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Advancements in 2D layered material
memristors: unleashing their potential
beyond memory
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Tae Geun Kim 1,4

The scalability of two-dimensional (2D)materials down to a singlemonolayer offers exciting prospects
for high-speed, energy-efficient, scalable memristors. This review highlights the development of 2D
material-based memristors and potential applications beyond memory, including neuromorphic, in-
memory, in-sensor, and complex computing. This review also encompasses potential challenges and
future opportunities for advancing thesematerials and technologies, underscoring the transformative
impact of 2D memristors on versatile and sustainable electronic devices and systems.

In 1971, Professor Leon Chua theoretically predicted the existence of a
memristor from the symmetry arguments, sparking significant efforts to
realize it as an electronic device1. However, the memristor concept only
received limited attention in the late 20th century. Although theoretical
discussions continue in academic circles, there has been no significant
experimental progress or practical implementation due to technological
limitations. In 2008, Strukov et al. from Hewlett-Packard (HP) laboratory
successfully demonstratedmemristive behavior in a device using a Pt/TiO2/
Pt structure, which was the pioneering paper onmemristors2. The behavior
the authors described is initiated by the migration of oxygen vacancies
through the switching layer. Significant advancements in the understanding
and development of memristors occurred after 2010. Various research
groups worldwide have started experimenting with different materials and
configurations for memristors, exploring their potential for use in non-
volatile memory (NVM), logic circuits, and neuromorphic computing.
Furthermore, HP Labs demonstrated memristors’ use in logic operations,
demonstrating their potential to go beyond memory applications and
function as components in a new type of computing architecture3. The
global memristor market is projected to increase by over 80% in 2024 and
reach USD 13.5 billion by 20274. Global companies are driving this growth,
with many headquartered in the US and EU making significant R&D
investments5. Memristors are increasingly being perceived as crucial com-
ponents for building neuromorphic systems that mimic the human brain’s
neural networks6. Moreover, the unique properties of memristors, such as
their ability to store and process information simultaneously, are being
leveraged to enhance artificial intelligence (AI) andmachine learning (ML)
algorithms7,8.

Memory technology has become critical in the current era of big data
and high-speed information, especially in AI applications. The digital uni-
verse has expanded 300-fold over the past two decades9, and this immense
growthnecessitates the development of next-generationNVM technologies
that provide significant storage capacity and high-speed performance.
Current computer architectures face three well-known barriers: memory,
instruction level parallelism (ILP), and power10. Although complementary
metal-oxide semiconductor (CMOS) technology represents a tractable
alternative for these issues, it encounters obstacles such as reliability, leakage,
and cost, which have slowed traditional device scaling. To sustain com-
puting advancements, alternative architectures and technologies (including
quantum, molecular, and neuromorphic computing) alongside emerging
devices (such asmemristors, quantumdots, and spin-wave devices)must be
explored. Intelligent computing systems imitate the signal processing,
learning, and memory functions of the human brain. This is in contrast to
conventional computers built on the von Neumann architecture, in which
the storage and processing of data take place in distinct units. Intelligent
computing approaches enable highly efficient real-time processing of large
datasets.Moreover, with their compatibility, zero standbypower, scalability,
and high density, memristors offer promising solutions for new computing
paradigms11. Recently, the development of in-memory computing has
gainedmomentum due to advancements inmemristor-based technologies,
such as resistive memories, phase-change memory (PCM), magnetic
random-access memory (MRAM), and ferroelectric random-access mem-
ory (FeRAM)12,13.Oxide andphase-changememories are leading candidates
for integration into commercial platforms due to their compatibility with
the CMOS process. In addition, researchers are investigating memristive
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effects in various materials to improve critical metrics, such as switching
energy, speed, endurance, and retention, while also aiming for cost
reductions12,14–17. A memristor with reconfigurable history-dependent
resistive switching can emulate the synaptic functions of biological synap-
ses, making it one of the most promising technologies for building analog
neural networks in neuromorphic computing applications18–21.

The rapid advancement in digital technologies has prompted a sig-
nificant transformation in the field of memory applications, marked by
various innovations, expanded uses, and notable economic and environ-
mental impacts. Developments in the field of memory technologies,
including NAND flash, 3D XPoint, and emerging non-volatile memories
such asMRAMand resistive random-accessmemory (ReRAM), are driving
this revolution. These innovations offer substantial improvements over
traditional DRAM and HDD storage solutions in terms of speed, density,
and durability22. The effects of these advances are far-reaching, enabling
faster data processing and retrieval in consumer electronics, empowering
high-speed computing in data centers, and facilitating advancements in AI
and ML. Additionally, integrating high-performance memory with edge
devices is accelerating the development of the Internet of Things (IoT),
enabling real-time data analysis and systems that are smarter and more
responsive23.

Memristors composed of two-dimensional (2D) materials have
recently gained significant research interest due to their promising prop-
erties (Fig. 1)24. These materials bring significant advantages to memristor
technology, including low switching voltages and decreased power con-
sumption due to their ultra-thin foot-print25–27. Unlike ultrathin oxides,
these materials do not have dangling bonds, which helps in avoiding scal-
ability issues28. Moreover, the thinness of the 2D semiconductor channel
allows for precise gate voltage control and could mitigate short-channel
effects, paving the way for multiterminal mem-transistor development29–31.
Additionally, the ability to stack various 2D materials in van der Waals
heterostructures (HSs) circumvents challenges related to lattice matching
and processing constraints32,33. These materials also possess a high surface-
to-volume ratio, enhancing their sensing capabilities34–36, while their flex-
ibility, rapid response times, and broad operational temperature ranges
make them ideal for advanced device applications (Fig. 1)25,29,37,38.

Dynamic and promising candidate
Memristors with nonlinear and non-volatile resistive switching are
renowned for their small size, quickoperation, and lowpower consumption,
rendering them potential components in the expanding NVM industry39.
Further advantages of memristors over traditional memory devices include
faster read/write speeds, stable non-volatile states, a high level of integration,
and larger storage densities. In addition, memristors can be programmed
and reconfigured, allowing them to adapt to various storage requirements
for different applications. When a voltage is applied, memristors modulate
the resistance of the functional layer to store information. Notably, mem-
ristors can record both the past resistance state and changes in charge flow,
simulating the plastic response of synapses to signal stimulation, which is a
process that is strikingly similar to the brain’s computational processes.
Memristors with multiple analog states can also store and process infor-
mation, which is known as in-memory computing. Employing memristors
for in-memory or near-memory computing offers a highly parallel strategy
to overcome the “memory wall” challenge, which is a core limitation of the
traditional von Neumann architecture40. This traditional architecture
separates data processing and storage, resulting in low efficiency for data-
intensive operations due to the significant time and energy required to
transmit data between the memory and processing units41,42. Device
endurance, switching energy, switching time, state retention time, device
size, and operating voltage are the most prominent advantages of mem-
ristors for commercial applications19.Memristors can replicate specific roles
of biological neurons and synapses, including synapse-like plasticity and
neuron-like integration and spiking. In addition, the resistance/con-
ductance of memristors acts as a proxy for synaptic strengths, which can be
adjusted using local learning rules. One widely applied rule is spike-timing-

dependent plasticity (STDP), where conductance or another local state
variable is adjusted dynamically based on spike timing. This method
embodies the principle of “computing with time, not just in time”43. Many
materials have been investigated to study their memristive characteristics,
including low-dimensional materials44,45, perovskites46–48, polymers49,
organic materials50,51, 2D materials52–54, transition metal oxides (TMO)55–57,
and structured inorganic materials58–61. The widespread availability of bin-
ary oxides, coupledwith their adaptable fabricationusingdiverse techniques
(such as sol-gel processes, atomic layer deposition, magnetron sputtering,
physical and chemical vapor deposition, pulsed laser deposition, and
hydrothermal methods) underpins their significant role in memristor
research, particularly those involving TMO62. Moreover, various metal
oxides have been explored extensively, including TiO2

55, CuO2
63, HfO2

64,
TaOx

65
, and Y2O3

66. Unlike transistor-based technology, which uses many
devices to replicate biomimetic functions, memristors inherently embody
simple biomimetic functions. However, despite the rapid increase in
memristor research, further advancements are required in terms of power
efficiency, reliability, multifunctionality, tunability, and hetero integration.
Thus, the post-Moore computing era will center on developing smart
devices andmaterials and creating new architectures to use them effectively.

2Dmaterials and their properties
2D materials are atomically thin layered materials with either a single layer
or a few layers of atoms and thicknesses typically less than 1 nm.The unique
and hallmark feature of these materials is the bonding interactions in the
stack. While weak van der Waals interactions occur across layers, atoms in
the layer are ligatured by saturated covalent bonds67. The discovery of
exfoliated monolayers (or few-layer graphene) and their exceptional
properties has also sparked significant interest in 2D materials5,68. Inspired
by graphene, researchers have explored various classes of other ultrathin 2D
nanomaterials, such as transition metal dichalcogenide (TMDC), metal
oxides, hexagonal boron nitride (h-BN), metal carbides or nitrides
(MXenes), layered double hydroxides (LDHs), and a family of mono ele-
mental compounds (including black phosphorous, 2Dperovskite, arsenene,
antimonene, and bismuthine)69,70. These materials are highly compatible
with conventional CMOS technology, allowing straightforward synthesis
and integration onto diverse substrates and facilitating a broad array of
applications. Each 2D material exhibits distinct electrical and optical
properties, which are influenced by its chemical composition, crystal
structure, and thickness. For example, graphene is known for its excellent
conductivity, making it a favored electrode choice in memristive devices71.
TMDCs, such as MoS2 andWSe2, exhibit semiconducting behavior, which
is essential for modulating resistive states in memory and neuromorphic
applications72. The layer-dependent bandgap of WSe2 allows for unique
ambipolar transport properties, while monolayer TMDCs exhibit strong
light-matter interactions,making them ideal for optoelectronic applications.
Additionally, the unique ambipolar characteristics and low doping levels of
2D WSe2 enable strong spin/valley coupling, enhancing its potential for
valleytronic and spintronic applications73. Among TMDCs, Group V
compounds (such as V, Nb, and Ta) exhibit metallic behavior, while Group
VI compounds (includingMo andW) can display either semiconducting or
metallic properties based on their crystal structure. Monolayer TMDs are
particularly noteworthy for their high exciton binding energies and valley
polarization, which position them as key components in vertical van der
Waals heterostructure devices74. Materials such as PtSe2 exhibit tunable
bandgaps, whichmakes them suitable for broadband photodetectors. Black
phosphorus (or phosphorene) is notable for its high carrier mobility and
direct band structure75.

Emerging materials, such as MoTe2, offer direction-dependent prop-
erties, ultrahigh carrier mobility, and broad-spectrum light absorption,
enhancing their utility in advanced memory and optoelectronic devices76.
Hexagonal h-BN stands out as an effective dielectricmaterial inmemristors,
supporting bipolar resistive switching and non-volatile storage due to its
wide bandgap and chemical stability. However, the potential of h-BN-based
memristors in low-power digital logic and neuromorphic computing

https://doi.org/10.1038/s41699-024-00522-4 Review article

npj 2D Materials and Applications |            (2024) 8:83 2

www.nature.com/npj2dmaterials


remains largely unexplored. Continued research into these diverse 2D
materials could unlock innovative applications in low-power devices and
neuromorphic systems, significantly enhancing performance and energy
efficiency in next-generation technologies77.

