shown previously for temperature and
precipitation58. The 95% confidence interval for the trend in this method is
b1 ± 2:048 sb1, where t0:975;28 ¼ 2:048 is the critical t-value for n ¼ 30 years
of data.

We further analyzed the statistical distribution of GPP trends across
the 50-memberensemble at individualmodel grid cells corresponding to the
location of core terrestrial sites in the National Ecological Observatory
Network53.

Observational data
We estimated the internal variability in the observational record using
long-term annual GPP data obtained from eddy covariance flux towers
in the AmeriFlux database. We analyzed GPP at the AmeriFlux
US-Ha1 Harvard Forest EMS tower (42.5378°N, 72.1715°W) for
the 29-year period 1992–2020 (Supplementary Table 1). We used the
AmeriFlux FLUXNET data product56, which was processed using the
ONEFlux processing codes68 to derive GPP from the measured net
ecosystem exchange (NEE). The processing includes friction velocity
(ustar) threshold filtering, gap-filling of flux variables, and partitioning
of NEE into GPP and ecosystem respiration. We used the
GPP_NT_VUT_REF estimate, calculated with nighttime flux parti-
tioning (NT) of NEE to obtain GPP with variable ustar threshold
(VUT) and using the most representative NEE after filtering with
multiple ustar thresholds (REF). The product compares well to annual
GPP data published by Finzi et al. (ref. 19) for 1992–2015 (Supple-
mentary Fig. 10).

We fit a linear regression to the AmeriFlux data (1992–2020)
to estimate the long-term annual trend as in Eq. (1). The fitted regression
for the n = 29-year time series is: b0 =−23954.19 g Cm−2 yr−1,
b1 = 12.71 g Cm−2 yr−2, F = 9.44, p = 0.0048, and R2 = 0.259. The standard
deviation of the residuals is: se ¼ 186:3 g Cm−2 yr−1.

To assess the internal variability of the GPP trend, we used a Monte
Carlo approach that statistically samples the observations assuming random
interannual variability in GPP. Based on the statistical distribution of the
residuals (se; Supplementary Fig. 11a), we sampled each of the 29 years of
data from a random Gaussian deviation about the trend in which GPP for
year i is:

x0i ¼ x̂i þ εi � se ð4Þ

where x̂i is the predicted GPP for year i using the linear regression in
Eq. (1), εi is a random Gaussian deviate with mean zero and standard
deviation of one, and se is the standard deviation of the residuals
(186.3 g C m−2 yr−1). The regression slope (b01) of the randomly
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sampled x0i time series is an estimate of the random variability in the
observed trend. We repeated this process 100,000 times to obtain the
statistical distribution of b01. The resulting probability density function
provides the internal variability of the GPP trend. The distribution of
b01, obtained from the Monte Carlo simulations with the assumption
of random interannual variability (Supplementary Fig. 11b), has a
mean (127.0 g C m−2 yr−1 per 10 years) and standard deviation
(41.3 g C m−2 yr−1 per 10 years) comparable to b1 and its standard
error obtained from the observed GPP time series (Fig. 6a;
127.1 ± 41.3 g C m−2 yr−1 per 10 years).

We used the statisticalmodel to estimate the conditional probability
of obtaining a trend of 362.1 g C m−2 yr−1 per 10 years for the time period
1992–2004 and 232.8 g C m−2 yr−1 per 10 years for 1992–2015 (Fig. 6a).
In this analysis, we used Eq. (4), but only sampled the years 1992–2004
and 1992–2015 in theMonte Carlo simulations to obtain the probability
density functions for the trend over the two time periods given the long-
term trend of 127.1 ± 41.3 g Cm−2 yr−1 per 10 years (Fig. 8b, d). The
mean trend is comparable to the long-term trend, and the standard
deviation is similar to that expected from Eq. (3) with n ¼ 13
and n ¼ 24 years.

We performed the same analysis at the AmeriFlux US-MMS
Morgan–Monroe State Forest tower (39.3232°N, 86.4131°W) for the 22-
year period 1999–2020 using the AmeriFlux FLUXNET data product
(Supplementary Table 2) (ref. 57). Here, we used the daytime flux par-
titioning product GPP_DT_VUT_REF as in Dragoni et al. (ref. 14.). We
obtained the linear regression from the observations for the n = 22 years
(Fig. 9a; b0 =−6976.29 g Cm−2 yr−1, b1 = 4.30 g C m−2 yr−2, F = 1.48,
p = 0.237, R2 = 0.069, se = 105.1 g Cm−2 yr−1) and used the regression
model in the Monte Carlo simulations to sample the years 1999–2008 as
in Dragoni et al. (ref. 14). We determined the probability that a trend of
208.7 g C m−2 yr−1 per 10 years can be found for the period 1999–2008
given the long-term trend of 43.0 ± 35.3 g Cm−2 yr−1 per 10 years (Fig.
9b). The mean trend is comparable to the long-term trend, and the
standard deviation is similar to that expected from Eq. (3)
with n ¼ 10 years.

We compared GPP trends from the CESM2 Large Ensemble for the
grid cell corresponding to Harvard Forest and Morgan-Monroe with the
observed trend (Figs. 6c, 7a). We supplemented this model–observation
comparison with GPP data for the AmeriFlux US-Ho1 Howland Forest
tower (45.2041°N, 68.7402°W) for 1996–2020 (Supplementary Table 3)
(ref. 20).We compared themodel and observed trends (Fig. 7b), but did not
sub-sample for specific years because only the full 25-year time series has
been previously analyzed.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
TheCESM2 Large Ensemble data that support the findings of this study are
available at https://www.cesm.ucar.edu/projects/community-projects/
LENS2/data-sets.html. The GPP data for Harvard Forest, Morgan-
Monroe State Forest, and Howland Forest are available in the supplement.

Code availability
The NCAR Command Language (NCL) version 6.4.0 was used for
plotting CESM2 data. The Monte Carlo simulations were created
using Python version 3.9.12 using Python packages: pandas 1.4.2,
numpy 1.21.5, and statsmodels 0.13.2. The code is described in detail
in Methods and is available upon request from corresponding
author G.B.
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