Due to their atomic-level thickness, 2D materials offer substantial
reductions in energy consumption by mitigating short-channel effects,
optimizing efficiency, and enabling further device miniaturization, similar
to the integration levels of neurons and synapses in the human brain.
Additionally, 2D materials feature pristine surfaces that are devoid of any
dangling bonds and exhibit distinctive physical properties. This approach
presents a crucial pathway to sustainMoore’s law, leveraging the previously

mentioned notable qualities of 2D materials to advance the fabrication of
solid-state electronic devices78. The progress in advanced 2Dmaterials (such
as MoS2

79, HfSe2
80, h-BN81, and MXenes82) has made it feasible to create

vertically structured memristors with cross-bar arrays that possess a higher
density. Recent advancements in 2D material-based memristors have also
exhibited significant progress. These new memristors demonstrate
remarkable performance characteristics, such as an on/off ratio reaching up
to 1011, low SET voltages (as low as 0.05 V), outstanding retention and
endurance of up to 105 s and 107 cycles, respectively, fast switching speeds of
1.5 ns, and exceptionally low power and energy consumption (measured at
1 fW and 8.8 zJ, respectively)83.

Fig. 1 | Schematic illustration of different 2D materials and devices. Some illus-
trative examples of 2D materials and their properties. Types of memristive devices
based on layered 2D materials (i.e., vertical memristor and heterojunction

memristor). Applications of 2D memristors in neuromorphic computing, in-
memory computing, complex computing, hardware security, and in-sensor com-
puting. Adapted from ref. 68.
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The unique properties of the various 2D materials, coupled with dif-
ferent switching mechanisms, offer distinct advantages for memristive
devices. High on/off ratios and low operating voltages enhance device
performance andenergy efficiency,whileflexibility andmechanical strength
enable the development of flexible and wearable electronics. Additionally,
tunable electronic properties and compatibility with other materials allow
for the design of multifunctional devices tailored to specific applications.
Table 1 provides a concise overview of the properties, features, and potential
applications of various 2Dmaterials and their memristor implementations.

Operational mechanisms of 2D materials-based memristors
Although memristive and neuromorphic devices may exhibit structural
similarities, the carrier transportmechanisms that govern their fundamental
operating principles can differ depending on their atomic composition. In
the following section, we discuss five widely recognized mechanisms
responsible for memristive and neuromorphic behaviors: redox reactions,
vacancy migration, phase transitions, Schottky emissions, direct tunneling,
and charge trapping/de-trapping, as illustrated in Fig. 2.

Redox reaction
Conductive filament formation is a fundamental mechanism in resistive
switching memory devices. By adjusting the input voltage pulse or bias
sweep, memristive behavior and artificial synaptic functions can be
mimicked through the creation and regulation of these filaments, as
depicted in Fig. 2a. This was demonstrated by Zhao et al.84 in anAg/MoTe2/
ITO device, where resistive switching is driven by the formation of con-
ductive filaments from Ag ions, which migrate from the Ag top electrode
(TE) under an applied bias. When a reverse bias is applied, the filament
dissolves, returning the device to a high-resistance state (HRS). This volatile
switching behavior aligns with the essential characteristics of artificial
neurons.Moreover, this mechanism is particularly effective in 2Dmaterials
(such asMoS2

85,WS2
86,MXene87, ZrO2

86), inwhichfilaments can be reliably
formed and disrupted, enabling efficient switching between high and low-
resistance states. The atomic thickness of these materials allows for precise
control over filament formation, which is critical for enhancing device
scalability and performance.

Vacancy migration
Vacancy migration involves the movement of vacancies within the material,
which can alter local conductivity. As these vacancies shift, they create paths
for charge carriers, affecting the resistive switching mechanism, as shown in
Fig. 2b. Khot et al.52 demonstrated this mechanism in a Pt/Ti3C2/Pt mem-
ristor, where oxygen vacancies play a key role in the formation and dis-
solutionof the conductivefilament.Thefilament starts forming at thebottom
electrode (BE) due to the drift of oxygen vacancies when a positive voltage is
applied to the TE. As the voltage increases, the filament grows fully, reducing
the resistance and switching the device from anHRS to a low-resistance state
(LRS). When the voltage is reversed, oxygen vacancies migrate back toward
the TE, causing filament rupture and restoring the device to the HRS. This
mechanism is significant in 2D materials such as black phosphorus and
TMDCs, where vacancies can be introduced and controlled to modulate the
electrical properties of the device29,88. The high mobility of vacancies in 2D
materials enhances the speed and efficiency of the switching process.

Phase transition
TMDCs in their 2D formare composed of ultrathin layers and exhibit stable
phases that define their properties89. Extensive research has focused on
controlling these phase transitions, highlighting their suitability for mem-
ristive and neuromorphic computing90. The switchingmechanismbased on
phase transition is portrayed in Fig. 2c. Hou et. al.91 reported a phase change
memristor using strain engineering to induce a strain-driven semi-metallic-
to-semiconducting phase transition in MoTe2. By tuning the material close
to its phase transition boundary, these devices demonstrate impressive
performance, including low switching voltages of 90mV, on/off ratios of
108, switching times of 5 ns, and retention times exceeding 105 s.

Schottky emission and direct tunneling
Schottky emission and direct tunneling mechanisms play a critical role in
understanding the switching dynamics of 2D memristors (Fig. 2d). These
mechanisms enable low-power operation and rapid switching, making
them suitable for next-generation memory and neuromorphic computing
applications. In a study conducted in2023, Lei et al.92 investigated the impact
of material thickness on both volatile and non-volatile switching behaviors
through Schottky barrier height modulation. Their findings revealed that
devices with fewer layers struggle to maintain their LRS because electrons
can escape the conduction band and occupy trap sites when no bias voltage
is applied. This escaping of electrons results in an increased Schottky barrier
height over time, causing the device to transition back to its HRS. Inter-
estingly, adding more material layers extends the duration of this process,
enhancing the resistive states. These insights are significant for developing
devices capable of sustaining their states for specific periods, which can be
leveraged to create synaptic elements for neuromorphic applications.

Charge trapping
The charge trappingmechanism in 2Dmemristors is a vital component that
influences their performance and potential use in advanced memory and
neuromorphic devices (Fig. 2e). Seo et al.93 developed optical-neural
synaptic devicesby integrating synaptic andoptical sensing functionswithin
an h-BN/WSe2 heterostructure. The operation of this van derWaals (vdW)
synaptic device relies on the trapping and detrapping of electrons. It func-
tionswith low voltage spikes of just 0.3 V and consumes only 66 fJ per spike.

Memristor beyond conventional memory applications
In the post-Moore era, the focus is on developing systems that emulate AI,
leveraging innovations such as in-memory computing and non-von Neu-
mann architectures. These systems are tailored to execute cognitive tasks,
including object recognition, association, adaptation, and learning, prior-
itizing high energy efficiency and parallelism. Memristor devices are dis-
tinguished by their ability to overcome the von Neumann bottleneck at the
nanoscale level, seamlessly integrating memory and computation. One
innovative approach leveraging this capability is “in-memory computing,”
which uses memory to perform computations directly at the data storage
site. Various studies have examined using memristors across diverse
domains, including storage49, hardware security94, neuromorphic
computing62, in-memory computing68, in-sensor computing95, and high-
frequency RF applications96. As memory applications continue to evolve,
they promise to catalyze the next wave of technological breakthroughs and
propel progress across a spectrum of industries, from healthcare to auton-
omous vehicles, and beyond.

This review focuses on memristors based on layered 2Dmaterials and
their applications beyond memory. We begin with a brief introduction to
thememristor timeline and its general applicability.Next, we discuss the use
of memristors in neuromorphic computing, followed by an exploration of
the realistic potential of memristors for diverse applications. Finally, we
outline both the opportunities and challenges confronting current mem-
ristor systems that use 2D layered materials, while envisioning a bright
future for the hardware realization of brain-like neural architectures.

Neuromorphic computing
Understanding synaptic plasticity
Neuromorphic computing is inspired by biological neural networks and has
generated significant attention as a novel paradigm for data processing,
storage, and advanced tasks, such as cognition, inference, and learning97.
Memristors are crucial for replicating the functions of the human brain,
which has approximately 1011 neurons and 1015 synapses and is an
incredibly effective and flawless information-processing device98. To
understand the significance of memristors in neuromorphic systems, it is
essential to examine the concept of synapses, which are categorized as
excitatory or inhibitory based on the type of neurotransmitter receptors
present on the synaptic membrane. In neuroscience, synaptic plasticity
refers to the strength of the connections (or synapses) between nerve cells99.
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Synaptic plasticity executes the following functions: long-term plasticity
(LTP), which is responsible for memory and learning, and short-term
plasticity (STP), which is associated with cognitive functions involving
spatiotemporal information5. Synaptic devices are used for STP in various
fields, including sensory processing, spatiotemporal pattern processing,
speech recognition, and adaptive learning100. Paired pulse facilitation (PPF)
is a type of STP that usually involves the amplification of signals in
sequentially evoked post-synaptic potentials. The term paired-pulse
depression (PPD) describes a reduction in the intensity of synaptic trans-
mission following an action potential burst or high-frequency stimulation.
This reduction helps prevent overstimulation andmaintains balancewithin
neural circuits. In neuromorphic systems, PPD is crucial for regulating
synaptic activity and ensuring stable performance. A comprehensive over-
view of neuromorphic computing is summarized in Table 2.

By incorporatingPPFandPPD,neuromorphic computing systems can
achieve more realistic and adaptive signal processing that closely emulates
the dynamic behavior of biological neural networks. Other forms of plas-
ticity include STDP, spike-rate-dependent plasticity (SRDP), and spike-
amplitude-dependent plasticity (SADP). Typically, STP andLTPdetermine
the fundamental characteristics of distinct biological synapses. However,
understanding how neurons communicate via STDP and SRDP pathways
requires insight into the connections between multiple synapses. The fun-
damental concept of synaptic plasticity, as elucidated by Donald Olding
Hebb, is popularly known as Hebbian theory. This theory proposes that
consistent and repetitive stimulation to presynaptic neurons can improve
synaptic transmission efficiency99. The notion of “cells that fire together,
wire together” is frequently used to summarize this concept. Asymmetric
STDP reveals Hebbian learning, while symmetric STDP reveals anti-
Hebbian learning. Furthermore, SRDPrefers to changes in synaptic strength
based on the rate or frequency of spikes rather than their precise timing. In
contrast, SADP involves changes in synaptic strength based on the ampli-
tude of spikes or the strength of the post-synaptic response101.

Recent innovations
Recent advances have showcased promising developments in memristors.
For instance,Yanet al. successfully developedamemristorbasedon2DWS2
nanosheets with a low switching speed and effective synaptic functionalities
(Fig. 3a)102. The device operated at low SET andRESET voltages of+0.6 and
–0.2 V, respectively (Fig. 3b). Moreover, the device displayed PPF behavior,
as presented in Fig. 3c, with the applied pulse for the measurement illu-
strated in the inset of Fig. 3c. The memristor effectively simulated learning
and memory processes under STDP, as well as the transition from STP to

LTP. It also exhibited excitation and inhibition responses to positive and
negative pulse-stimulus trains. Similarly, Meng et al. introduced a flexible,
low-dimensional memristor using BN that could effectively mimic four
basic STDP rules77. Khot et al. explored a novelmemristive device fabricated
from amorphous BN (a-BN)54, highlighting its stability, endurance, power
consumption, and efficiency for high-density memory storage. Figure 3d
illustrates a vertical configuration of amemristor cell, where Ag functions as
the TE, a-BN operates as the switching layer, and Pt is used for the bottom
electrode. The SET operation occurs at+0.4 V, while the RESET operation
is observed at −1.5 V. By applying precisely timed pulses to the pre- and
post-synaptic terminals, the authors effectively recreated classical Hebbian
STDP rules. For example, the a-BN-based electronic synapse accurately
replicated symmetric Hebbian (Fig. 3e), symmetric anti-Hebbian, anti-
symmetricHebbian, and anti-symmetric anti-Hebbian (Fig. 3f) STDP rules.
The observed potentiation and depression behaviors differed based on the
timing of the pre-synaptic and post-synaptic spike inputs to the electronic
synapse, demonstrating the variations across the four STDP rule types. In
addition, a neural network built on these rules achieved 90.8% pattern
accuracy. Their study reveals that 2D material-based memristors can
effectively emulate synaptic functions, which are crucial for future appli-
cations in advanced computing systems and enable more efficient data
processing and storage.

In another significant advancement, the Thean group achieved inte-
gration of wafer-scale 2D MoS2 memristor arrays using a solution proces-
sing method103. A schematic of the Ti/Pt-MoS2-Ti/Pt device is displayed in
Fig. 3g. Due to its linear conductance update characteristics, this MoS2
memristor achieved a high analog on/off ratio, extendedmemory retention,
low device fluctuations, and outstanding endurance. The device’s operation
is driven by thermionic and tunneling transport mechanisms. Moreover,
MoS2 memristors can demonstrate analog potentiation and depression
across various resistive states (Fig. 3h), with an impressive on/off ratio of
160. Memristors with a high analog on/off ratio are beneficial for neural
networks that require access to various synapticweight values. Additionally,
the MoS2 memristor demonstrates good linear weight/conductance update
properties, which is useful for high-performance neuromorphic computing
applications (Fig. 3i).

Abrupt heterojunctions with perfect band alignments can be precisely
engineered because the surfaces of 2D materials are free of dangling bonds
and trap states97. Researchers have engineered precise heterojunctions using
2D materials. For example, Khot et al. reported a filament formation-
mediated heterojunction memristor using GeTe/MoTe2 as an active
switching layer (Fig. 3j)104. The device exhibited switching behavior at very

Fig. 2 | Representative operationalmechanisms ofmemristor devices based on 2Dmaterials.Conductivefilament formation by a redox reaction andb vacancymigration,
c phase transition, d Schottky emission and direct tunneling, and e charge trapping. Adapted from ref. 181.
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low switching voltages (VSET =+0.15 V and VRESET = –0.14 V) with mini-
mal energy consumption (≈30 nJ), a high memory window, long retention
time (104s), and excellent endurance (105 cycles). The exceptional switching
ability of theAg/GeTe/MoTe2/PtHS device was attributed to the controlled
formation and growth of the Ag conductive filaments, with Te vacancies
assisting filament formation (Fig. 3k). The localized formation and expan-
sion of filaments within the hetero bilayer enhance the reliability and sta-
bility of the resistive switching characteristics by minimizing variabilities in

the nucleation and breakdown of the conduction filaments. Furthermore,
the authors mimicked various STDP rules. Finally, the practicality of the
GeTe/MoTe2 memristor was investigated by implementing a multilayer
perceptron for pattern recognition applications. To achieve this, they used a
multilayer perceptron with 528 inputs, 250 hidden neurons, and 10 output
neurons (Fig. 3l). The fabricated device exhibited a linear conductance
change, significantly improving the recognition accuracy to 81.3% (Fig. 3l).
Based on these findings, 2DHSs are expected to improve switching voltage,

Fig. 3 | 2D memristors for neuromorphic computing. a Schematic of Pd/WS2/Pt
memristor. b Typical I-V characteristics of the device. c PPF index change with the
time interval between a pair of pulses. Reprinted under terms of the Creative
Commons license from ref. 102. © Wiley-VCH GmbH, Weinheim. d Schematic
representation of Ag/a-BN/Pt memristor. Mimicking e symmetric Hebbian and
f anti-symmetric anti-Hebbian STDP rules. Reprinted under terms of the Creative
Commons license from ref. 54. Copyright © 2022, American Chemical Society
g Device structure of Pt/MoS2/Ti memristor along with its h potentiation and
depression characteristics. i Conductance update as a function of incremental

potentiation and depression pulse numbers. Reprinted under terms of the Creative
Commons license from ref. 103. Copyright © 2022. jCross-sectional high-resolution
TEM image of the GeTe/MoTe2 heterostructure memristor with their respective
FFT images showing heterointerfaces. Schematic illustrating the RS mechanism
during kON condition (filament formation through Te vacancies and Ag oxidation
reaction) and OFF condition (rupturing the conductive filament). l Schematic of
multilayer perceptron and pattern recognition accuracy of GeTe/MoTe2 hetero-
structure memristor. Reprinted under terms of the Creative Commons license from
ref. 104. © Wiley-VCH GmbH, Weinheim.
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endurance, retention, and synaptic learning properties compared to single
layer memristors.

Neural networks
Currently, there are two types of neural networks popular among
researchers: artificial neural networks (ANNs), which use backpropagation
and linkage relations, and spiking neural networks (SNNs), which use
neuron models and spike signal transfer. ANN algorithms have demon-
strated exceptional efficacy and have significantly advanced the field, evol-
ving into more sophisticated forms such as deep neural networks (DNNs)
and convolutional neural networks (CNNs)62,105. ANNs are composed of
interconnected neurons that manage input voltage signals, process them
through a crossbar array, and produce the output as electric currents. This
processing includes linear transformations through multiply-accumulate
(MAC) operations, complemented by nonlinear adjustments performed by
the neurons80,106,107. The crossbar array represents the network’s inter-
connected nodes. In many current implementations, classification is
accomplished offline, with the trained weights being stored in memristive
devices within the array80,107,108. In contrast, SNNs use neuron models and
spike signal transfer to closely mimic biological neural processing. They
encode information using sparse and asynchronous binary spikes, allowing
for a more faithful emulation of human brain functions on artificial neu-
romorphic hardware. This design enhances noise resilience and energy
efficiency while facilitating spatiotemporal learning mechanisms, such as
STDP109. The distinct computational approaches of ANNs and SNNs sig-
nificantly influence their applications, particularly in the choice of neuron
configurations and design principles.

A variety of neuron models have been proposed to emulate biological
neurons, including the McCulloch-Pitts (MP) model109, the
Hodgkin–Huxley (H–H)model110, the integrate-and-fire (IF) model111, and
the leaky integrate-and-fire (LIF) model109. Each model offers unique fea-
tures for simulating neuronal behavior, contributing to our understanding
of neural dynamics and informing the development of artificial systems.
Among these, theLIFmodel is particularly important in constructingSNNs.
LIF neurons replicate biological behavior by integrating incoming signals
until a specific threshold is reached, at which point they release a spike. This
model includesa leaky term that allows themembranepotential to gradually
decay over time, introducing vital temporal dynamics. LIF neurons are
especially suited for real-time processing of temporal information, making
them ideal for applications in sensory processing and neuromorphic
computing where time-dependent behavior is crucial. In contrast, bipolar
switching artificial neurons operate more like traditional digital circuits,
producing binary outputs based on the presence or absence of input signals.
These neurons use bipolar switching characteristics to toggle between two
states, facilitating faster operations and lower energy consumption112. They
are particularly effective in applications requiring speed and efficiency, such
as conventional machine learning tasks involving large datasets and rapid
inference times.However, theymay not fully exploit the temporal dynamics
that SNNs can offer.

The choice between LIF and bipolar switching neurons significantly
influences neural network design and implementation. Applications in
robotics and real-time decision-making benefit from the temporal proces-
sing capabilities of LIF neurons, while high-throughput tasks, such as image
classification or natural language processing, may perform better with
bipolar switching neurons due to their speed. Understanding these differ-
ences allows researchers to make decisions regarding device configurations
and neuron type selection based on specific application needs. As the field
evolves, exploring hybrid architectures that combine the strengths of both
neuron types could result in even more advanced neural computing sys-
tems, enhancing capabilities across a wide range of applications.

Recent advancements in memristor technology have opened new
avenues for neuromorphic computing, particularly in SNNs. In this context,
Roldan et al. recently examined multilayer h-BN memristors in SNNs for
image classification tasks113. They fabricated arrays of 5 × 5 μm cross-point
memristors with an Au/Ti/h-BN/Au structure on 300 nm SiO2/Si wafers.

Optical microscope images confirmed that no cracks were present, while
scanning electron microscope images confirmed continuous wrinkles on
both the SiO2 substrate and the electrodes (Fig. 4a), indicating that the h-BN
layers were intact. The devices exhibited clear bipolar resistive switching in
response to electrical stimuli of varying polarities (Fig. 4b). Using STDP as
the learning rule, they trained the SNN using the MNIST dataset, which
includes 784-pixel grayscale images of handwritten digits. The network had
784 input neurons, and a corresponding excitatory layer connected to
inhibitory neurons, which facilitated lateral inhibition and competition
among excitatory neurons (Fig. 4c). The authors varied the number of
neurons and training epochs, finding improved recognition accuracy with
moreneuronsand saturation in accuracy for epochsbeyond three (Fig. 4d, e).
Additionally, Ma et al. demonstrated that an ANN chip based on MoS2
could recognize numerals with over 97% accuracy114.

Lu et al. explored the development and performance of a low-power
ultrafast memristor based on p-type van der Waals tin(II) sulfide (SnS)
(Fig. 4f)115. The device exhibited outstanding performancemetrics, featuring
a switchingvoltageof approximately 0.2 V, a switching speedofunder1.5 ns,
high endurance, and an exceptionally large on/off ratio of 108. Each device
consumed approximately 100 fJ of power during the ON state. Figure 4f
depicts the ionicmovements within theAg/SnS/Pt-based crossbar structure,
which is designed to mimic a biological synapse. Silver (Ag) ions from the
electrode migrate into SnS, where they fill vacancies or settle in interstitial
positions,migrate in response to an external electric field, and are reduced to
Ag atoms at the cathode, resulting in increased density of the Ag filament.
The device exhibited PPF behavior when it received a 0.65 V/50 ns pulse
train with a 500 ns pulse interval, as displayed in Fig. 4g. Figure 4h illustrates
32 × 32 high-density crossbar arrays with a 50 nm feature size. Chip-level
simulations demonstrated an on-chip learning accuracy of 87.76% for
CIFAR-10 image classifications, which is close to the software accuracy of
90%. Additionally, Yao et al. demonstrated the use of memristor crossbar
arrays inCNNs, achieving notable improvements in yield, performance, and
uniformity116. By incorporating eight 2048-cell memristor arrays, they
facilitated efficient parallel convolution with multiple kernels, enabling the
duplication of identical kernels through shared inputs. This memristor-
based CNN neuromorphic system exhibited remarkable efficiency and
accuracy (>96%) in handwritten digit recognition, with scalability providing
additional potential for enhancement.

Flexible memristors employing 2D materials have emerged as a pro-
mising approach in neuromorphic computing due to their exceptional
electronic properties andmechanical flexibility77,117,118. These devices mimic
synaptic functions by offering tunable resistance states, enabling efficient
information processing and storage that are similar to the human brain77.
The integration of 2Dmaterials (such as graphene and TMDCs) in flexible
memristors enhances their performance by providing high surface area,
excellent electrical conductivity, and scalability77,117,118. This advancement
paves the way for the development of flexible wearable neuromorphic
systems that are capable of sophisticated learning and adaptation, poten-
tially revolutionizingfields such as robotics, healthcare, andAI. 2Dmaterials
have also attracted considerable research interest because of their ability to
modulate the switching mechanims119. These materials have been instru-
mental in advancing our understanding of these processes, providing
insights that are crucial for the development of next-generation electronic
devices5,106,120. Additionally, 2D materials have been demonstrated to
enhance the performance of traditional metal oxide-based memristors by
improving their switching characteristics and overall reliability121,122. The
development of various vertical memristors that incorporate 2D materials
has resulted in devices with fast switching speeds, low threshold voltages,
andhigh electrical endurance.These characteristicsmake themsuitable for a
wide range of applications, including NVM and neuromorphic computing.
Among these memristors, sandwiched devices that can maintain multiple
non-volatile states are particularly promising for the realization of artificial
synaptic devices. These multilevel states are essential for mimicking the
complex behavior of biological synapses, allowing for more sophisticated
and efficient information processing123–125.
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The operation of 2D material-based memristors is often governed by
mechanisms such asmetal ionmigrationand structural phase changes90,126–128.
These mechanisms facilitate analog resistance switching in 2D material
memristors, allowing them to effectively replicate different types of synaptic

plasticity, which is a fundamental feature of neural networks. This synaptic
plasticity encompasses phenomena such as STP, LTP, and STDP. STP refers
to transient increases in synaptic strength,while LTP involvesmore persistent
changes that strengthen synaptic connections over time. STDP is a learning

Fig. 4 | 2D memristor-based neural networks. a Optical microscopic and SEM
image of the h-BN memristor. b I-V characteristics were measured across multiple
resistive switching cycles, with compliance current set at ICC = 0.1 mA. The graph
illustrates 88 cycles of set (blue curve) and reset (red curve) processes. c SNN
architecture. The input neurons (pre-neurons) are connected to every neuron in the
excitatory layer (post-neurons). Each excitatory neuron is also connected to an
inhibitory neuron, which exerts inhibition on all excitatory neurons except the one

from which it directly received input, illustrating lateral inhibition. Recognition
accuracy forMNISTdataset versus thednumber of neurons and enumber of epochs.
Reproduced with permission from ref. 113. f Schematic of Ag/SnS/Pt memristor.
g Experimental data exhibiting short-term paired-pulse facilitation (PPF) with a
pulse interval of 500 ns. h 8-layer VGG-8 convolutional neural network architecture
used for CIFAR-10 image classification. Reprinted under terms of the Creative
Commons license from ref. 115. Copyright © 2021 American Chemical Society.
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rule that adjusts the strength of connections based on the precise timing of
spikes betweenneurons.Theability of 2Dmaterialmemristors tomimic these
forms of plasticity renders them highly suitable for use in neuromorphic
systems, where they can contribute to the development of brain-inspired
computing architectures that are capable of learning and adaptation79,97,129,130.

Advanced computing
In-memory computing
In the post-Moore’s law era, the traditional von Neumann architecture has
approached its maximum computational efficiency relative to energy con-
sumption, causing a notable reduction in performance. Concurrently, the
demand for computational power has escalated (especially in AI), high-
lighting that energy consumption is a critical issue. This has driven a
movement toward energy-efficient computing, often called “green com-
puting.” In-memory computing presents a key approach to addressing these
challenges by removing the necessity of data transfer betweenmemory and
the processing units, significantly reducing energy usage. By integrating
memory and processing functionalities into a single unit, in-memory
computingminimizes the latencyand energy costs linkedwith data transfer,
resulting in substantial improvements in computational efficiency. Neuro-
morphic computing was inspired by the functionality of the human brain
and exemplifies the principles of in-memory computing. Neuromorphic
systems can mimic the neural network architecture and its operational
mechanisms, achieving remarkable levels of energy efficiency. These sys-
tems leverage SNNs and other brain-like computing models to process
information in a highly parallel and energy-efficient manner130–132.

Advances through 2Dmaterials
The use of 2Dmaterials has facilitated numerous advances in the field of in-
memory computing. Researchers are redefining this era of computing by
employing advanced architectures in memristor devices, encompassing
single devices8 (Fig. 5a) and crossbar arrays133 (Fig. 5b) for high-density
memory and computing. Strategically engineered HSs enable self-selective
memristor arrays32 (Fig. 5c), enhancing device performance and scalability.
Furthermore, the development of 3D integration of memristor arrays has
enabled three-dimensional fabrication103 (Fig. 5d), contributing to high-
densitymemory storage and extending beyondMoore’s Law regarding chip
fabrication. These advancements are revolutionizing the capabilities of
neuromorphic computing, enabling more efficient and powerful data pro-
cessing and storage solutions.

In 2018, Shi et al.134 introduced a notable method by using multilayer
h-BN as the resistive switching material, resulting in high-performance
devices with dynamic response capabilities. Through modifications to the
amplitude, duration, and frequency of electrical stimuli, they obtained a
rapid (~200 μs) and consistent relaxation across over 500 cycles with
minimal fluctuations. This behavior can be ascribed to the resistive
switchingmechanismwithin the h-BN stack, which is then filled bymetallic
ions from nearby electrodes, creating boron vacancies. The power these
devices use in standby mode can be as low as 0.1 fW, with 600 pW per
transition and switching times of less than 10 ns, highlighting their potential
for energy-efficient neuromorphic computing. The volatile and non-volatile
properties of resistive switching were verified at the nanoscale using con-
ductive atomic force microscopy (CAFM), highlighting excellent scalability
potential, as illustrated inFig. 5e–i. Li et al.106 reported thedevelopment of an
ultrathin heterostructure using 2D PdSeOx/PdSe2 for in-memory com-
puting with a memristor array. This ultrathin heterostructure switching
medium was developed through precise UV-Ozone treatment, effectively
restricting the formation of conductive filaments. This resulted in highly
uniform switching with low variability in set and reset voltages, specifically
4.8% and 3.6%, respectively. The device achieved five non-volatile states
(Fig. 5j) with high linearity and symmetric analog weight updates by
addressing compliance current. These tunable conductance states facilitated
practical applications in image processing, as depicted in Fig. 5k.

Various 2D materials have been employed for in-memory computing
and hardware security applications. For example, Xie et al.8 fabricated an h-

BN-based memristor array for both analog computing and ML hardware.
Their study highlighted the hardware realization of dot product operations,
which is a fundamental analog function that is frequently used in ML
through the use of h-BNmemristor arrays. The authors also showcasedhow
a linear regression algorithm can be implemented in hardware using h-BN
memristor arrays. A similar approach was demonstrated by Li et al.133 by
employingPdSe2 for analog in-memory computing.Their studyhighlighted
unusual resistive switchingbehavior featuring twodistinct resetmodes: total
reset and quasi reset. In quasi-reset mode, switching variability in the
memristors was reduced by a factor of six compared to the total resetmode.
Additionally, thesememristors demonstrateda low set voltage of 0.6 V, long
retention times, and programmable multilevel resistance states. Sun et al.32

reported a unique and novel strategy using self-selective van derWaals HSs
for creating large-scalememory arrays. The authors designed a self-selective
memory cell featuring a vertical heterostructure composed of h-BN and
graphene. This approach integrated non-volatile and volatile memory
operations within the two h-BN layers, achieving a self-selectivity of 1010.
The graphene layer played a crucial role in stopping the diffusion of volatile
silver filaments, allowing for a novel integration of volatile and NVM
processes.

Innovative architectures for enhanced performance
The exploration of hybrid architectures, such as the integration of 2D
materials into traditional CMOS technology, has produced promising
results. Sivan et al.38 presented an innovative approach using a 1T1R RAM
cell composed entirely of WSe2 for 3D monolithic embedded memory. In
this design, WSe2 served as the active layer for both the transistor and
memristor. The authors demonstrated a low-thermal-budget hybrid inte-
gration of 2Dmaterial-based 1T1R devices by employing a combination of
solution-processed and exfoliatedmethods. Figure 6a presents a conceptual
depiction of the 3D integration of CMOS logic and multiple layers ofWSe2
TFTs with ReRAM, outlining the thermal budgets for different levels. The
ReRAM demonstrated non-volatile unipolar switching with voltages below
1V and a low switching energy of 2.9 pJ per bit. This hybrid co-integration
of TFT-ReRAM1T1R enabled the creation of precise device-circuit models
and facilitated the exploration ofmaterial-systemmemory cell co-design for
advanced technologies. Zhu et al.135 describedhybrid 2D-CMOSmicrochips
for memristive applications that incorporated an h-BN stack. In-memory
computation was demonstrated through the construction of logic gates and
the assessment of STDP signals, which are well-suited for SNNs. This
development represented amajormilestone in integrating 2Dmaterials into
microelectronic devices and memristive applications, as demonstrated by
the exceptional performance and advanced technology readiness level
achieved. Similarly, Feng et al.108 introduced a multi-terminal mem-tran-
sistor crossbar array for in-memory computing that achieved enhanced
programmingparallelismby enabling the independent control of gates.This
configuration facilitated in situ computation with a dense cell size ranging
from 3 to 4.5 F2 and a reduced sneak current to 0.1 nA. Furthermore, the
system achieved a low switching energy of 20 fJ/bit at a voltage of 0.42V. In
addition, the architecture supported the multiply-and-accumulate opera-
tion, which is essential for pattern classification tasks, and demonstrated a
high MNIST recognition accuracy of 96.87% due to its linear synaptic
plasticity. Tang et al.103 developed awafer-scale solution-processed 2DMoS2
memristor array for analog resistive memory-based computing. These
memristors exhibited excellent endurance, long retention times, minimal
device variation, and a significant analog on/off ratio with linear con-
ductance updates. The diffusion of sulfur vacancies between the nanosheets
was controlled by the distribution of flake sizes, modulating the switching
characteristics. Additionally, the authors demonstrated a 3Dmemory cube
by stacking 2D MoS2 layers, advancing high-density neuromorphic com-
puting systems.

Future directions and implications for Al
The previouslymentioned advancements in neuromorphic and in-memory
computing have profound implications for the development of AI and ML
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applications. Neuromorphic chips, which combinememory and processing
elements, can perform complex computations with significantly lower
power consumption compared to traditional architectures. This makes
them particularly suitable for edge computing applications, where energy
efficiency and real-time processing capabilities are paramount. Moreover,
the synergy between in-memory computing and emerging materials (such
as ReRAM) further enhances the potential of these technologies. These
novel materials will enable the development of highly scalable and energy-
efficient memory devices, paving the way for next-generation computing
systems that can meet the ever-growing demands of AI and other data-
intensive applications. 2Dmaterials have several attributes that render them
ideal for fabricating memristive devices, especially for use in device arrays.
For example, the device thickness is significantly reduced to the sub-
nanometer scale due to themonolayer structure of functional 2Dmaterials,

facilitating outstanding scalability and precise control in fabricating high-
density 3D crossbar arrays136,137. To illustrate this point, researchers have
engineered NVM devices using monolayer h-BN with an unprecedented
thickness of just 0.33 nm27. Moreover, in memristor devices incorporating
2Dmaterials (such asMoS2), the extremely thin atomic layers enable precise
gate control in multiterminal devices, improving the selection process
within crossbar arrays138. These factors of extreme thinness and control
precision are crucial for developing compact and efficient memory storage
solutions. Furthermore, it has been successfully demonstrated thatmany 2D
materials (such as h-BN8,139 and MoS2

140) allow large-area wafer-based
fabrication and can achieve consistent thickness transfer. Recently, a
method for wafer-scale growth of HfSe2 was developed through the use of
molecular beam epitaxy in conjunction with ametal-assisted van derWaals
transfer process80. These advanced fabrication and transfer techniques have

Fig. 5 | 2Dmemristor-based devices and architectures for in-memory computing.
a Schematic of the arrays of Au/h-BN/Ti memristors and a graphical representation
of a single Au/h-BN/Ti memristor, reproduced from ref. 8. b Crossbar for high-
density memristor array, reproduced from ref. 133. c Self-selective memristor array
achieved through heterojunction engineering with graphene and h-BN, reproduced
from ref. 32. d 3D fabrication ofmemristor array for high-density chip functionality,
reproduced from ref. 103. e Schematic of the CAFM experiments shows the tip/
sample junction forming a nanoscale Pt/h-BN/Cu synapse. f Two sequences of 4
PVS (eachwith 30 pulses) observed in a 5 × 5 μm5–7-layer h-BN synapse, indicating

progressive synaptic potentiation. g Zoom-in of the current presented on a loga-
rithmic scale. h A sequence of PVS with Vup = 1.2 V, initially exhibiting an abrupt
potentiation followed by an additional sudden increase in current, transitioning to
the non-volatile RS regime. i Two sequences of PVS displaying synaptic potentia-
tion, compared to that used in f. reproduced with permission from ref. 134. j By
adjusting the compliance current, five distinct states are obtained, allowing for the
mapping of weights within the range of−4 to+4. k Image-processing results using
these five states, reproduced from ref. 106.
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enabled the production of large-scale memristor crossbar arrays using 2D
materials as functional components. This capability supports the mass
production of high-performance devices necessary for practical
applications.

The inherent attributes of 2D materials, such as a high surface-to-
volume ratio and high carrier mobility, enhance their effectiveness in

memristive devices. The high surface-to-volume ratio enhances interactions
between thematerial and the surrounding environment, which is beneficial
for sensors and other responsive devices. The superior electronic properties,
including high carrier mobility and tunable bandgaps, provide a versatile
platform for designing devices with specific electronic characteristics.
Finally, the layered nature of 2D materials, which is characterized by weak
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van der Waals interactions between layers and the absence of dangling
bonds, promotes the formation of functional HSs and ensures efficient
electrode contact in the design of memristive devices141. This property
facilitates the integration of diverse materials to tailor the electronic prop-
erties of the device, enabling novel functionalities and improved perfor-
mance. For example, creating HSs with graphene and TMDCs can result in
devices with unique properties, such as high on/off ratios and excellent
switching speeds.Overall, theunique attributes of 2Dmaterials, suchas their
atomic-scale thickness, ability to form large-area uniform films, and com-
patibility with heterostructure formation, make them ideal candidates for
next-generation memristive devices. These devices are expected to play a
critical role in the development of high-density memory and logic circuits,
offeringpotential solutions in various applications, includingneuromorphic
computing, data storage, and reconfigurable electronics. Importantly,
research and development in 2D materials and their integration into
memristive devices continue to drive innovation in nanoelectronics, paving
the way for more advanced and efficient electronic systems.

Notable researchhas shownpromising results. For example, Leeet al.138

reported a notable dual-gate MoS2 mem-transistor crossbar array, high-
lighting its potential for neuromorphic computing and data storage appli-
cations. The device demonstrated improved linearity and symmetry in LTP
and LTD behavior, which were achieved through the dynamic tuning of
learning rates using various VW

BG and VR
BG pulses (Fig. 6b). Figure 6c

provides a detailed depiction of the hardware implementation of the ANN.
The use of small grains in CVD-grownMoS2 facilitated the development of
mem-transistors with active channel sizes below 1 μm and a switching cycle
energy consumptionas lowas 2pJ. Zhuet al.135 developedhybrid 2D-CMOS
microchips that featured high integration density for memristors. The
authors integrated multilayer h-BN onto the back-end-of-line inter-
connections of silicon microchips with CMOS transistors at the 180 nm
technology node. The CMOS transistors provided precise current control
across the h-BN memristors, resulting in an endurance of approximately 5
million cycles. This setup enabled in-memory computation, which was
demonstrated through the creation of logic gates and the measurement of
STDP signals (ideal for SNNs), as illustrated inFig. 6d–g. Similarly, Xie et al.8

employed h-BN memristor arrays for analog machine-learning hardware.
The authors fabricated and characterizedAu/h-BN/Ti memristor arrays, as
displayed in Fig. 6h–k, which were employed in dot-product operations.
These memristor arrays exhibited excellent linearity and repeatability,
which are essential for the development ofMLhardware. This advancement
represents a significant step forward in using 2Dmaterials forMLhardware,
highlighting the potential of h-BN memristor arrays to enhance the per-
formance and efficiency of analog computation systems.

Additionally, Naqi et al.140 developed a robust MoS2 memristor array
that was directly grown for application in in-memory deep-learning neural
networks. This MoS2 memristor functions as a synaptic device, exhibiting
nearly linear synaptic behavior in terms of learning and forgetting. The
device also displays both long-term and short-term memory dynamics by
applying consecutive multilevel pulses with precise time durations.

Furthermore, the emulation of an artificial neural network using this
synaptic device reached a recognition accuracy of 98.55%, which is only 1%
less than that achievedwith software-based neural network emulations (Fig.
6l, m). This work highlighted the potential of MoS2 memristors to enhance
the performance of deep-learning neural networks throughhardware-based
solutions. Li et al.80 developed a large-scale HfSe2-basedmemristor crossbar
array for energy-efficient hardware using molecular beam epitaxy and a
metal-assisted van der Waals transfer method. This memristor operated
with a low voltage of 0.6 V and consumed minimal switching energy of
0.82 pJ. In addition, the device successfully emulated synaptic weight plas-
ticity, demonstrating its potential for neuromorphic computing applica-
tions. Moreover, MAC operations with an error distribution as narrow as
0.29% and an exceptional power efficiency of over 8 trillion operations
per second per watt were achieved. Additionally, the system demonstrated
high recognition accuracy in ANN (Fig. 6n–s), suggesting its promise for
advanced neuromorphic computing tasks.

In-sensory computing
As silicon-based transistors continue to shrink, creating more complex and
energy-efficient circuits near sensory terminals becomes increasingly fea-
sible. These circuits can preprocess sensor outputs, resulting in more effi-
cient data transfer and processing142,143. However, despite the significant
reduction in redundant data provided by this near-sensor computing
approach, physical separation remains between the sensors and computing
units, which deteriorates the speed and energy efficiency142–144. To address
this issue, integrating computing functions directly into sensors can effec-
tively eliminate the physical divide, enabling a paradigm shift toward in-
sensor computing. In this approach, external stimuli are converted into
electrical signals by sensors, allowing for efficient processing right at the
point of data collection144–146.

Integrating computing capabilities within sensors enables real-time
data processing at the point of data collection, enhancing the responsiveness
and efficiency of the system. This approach minimizes the latency and
energy consumptionassociatedwithdata transmissionbetween the separate
sensing and processing units. Furthermore, in-sensor computing can pave
the way for advanced applications in areas such as neuromorphic com-
puting, where sensory data is processed similarly to biological neural net-
works, offering potential breakthroughs in AI and ML144. The ongoing
advancements in nanoscale transistor technology and materials science are
crucial for the development of in-sensor computing systems. Emerging
technologies, such as 2Dmaterials and flexible electronics, hold significant
promise for creating highly integrated, multifunctional devices. These
advancements could result in a new generation of smart sensors with
enhanced capabilities, improved energy efficiency, and reduced form fac-
tors, driving innovation across various fields, from healthcare to environ-
mental monitoring.

Lin et al.147 explored the use of CeO2/MoS2HSs to create a bionic visual
system with nociceptive sensing capabilities. The authors developed an
optoelectronic memristor from these HSs, enabling adjustable

Fig. 6 | 2D memristor-based architectures for in-memory computing.
aConceptual depiction of 3Dmonolithic stacking with CMOS logic andWSe2 TFTs
with ReRAM, displaying the thermal budget. Reprinted under Creative Commons
license from ref. 38. b Block diagram of the ANN hardware with dual-gated mem
transistor crossbar synapses.Weight updates are achieved by pulsing bit lines (drain)
and word line 1 (bottom gate), while word line 2 (top gate) helps to reduce sneak
current. The dashed box shows two adjacent memtransistors with conductance
levels wp and wm, storing a synaptic weight w = wp-wm. c Linearity of LTP and LTD
in a dual-gatedmemtransistor synapse. Solid lines denote ideal responses. Reprinted
under Creative Commons license from ref. 138. d Synaptic changes during training
with 400 neurons. The red square highlights 784 synapses in a 28 × 28 grid.
e Confusion matrix displaying the classification accuracy for each dataset category.
f Classification accuracy variations with the number of training images, with error
bars from 50 Monte Carlo simulations. g Circuit schematic of the
neuron–synapse–neuron block integrating h-BN-based 1T1M cells with CMOS

circuitry. Colors differentiate the complete neuron (gray box), the core block (light
blue box), and the individual building blocks (light red boxes). Reprinted under
Creative Commons license from ref. 135. h Diagram of pulsed measurements and
retention test. i Pulse programming for an Au/h-BN/Ti memristor, showing 100
cycles with positive and negative pulses. j Pulse measurement cycles with increasing
the number of positive pulses from 2 to 20. k Retention characteristics right after
applying the final positive pulse of each cycle shown in panel j. Reprinted under
Creative Commons license from ref. 8. lResults from 1000Monte Carlo simulations
of an 8 × 8 crossbar array with 5% variations. m Graph of recognition accuracy for
SW-NN and HW-NN across each training epoch. The highest accuracy achieved by
SW-NN was 99.41%, while HW-NN reached 98.55%. Reprinted under Creative
Commons license from ref. 140. n Original input image, o different kernel designs,
p–r processed images with hardware using various kernels. Panel q combines results
from r and s, displaying edge detection in both directions. Reproduced from ref. 80.
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optoelectronic synaptic functions. This advancement resulted in a multi-
functional artificial visual system that supports electrical storage, light
sensing, memory, and visual nociception. This device exhibited a strong
response to both UV and visible light, demonstrating high photosensitivity
and light-induced synaptic functions. Additionally, it features sophisticated
mechanisms for transitioning between short and long-termmemory (STM/
LTM), as well as for managing learning, forgetting, and relearning by
adjusting the light intensity and duration, as displayed in Fig. 7a–d. In
another study, Sun et al.95 demonstrated in-sensor reservoir computing
(RC) for language learning using SnS flakes and successfully implemented a
novel in-sensorRCsystemwithdual-modeoperation, as depicted inFig. 7e, f.
The integrated SnS-based memristors exhibited unique and opposite elec-
trical and optical response trends, effectively generating high-dimensional
states in the optoelectronic RC system to manage complex spatiotemporal
input signals (Fig. 7g–i). The system attained a notable accuracy rate of 91%
when classifying five real Korean sentences, even when these sentences
included deliberate noise. Such energy-efficient methods enhance ML
applications with temporal inputs at the edge, marking a significant
advancement for the Internet of Things (IoT) era.

Semiconductors with bandgaps within the visible light spectrum, such
asWSe2, MoS2, WS2, and SnS are highly effective for use in photodetectors
within sensors. Thesematerials exhibit excellent photosensitivity, which has
been successfully integrated with memristive circuits to create unified
sensor-processor devices.Moreover, the properties of these semiconductors
can be leveraged to design devices that combine sensing and processing
functions148–150. The switching mechanisms in these materials involve the

incorporation of oxygen, which heals sulfur vacancies and restores the
material’s original resistance state. This reversible switching mechanism,
driven by light and environmental conditions, underscores the potential of
2D materials in developing advanced photodetectors and memory devices.
By combining photosensitivematerials withmemristive circuits, it becomes
possible to design compact, energy-efficient devices that can sense and
process optical information directly—an especially beneficial capability for
applications in AI where real-time data processing is critical. The use of 2D
materials such as WSe2

73, MoS2
126, WS2

151, SnS115, and Sb2S3
152 in photo-

detectors andmemristors opens up new possibilities for the development of
multifunctional devices. In addition, the unique properties of these mate-
rials, including ahigh surface area, tunable bandgap, and excellent electronic
characteristics, make them ideal candidates for next-generation sensor-
processor systems. Ongoing research and development in this field are
expected to result in further innovations that will enable more efficient and
versatile electronic devices.

WSe2 andWS2 are stable semiconductorswith direct bandgaps that are
well-suited for absorbing visible light, making them excellent choices for
applications in photodetectors and optoelectronic devices28,153. Their stabi-
lity and efficient light absorption properties position these materials as key
components in advanced sensor technologies. Recent advancements by
Wang et al. demonstrated how a retinomorphic sensor could be built using
WSe2. In their approach, the photoresponses were used to manage a gate
terminal in amemristive device, allowing for image data processing directly
within the sensor28. This approach exemplifieshow2Dmaterials canbeused
to integrate sensing and processing functions, enhancing the efficiency and

Fig. 7 | In-sensory computing. a Biological visual system comprising the retina,
optic nerves, and visual cortex. b Diagram displaying key functional cells in the
retina, such as rods, cones, and bipolar retinal cells. cDiagram of the artificial visual
array with optoelectronic memristors and a circular shadow mask on top.
d “NANO” pattern used to demonstrate short-term and long-term memory beha-
vior in synapses. Reprinted under terms of the Creative Commons license from
ref. 147. eMultifunctional memristor array responsive to both electrical and optical
inputs. fAFM image and corresponding line profile of the device array utilized in the

research, with a scale bar of 2 μm. g Operation of an optoelectronic RC system
employing 2D SnS memristors for distinguishing consonants and vowels in the
Korean alphabet. The array of five memristors was stimulated using temporal pulse
sequences. hWeight distribution in the readout layers after 100 epochs of applying
electrical and optical stimuli. i Progression of classification accuracy rates through
standard batch gradient descent over 100 epochs of in situ training for electrical
(depicted in green) and optical (depicted in blue) stimuli. Reprinted under terms of
the Creative Commons license from ref. 95.
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functionality of optoelectronic systems.WSe2 exhibits impressive nonlinear
optical properties, which have been leveraged in the development of non-
linear transistors. For example, Tong et al. successfully combinedWSe2with
lithium niobate to produce nonlinear transistors and NVM devices that
exhibit enhanced performance154. This integration highlights the versatility
of WSe2 in creating advanced electronic components that can perform
complex functions. Furthermore, WSe2 mem-transistors have been inte-
grated into circuits to enable hyperbolic tangent and sigmoid activation
functions in artificial neurons, as demonstrated by Sebastian et al.155. This
innovation highlights the potential ofWSe2-based devices in neuromorphic
computing, where they can replicate the behavior of biological neurons for
more efficient data processing and learning. Additionally, SnS is recognized
as a layered semiconductor with outstanding optical sensitivity, broadening
its potential applications in optical and electronic technologies. This sen-
sitivity originates from the high number of defect states arising from
vacancies in both tin (Sn) and sulfur (S). These defect states contribute to the
exceptional photosensitivity of SnS, rendering it suitable for optoelectronic
applications. Sun et al. recently made notable progress by developing an
SnS-based memristor array that was specifically designed for language
learning applications95. Similarly, vapor transport deposited (VTD) Sb2S3-
based multilevel memristor devices with optically controllable functional-
ities have been explored, exhibiting higher stability and reliability across the
devices152. Within this configuration, the memristor undergoes direct sti-
mulation by optical signals, effectively leveraging the defect states present
within the bandgap to modulate the resistance of the device. The SnS
memristor array operates in dual mode, responding to both optical and
electrical stimuli. This capability is enabled by the existence of donor
and acceptor states within SnS, enabling simultaneous processing of optical
and electrical inputs. This dual-mode operation is particularly advantageous
for applications requiring simultaneous handling of multiple types of sig-
nals, such as in advanced sensornetworks and cognitive computing systems.

Photon responses in 2D materials (such as graphene and MoS2) have
beenharnessed to create optoelectronicmemristive devices. Thesematerials
exhibit strong photoresponsivity, where light exposure can induce changes
in resistance, enabling the integration of optical and electronic
functionalities34,95,153. This property is particularly advantageous for appli-
cations in photonic computing and optoelectronic memory. The unique
properties ofWSe2,WS2, and SnS, including their direct bandgaps, stability,
and sensitivity to light, make them ideal materials for photodetectors and
optoelectronic applications. This integration of materials into memristive
devices and circuits has enabled the development of multifunctional com-
ponents that are capable of sensing, processing, and learning. As research in
this field progresses, thesematerials are expected to play a crucial role in the
advancementofnext-generation electronic andoptoelectronic technologies.

Hardware security
PUF
In the rapidly evolving landscape of cyber security, the need for robust
tamper-resistant authentication mechanisms has become increasingly cri-
tical. Traditional authentification methods, such as passwords, biometric
systems, and cryptographic keys, have vulnerabilities that can be exploited
by increasingly sophisticated cyber-attacks. Accordingly, researchers are
exploring innovative solutions that leverage the inherent physical properties
of materials and devices to enhance security. One such promising tech-
nology is the physical unclonable function (PUF)47.

Memristor-based weak PUFs
Weak PUFs are primarily used to create and safeguard encryption keys.
Unlike strong PUFs with many challenge-response pairs (CRPs), weak
PUFs have fewer CRPs and improved reliability. One way to implement a
weak PUF is through memristor-based systems by using switching
parameters156,157 and device-to-device (D2D) variations158–160. In the context
of memristor-based weak PUFs, these systems leverage the unique prop-
erties ofmemristors, which are electronic devices that are capable of altering
their resistance based on the applied voltage. By harnessing switching

parameters andD2Dvariationswithinmemristor arrays, weak PUFs can be
effectively implemented.When considering aweak PUFbased on switching
probability, a specific program is executed when the switching probability
reaches 50% across the entire array. This program randomly assigns the
devices within the array to either “0” or “1” states, contributing to the
generation of cryptographic keys. However, it should be noted that this
method is more suitable for smaller arrays due to challenges such as the
voltage drop (IR drop) effect that occurs in larger arrays. This effect can
impact reliability, particularly concerning variations from one cycle to
another C2C.

In larger memristor arrays, determining the appropriate program vol-
tage also becomes a complex task. This voltage is derived statistically from a
multitude of devices within the array, adding a layer of complexity to the
implementation process. In contrast, a D2D variation-based approach in
weak PUFs involves leveraging the inherent variations between individual
memristor devices. These variations are known as D2D variations and are
harnessed to enhance the uniqueness and unpredictability of the generated
keys, improving the security of the cryptographic system. However, weak
PUFs based on memristor technology offer a robust solution for generating
and protecting encryption keys, with considerations of array size and relia-
bility challenges while leveraging variations within memristor devices to
ensure cryptographic security. Woo et al.161 investigated the use of a CuTe2/
HfO2 heterostructure in heterojunction memristors for developing tunable
stochastic devices aimedat energy-efficient encryption and computing. Their
findings indicated that these CuTe2/HfO2 memristors could produce genu-
inely random and physically unclonable functions under certain operational
biases. For example, under different biases, the memristors were capable of
executinguniversalBoolean logicoperations.This researchdemonstrated the
ability of a single system to perform cryptographic key generation, universal
Boolean logic functions, and encryption/decryption tasks (Fig. 8a, b).

Memristor-based strong PUFs
Strong PUFs are used for verifying identities and require each CRP to be
distinct, resulting in the need for an extensive CRP space, which can affect
reliability. Traditional CMOS-based strong PUFs often use time-delay cir-
cuits, such as arbiter or ring oscillator PUFs. However, implementing these
structures with memristors is challenging due to the need for complex
circuits for operations such as forming, reset, and set. A simpler method for
memristor-based strong PUFs involves randomly selecting two cells from
anM×Nmemristor array andusing their comparison as the response162–164.
This method can generate up to C2

MxN bits of response, providing a large
CRP space with sufficiently large arrays. Most memristor-based strong
PUFs follow this principle (or its variants), while others use more complex
techniques such as memristor-based arbiters or ring oscillator PUFs.
However, thesemethods often require numerous devices and exhibit strong
CRP correlations164–166. To overcome these issues, a common approach for
memristor-based PUFs involves leveraging the analog state and nonlinear
conductance variations in the integrated memristors. This innovative
method enhances the performance of memristor PUFs by analog tuning of
the memristors’ conductance. However, 2D materials are much less
explored for this application under strong PUF domains. Therefore,
exploring 2D materials could open new possibilities for enhancing the
performance and scalability of PUFs in terms of identity authentication.

True random number generators (TRNGs)
True random number generators (TRNGs) are a fundamental pillar of
ensuring information security and are used extensively in security chips and
encryption algorithms. Conventional TRNGs primarily depend on random
noise produced within CMOS digital and analog circuits, including sources
such as thermal and shot noise. However, despite the recent advancements
in CMOS-based TRNGs, they exhibit several shortcomings, including the
masking of random noises by deterministic disturbances due to their lower
amplitude. This results in a larger bias towards “1” or “0” in the raw output.
Additionally, the smaller noise amplitude necessitates complex preamplifier
circuits for effective use. Recently, memristors have become strong
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Fig. 8 | Hardware security. aEncryption and decryption ofA-shaped data are carried
out using a key equivalent to PUF 1, with the process executed through an XOR
operation following the DC logic scheme. b 20 × 32 hybrid mem-PUF arrays utilized
for encryption. Reproduced with permission for ref. 161. Colormaps of the likelihood
or probability of c true positive, d false positive, and e detectivity as a function of for
P = 50 encoders. Reproduced with permission from ref. 168. f RTN current through
anAg/h-BN/Ag-inkmemristor devicemeasured under a constant lowapplied voltage
of 70mV.The signal remains stable for over 1 h, the longest duration reported for a 2D
material-based device. The inset details 20 s of data, demonstrating a high on/off ratio

(greater than 2) and short capture and emission times, reflecting an RTN signal of
exceptional stability.gWeighted time lag plot of theRTN trace inpanel f.hHistogram
displaying the ratio of currents before and after an RTN transition, determined by
dividing the high current (IRTNhi) by the low current (IRTNlo). The curve represents a
Gaussian fit to the data, with a mean value of μ = 1.69. The highest transition ratio
observed was 2.57. i Exponential distribution of τc and τe values is plotted for the
entire dataset shown in panel f. Transitions where ln(1− F) >− 2 occur within
400ms for 87% of the cases. The gray thick lines indicate the average values of the
bimodal exponential distributions. Reproduced from ref. 169.
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candidates for hardware security solutions due to their inherent char-
acteristics of true randomness, especially inTRNGapplications.Memristor-
based TRNGs leverage various phenomena, such as conductance-to-
conductance (Cn2Cn) variations, switching probability, and random tele-
graphnoise (RTN) inmemristive devices.Among these approaches,Cn2Cn
variation-based TRNGs offer an unbiased output without the need for
additional circuits to adjust the bias, while RTN-based TRNGs can operate
without preamplification circuits due to the significant amplitudeofRTN167.

Dodda et al.168 presented a bioinspired low-power crypto engine
designed for near-sensor security using 2D mem-transistors. Their study
demonstrated that the encrypted information remains secure against
eavesdroppers with limited resources while having access to deep neural
networks. The hardware setup included 320 monolayer MoS2-basedmem-
transistors, each operating with energy consumption in the picojoule range
while providing enhanced security close to the sensor. This innovative use of
MoS2 mem-transistors would be applicable for computing, storage, and
sensing applications. This encrypted data has been demonstrated to be
resistant to adversaries employing advanced ML techniques, including
trained DNNs (see Fig. 8c–e). Pazos et al.169 showcased the hardware
implementation of a TRNG by combining h-BN memristors with a com-
mercial microcontroller. A key aspect of their work was the stability of the
h-BN memristors, which exhibited highly stable RTN signals for extended
periods (>1 h) while maintaining low power consumption (∼650 nW) (Fig.
8f–i). These findings mark a significant advancement toward the develop-
ment of sophisticated TRNG circuits that would be ideal for IoT applica-
tions. Additionally, this work illustrates the potential for integrating 2D
materialswith conventional electronics, leveraging the advantagesof both to
enhance performance. Similarly, Wen et al.170 reported advanced data
encryption by employing 2Dmaterials, focusing on the fabrication of highly
stable TRNG circuits. Circuits constructed from MIM devices with multi-
layer h-BN exhibit low power consumption, maintain high randomness
(even for extended bit strings of up to 224− 1 bits), and achieve a
throughput of 1Mbit/s. These features collectively highlight the potential of
multilayer h-BNMIM devices creating efficient and reliable TRNG circuits
for advanced data encryption. However, switching probability-based
TRNGs faces challenges related to device endurance, particularly due to
the specificpulsewidth andvoltage combinations required for a 50%success
rate per write cycle. Recent research has made advances in addressing these
issues by selecting suitable memristive devices. Additionally, exploring
various stochastic behaviors has resulted in innovative TRNG designs.
Notable examples include TRNGs that use current differences with frac-
tional stochastic models and those that use write delay times in diffusion
memristors. Several significant advancements in this area include a TRNG
that exploits RTN characteristics, another that employs different currents
based on a fractional stochastic model, one that relies on Cn²Cn variation,
and a TRNG that takes advantage of write delay times in diffusion
memristors171–173. These advancements showcase the versatility of
memristor-based TRNGs and highlight ongoing efforts to enhance ran-
domness and reliability in hardware security implementations.

Recent research has explored RTN-based TRNGs, aiming to leverage
the inherent stochastic nature of memristors for generating high-quality
randomsequences167,174–176. TraditionalTRNGsmeasure the voltage across a
device at a clock signal and compare it to afixed reference voltage to produce
random values. However, controlling the frequency and amplitude of RTN
in memristors is challenging, making it difficult to achieve a stable and
unbiased output. The new RTN-based TRNG innovative approach
addresses the limitations of existingmethods by combining the strengths of
two distinct designs: a CMOS-based timing jitter TRNGand a conventional
RTN-based TRNG177. The timing jitter phenomenon originates from
thermal noise in a ring oscillator and has been used previously to generate
randomness. However, relying solely on this method to generate adequate
randomness has been challenging, often requiring additional complex
peripheral circuits (such as feedback shift registers and logic gates).

Leveraging hardware primitives that possess inherent stochastic
behavior at the physical level is a highly promising method of generating

truly unpredictable randomnumbers178.Within thefield of nanoelectronics,
memristive TRNGs are notable for their significant variability and high
entropy. Moreover, memristive TRNGs based on 2D materials have
demonstrated exceptional performance, which is attributed to their unique
lattice structures. For instance, Wen et al.170 created an advanced data
encryption systemby leveraging a stable RTN signal fromawell-crystallized
h-BN memristor. This innovative fusion of memristor technology with
established TRNG principles represents a promising direction in terms of
advancing hardware-based random number generation for diverse appli-
cations in security and cryptography. The ongoing development of high-
speed TRNG designs based on memristor technology represents a crucial
advancement in hardware security. These designs are particularly well-
suited for applications requiring rapid processing and high-frequency
operations. By capitalizing on the unique characteristics of paired mem-
ristors and their Cn²Cn variations, these TRNG designs offer robust and
efficient solutions to meet the stringent security demands of contemporary
technologies. A comprehensive overview of in-memory computing, in-
sensory computing, and hardware security is detailed and summarized in
Table 3.

Integrating technology
Complexity and memristor adaptation
Future advancements in computing performance should incorporate the
dynamic and adaptive features found in natural and biological systems.
Biological systems, at all scales (from molecular to organismal scale),
demonstrate an intrinsic ability to respond to their environment and his-
torical stimuli. For example, basic molecular systems (such as nucleic acids)
demonstrate adaptive behaviors (including replication and self-repair) in
response to local environmental conditions. At a higher level of complexity,
neurons, which are the primary information-processing units in biological
systems, display over 20 different dynamical behaviors that are influenced
by their electrochemical history and environmental stimuli. This adapt-
ability extends to more complex systems, including the eye, the immune
system, and even entire organisms. Here, functional complexity and
adaptive capacity increase proportionally with organizational complexity.
In stark contrast, modern computing systems are predominantly built on
static elements that are characterized by zeroth-order complexity. However,
these systems lack an inherent ability to adapt and respond dynamically to
changing conditions, limiting their potential to reach the levels of efficiency
and functionality observed in biological systems. To bridge this gap, future
advancements in computing must incorporate elements that emulate the
adaptability and responsiveness of their biological counterparts. Such bio-
inspired computing systems would leverage adaptive algorithms and
dynamic architectures to respond in real-time to environmental inputs and
historical data, potentially revolutionizing fields ranging from AI to neu-
romorphic engineering. Embracing these principles could result in the
development of robust, efficient, and highly adaptive computing systems
that parallel the sophistication and resilience of natural biological processes.

The pivotal role of memristors
Memristors have emerged as a pivotal element in the quest for enhancing
computing complexity, particularly in bio-inspired computing paradigms.
Conventional approaches in bio-inspired computing have often aimed at
replicating basic biological functions, primarily employing transistor-based
circuits (such as CPUs and GPUs) to model a range of dynamic systems.
However, the advent of memristors has significantly simplified this
approach. Memristors were initially theorized in 1971 and physically rea-
lized in 2008, representing electrical circuit elements embodying at least one
state equation and introducing at least first-order complexity into com-
puting systems. Incorporating state equations in memristors results in
history-dependent behaviors in current-voltage plots, offering volatile and
NVM effects.

Non-volatile memristors serve as excellent candidates for electrical
synapses due to their tunable weight and NVM characteristics, rendering
them ideal for conductance-weighted input-output transformations. In
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contrast, volatile memristors exhibit non-linear transformations, making
them suitable for thresholding and electrical neuron emulation functions.
Moreover, volatile memristors can generate complex temporal dynamics
similar to higher-order neuronal behaviors. Unlike transistor-based hard-
ware that requires multiple devices to simulate biomimetic functions,
memristors inherently embody simple biomimetic functions, resulting in
more efficient bio-inspired computing systems.Although the exploration of
memristors with higher-order complexity is in its early stages, recent
research has indicated the potential to engineer qualitatively complex
behaviors (particularly biomimetic) from electro-physical-chemical pro-
cesseswithinmemristors. This capability allows a singlememristordevice to
replace hundreds or thousands of transistors, resulting in enhanced system-
level complexity and energy efficiency, which is a fundamental principle
underpinning complexity in computing, especially in the field of bio-
inspired computing.

The growing interest inmemristors stems from theirmultidisciplinary
potential across various applications, including neuromorphic computing,
data storage, and advanced signal processing. Incorporating 2D materials
into the design of memristors is particularly promising due to their unique
properties, which can enhance device performance and expand operational
capabilities. However, a review of the literature over the past decade reveals
the concerning trend that only a limited number of 2Dmaterials, primarily
h-BN and MoS2, have been extensively studied for their potential in

memristor technology beyond memory applications (Fig. 9a). While these
materials show promise in various domains, many other 2Dmaterials with
unique properties remain underexplored. This is especially notable in cri-
tical areas such as encryption, TRNG, and PUFs, which are increasingly
important for secure data transmission and hardware security. The
underutilization of these materials presents significant opportunities for
further research, as portrayed in Fig. 9b. For instance, TMDCs and other 2D
materials could introduce novel mechanisms for resistance switching,
potentially leading to devices with enhanced performance metrics, such as
lower energy consumption, faster switching speeds, and improved scal-
ability. Expanding investigations into these lesser-explored materials could
unlock new functionalities that enhance the impact of memristor technol-
ogy in emerging fields, facilitating the development of advanced applica-
tions that leverage the unique properties of various 2Dmaterials anddriving
innovation in both academic and industrial domains.

Integrating technologies for computing advancement
Large-scale sensor arraysmust be integrated intomodern silicon technology
to enable practical in-sensor computing. As information processing
demands increase across various fields, in-sensor computing requires more
specialized units. Hence, for efficient and compact processing systems,
sensor units, array layouts, and peripheral circuits should be co-designed.
One challenge is integrating sensors with selective cells, especially in large

Table 3 | Summary of memristor devices based on 2D materials for in-memory and in-sensory computing

Device structure Switching type Stimulus type Conductive states Simulation Applications Ref.

Au/Ti/h-BN/Cu Bipolar Electric - - Neuromorphic computing 134

Ti/Au/MoTe2/Ti/Ni Bipolar Electric - - Neuromorphic computing 197

Al/AlOx/ Graphene Bipolar Electric 60 - Neuromorphic computing 198

Bi2O2Se three terminal memristor Bipolar Electrical 10 Yes Neuromorphic computing. 199

Al/MoS2/MoOx/ ITO Bipolar Electric + Optical 4 - In-sensory computing 200

Au/TiOx/Gr/Au Bipolar Electric - - 1S1M 201

Cu/MoS2/Au Bipolar Electric 20 - Neuromorphic computing 126

MoS2/hBN 1T1R Hybrid Electric 30 - In-memory computing 202

Al/AlOx/graphene/SiO2 Hybrid 1T1R Electric - - Gate controlled memory 71

Ag/WO3-x/WSe2/Au bipolar Electric 30 - Neuromorphic computing 196

Ti/Au/MoS2/Ti/Au Bipolar Electric 100 - In-memory computing 203

Au/MoS2/Au/SiO2/Si Hybrid Electric 10 - In-memory computing 29

Au/WO3-x/Ti Bipolar Electric 50 Yes In-memory computing 204

Au/ LixMoS2/Au/SiO2/Si Hybrid Electric 100 - In-memory computing 205

Au/SnOx/SnSe/SnOx/Au Bipolar Electric 3 Yes Multi-level computing 206

Au/BN/G/BN/Ag Bipolar Electric 3 - In-memory computing 32

Ti/Au/MoS2/Ti/Au/SiO2/Si Hybrid Electric + Optical - - In-sensory computing 207

Au/MoS2/h-BN/AU Bipolar Electric + Optical - - In-sensory computing 208

Cu/h-BN/Au Bipolar Electric - - In-memory computing 134

Ti/PdSeOx/PdSe2/Au Bipolar Electric 100 Yes In-memory computing 106

Au/WSe2/Wox/Au Bipolar Electric - - In-memory computing 38

Au/MoS2/Au/SiO2/Si - Electric 100 Yes In-memory computing 138

Au/h-BN/Au Bipolar Electric - Yes In-memory computing 135

Au/h-BN/Ti Bipolar Electric 100 Yes In-memory computing 8

Ag/MoS2/Pt Bipolar Electric 20 Yes In-memory computing 140

Au/HfSe2/Au Bipolar Electric 100 Yes In-memory computing 80

Ag/CeO2/MoS2/ITO Bipolar Electric + Optical 1000 Yes In-sensory computing 147

Au/SnS/Au - Optical - Yes In-sensory computing 95

CuTe2/HfO2/Pt Bipolar Electric - Yes Encryption & computing 161

Au/Mos2/Au - Electric + optical - Yes Crypto engines & sensor security 168

Ag/h-BN/Ag Bipolar Electric - - TRNG 169
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arrays. Furthermore, the structures must be compatible with high perfor-
mance. Typically, individual sensors are accessed element by element. A
one-transistor-one-sensor configuration enables access by activating the
corresponding transistor. Two-terminal selectorswith intrinsic nonlinearity
are smaller and better for high-density integration. However, using three-
terminal transistors instead improves reliability at the cost of density. Thus,
the trade-off between performance and integration density is critical. Array-
level design depends on the desired computing functions. Unlike conven-
tional layouts, in-sensor computing, layouts must consider the interactions
between environmental stimuli and sensing units. Preliminary computing
functions in the sensor array reduce the need for certain peripheral units.
However, array outputs still need complex processing for tasks such as
object recognition, requiring both neural networks and analog-to-digital
converters. The number of outputs equals the sensory nodes, increasing the
need for post-processing units as the array size grows. Interconnecting
sensors and physical coupling can reduce the number of output nodes.
Moreover, multiplexing strategies can further decrease the number of post-
processing units, although this would cause slower information processing.
Shared interconnections improve precision by reducing resistance variation
at the nanoscale. These trade-offs must be carefully considered based on
system requirements.

The convergence of memristors and transistors, particularly through
the integration of 2Dmaterials, is catalyzing significant advancements in in-
memory computing, in-sensory systems95, and neuromorphic computing135.
Memristors, which are known for their non-volatile resistance switching
capabilities, combinedwith the high electronmobility and tunable electronic
properties of 2D materials38,68, are enabling the development of hybrid
devices that offer enhanced functionality and performance. Transistor-
memristor integration facilitates the creation of compact, energy-efficient
circuits that are capable of bothdata storage andprocessing, reducing latency
and power consumption in computing systems38,68,135,138,179,180. In-sensory
applications benefit from the ability of these hybrid devices to mimic bio-
logical synapses, resulting in more efficient and accurate sensory data
processing95. Additionally, the neuromorphic computing domain is wit-
nessing transformative innovations because these integrated systems can
emulate neural networkswith greater precision, paving theway for advanced
AI applications that closely replicate human cognitive functions.

Challenges and opportunities
Memristors constructed from2Dmaterials represent a rapidly evolving area
with significant potential for a range of applications beyond conventional
memory devices, similar to their traditional counterparts. Recent research
has resulted in significant performance improvements by focusing on the
synthesis of memristive arrays, which are critical for future computing
systems88,135,181,182. However, achieving high-performancememristive arrays
poses significant challenges. One critical hurdle is the downsizing process.
Reducing the thickness of these materials is essential for lowering the
switchingvoltage ofmemristors,which in turn reduces energy consumption
in low-power in-memory computing applications. However, ultra-thin 2D

materials often experience greater thickness variations, causing increased
fluctuations in switching voltage. Additionally, thinner layers are more
prone to forming wrinkles and microscale holes, which can significantly
impact the effective thickness of the switching medium and result in short
circuits, decreasing the yield. Minimizing device feature sizes is essential for
constructing high-density memristor crossbar arrays, which are crucial for
complex neural networks. However, as feature sizes shrink, the operating
voltages could increase due to the challenges posed by the absence of defect
paths or grain boundaries. This issue underscores the gap between current
device capabilities and the requirements for integrating advanced CMOS
technology135,182,183.

Integrating memristors with access selectors or transistors to form
extensive crossbar arrays introduces additional complexities, such as ele-
vating the switching voltage and device latency, affecting energy efficiency
and operational speed. For example, when selectors and transistors are
activated, they function as resistors, requiring a higher voltage across the
devices to have the same RS parameters as standalone memristors. Fur-
thermore, the forming voltage of memristors based on 2D materials typi-
cally exceeds 1 V, limiting their compatibility with advanced CMOS
transistors. Moreover, the difference between the reset current of memris-
tors and theON-state current of selectors or transistors requires larger areas
for these components, which affects scalability. Another major challenge is
ensuring the precise control of D2D variations and switching mechanisms
within these arrays. Therefore, obtaining a high degree of controllability is
essential, as variations in devices directly affect both yield and cost-
effectiveness. This means that achieving reliable features in 2D-based
memristors is difficult and demands precise control over the switching
parameters and I–V characteristics.

There is a deficiency in clear quantitative models for certain switching
behaviors, such as low retention time and high forming voltage. Identifying
the key factors that contribute to device variations and developing effective
control strategies can be achieved by combining experimental researchwith
theoretical analyses and simulations. Training synapses remains a sig-
nificant challenge with current technology. To enable systems to learn and
adapt effectively, it is essential to achieve high accuracy and minimize
programming errors, broadening the potential applications of neuro-
morphic computing. Recently developed crossbar arrays have mainly sup-
ported synapse inference and software-based training, with only a few
efforts directed toward full-hardware online training.Obstacles suchasC2C
variations, discrepancies in writing and readingmargins across devices, and
endurance limitations hinder the achievement of high accuracy. These
issues also constrain the feasibility of online training, highlighting the need
for further research to develop reliable and efficient training mechanisms.
Memristors also hold promise for applications in security devices and
sensory computing, although these domains introduce additional chal-
lenges. In security devices, ensuring reliable and tamper-resistant data
storage is paramount. Here, memristors’ inherent non-volatility and
potential for high-density integration make them an attractive proposition
for secure data storage.

Fig. 9 | Overview of 2D materials applications.
a benchmarking of various 2D materials alongside
their respective applications: 1. Neuromorphic
computing, 2. In-sensory computing, 3. In-memory
computing, 4. Multilevel computing, 5. Encryption
data, 6. RNG/PUF, 7. Artificial Synapse, 8. CMOS
integration. b Schematic illustration of widely used
2Dmaterials in thememristor domain, emphasizing
their roles beyond traditional memory applications.
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Unfortunately, the variability in switching behavior and the sus-
ceptibility of 2Dmaterials to defects can result in vulnerabilities. Ensuring
robust and repeatable switching characteristics is crucial to prevent
unauthorized access and data corruption. In sensory computing, mem-
ristors can mimic synaptic functions, offering advantages for real-time
data processing and low-power operation. Nonetheless, achieving con-
sistent performance in diverse environmental conditions remains a
challenge. For example, variations in temperature and humidity can affect
the electrical properties of 2D materials, resulting in drift and reduced
reliability in sensory applications. Therefore, developing materials and
device architectures that maintain stable performance under varying
conditions is essential for practical implementation. Furthermore, inte-
grating memristors into complex sensory networks requires addressing
issues related to signal-to-noise ratio and interference. The small size and
high density of memristor arrays can worsen crosstalk and signal degra-
dation, negatively affecting the accuracy of sensory data processing.
Accordingly, advanced fabrication techniques and innovative circuit
designs are required to minimize these effects and enhance the overall
reliability and performance of memristor-based sensory systems. Con-
tinued research and development efforts are necessary to overcome these
hurdles and fully realize the capabilities of 2Dmaterials-basedmemristors
in advanced computing systems.

Future prospective
The field of 2D layered material memristors is poised for significant
advancements that extend their utility far beyond traditional memory
applications. The performance of 2D layered materials-based memristors
can be significantly enhanced by improving their speed, efficiency, dur-
ability, scalability, functionality, and application-specific optimizations.
These advancements have the potential to unlock new capabilities and
applications, resulting in innovative applications such as brain-like com-
puting, communications, sensing, and health (Fig. 10a–f). To fully unleash
the potential of 2D layered material memristors in device fabrication,
ongoing interdisciplinary research and collaboration will be essential. This
will involve integrating materials science, electrical engineering, computer
science, and neuroscience insights. By overcoming current limitations and
exploring new applications, 2D memristors could play a pivotal role in the
future of various technologies. In terms of applications, although 2D
materials have advanced neuromorphic systems and synaptic devices,
brain-like computing remains in its nascent stages. However, the thinness
and flexibility of 2D materials make memristors ideal for integration into
flexible and wearable electronics. Future research will probably involve
enhancing the mechanical durability and performance stability of these
devices, enabling innovative applications in smart textiles, health mon-
itoring devices, and flexible displays.

Fig. 10 | Future prospects of 2D layered materials-based memristors. a Human
body image. Adapted from ref. 209. bMemristor for healthmonitoring. Reproduced
with permission from ref. 210. c Brain chip. Reproduced with permission from
ref. 62. d Human visual system for sensing, memory, and computing. Reproduced

with permission from ref. 211. e Intelligent devices applied to the wrist. Reproduced
with permission from ref. 50. f Artificial skin. Reproduced with permission from
ref. 212.

https://doi.org/10.1038/s41699-024-00522-4 Review article

npj 2D Materials and Applications |            (2024) 8:83 21

www.nature.com/npj2dmaterials


Moreover, the unique properties of 2Dmaterial memristors can also
contribute to the development of ultra-low-power electronic devices,
resulting in advancements in portable and battery-operated devices that
will significantly extend their operational lifetimes and reduce energy
consumption. Additionally, the quantum mechanical properties of 2D
materials might be harnessed to develop quantum memristors, poten-
tially revolutionizing quantum computing capabilities. Furthermore, 2D
materialmemristors couldbe used in bioelectronic devices as an in-sensor
computing device for real-time monitoring of biological processes and
neural activity and targeted stimulation for therapeutic applications,
offering new treatments formedical conditions. Thesememristors would
also be suitable for environmental monitoring applications, with poten-
tial uses in pollution monitoring, climate change studies, and ecosystem
management.

The integration of 2D material memristors into smart infrastructure
systems presents another exciting avenue for development. Applications in
smart grids, intelligent transportation systems, and building automation
could enhance the monitoring and management of critical infrastructure,
improving overall efficiency, safety, and sustainability. In addition, the
integration of optoelectronics with memristor technology represents a
promising frontier. By combining optical signals with electronic memris-
tors, we can achieve significant gains in energy efficiency and expand the
capabilities of these devices. This hybrid approach allows for faster data
transmission and processing while also leveraging the advantages of light,
such as high bandwidth and low energy loss. Optoelectronic memristors
could facilitate advanced applications in neuromorphic computing,
enabling real-time processing of large datasets and enhancing the perfor-
mance of artificial intelligence and machine learning algorithms. As
research progresses, developing materials and devices that effectively
interface optical and electronic signals will be crucial. Innovations in 2D
materials, such as transition metal dichalcogenides and other semi-
conductors, may provide the necessary properties for this integration.
Ultimately, the convergence of optoelectronics and memristor technology
holds the potential to revolutionize computing paradigms, paving the way
for next-generation devices that are faster, more efficient, and capable of
addressing complex tasks across various fields.

Conclusion
This reviewprovides a detailed overviewof the development roadmapof 2D
materialmemristors and their expansion beyondmemory applications. The
practical application of memristor technology based on 2D layered mate-
rials remains in the early stages of exploration. 2Dmaterials offer an efficient
resistive switching mechanism based on the physical shape of the device.
Switching mechanisms generally involve processes such as ion movement,
phase changes, migration of vacancies, and the formation of conductive
filaments. In the review, we systematically discussed the effective use of 2D
layered materials-based memristors for neuromorphic computing, in-
memory computing, in-sensor computing, and hardware security. This
reviewcan act as a guide for ongoingdevelopment and is anticipated todrive
continuous breakthroughs and improvements in devices, architectures, and
algorithms, contributing to the anticipated progress in memristor-based
computing systems.
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The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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