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Irrigation profoundly impacts ecology and agricultural productivity, with irrigated areas varying across
regions and years. Interannual dynamicsof irrigation extent are lacking, particularly in humid regionsof
Europe. We analyzed the response of irrigated areas to drought conditions in areas equipped for
irrigation and used the derived relationships to estimate annual irrigated areas for 32 European
countries in the period 1990–2020. Interannual variability of irrigated areas varied notably, particularly
in more humid Northern and Western Europe. In most humid regions, irrigated area is larger in dry
years, whereas inmore arid regions like Spain, it is larger in wet years. The largest irrigated area across
Europe occurred in dry years 2003 and 2018 (11.93 and 11.77 million hectares), while the smallest is
estimated for thewet years 2002and2014 (10.71 and10.31million hectares). The findingsof this study
help to improve scenario development and water resources management.

Irrigation is a major measure of land use intensification and is crucial for
global food security1–3. In Europe, varying prevalence of irrigation exists,
influenced by the environment, cropping pattern, socioeconomics, popu-
lation, and water availability4. Mediterranean regions heavily rely on irri-
gation, accounting for 60–80%of total waterwithdrawal5, while irrigation in
Central and Northern Europe is supplementary to rainfall, accounting for
less than 1% of total water abstractions6. In dry years irrigation is important
for alleviating cropwater stresses during critical crop phenological phases to
ensure high productivity and meet crop quality requirements7. Agriculture
faces considerable challenges under projected climate change such as
increased temperature, shifting rainfall distribution, andmore frequent and
intensive extreme events like droughts, heat waves, and flooding8. These
changes have already reduced water resources in some regions, exacerbated
the vulnerability of agriculture, and widened the yield gap between irrigated
and rainfed agriculture9,10.

Water use for irrigation is determined by irrigation water volume
required per unit irrigated area and irrigated extent. The former factor can
be estimated by performing soil water balances and quantifying the water
volume needed to ensure that crop evapotranspiration is at the potential
level or a level minimizing drought impacts on crop yield11. Provided
accurate climate, crop management, and soil property data, process-based
models can effectively simulate variations in water use over time and space6.
Survey data have indicated that the extent of irrigated cropland exhibits
interannual variability, particularly in temperate zones, where varying cli-
matic conditions necessitate different irrigation intensities during the crop-
growing season12. However, understanding the dynamics in irrigated extent
at large scales remains limited due to constraints in observations and
investigations5. Accurately mapping irrigation areas is critical for managing
water allocations, understanding water budgets, and improving model

simulations13–15. Various global and continental irrigation extent databases
exist from farm structure surveys, literature reviews, and multi-source
remote sensing observations5,16–21.However, these datasets fail to capture the
evolving irrigationpatterns across Europe over extendedperiods, as they are
often limited to specific locations, covering only single years or short peri-
ods.Themost comprehensivedatabase providing survey-based information
is Eurostat22–24, but it provides data only for the years when farm structure
surveys or agricultural censuses were undertaken (about every three years).
Such absence of up-to-date annual irrigation extent data hampers the
analysesof historical and currentwater use patterns, aswell as predicting the
impact of projected future wet and dry conditions across Europe at an
appropriate spatial scale.

Filling spatial and temporal gaps in irrigation extent data can be
accomplished through three primary approaches: simple interpolation,
process-basedmodeling, and remote sensing observations. Remote sensing
combinedwith climate, land use, and crop cultivation information canmap
dynamicwateruse and irrigationextentbydetecting variations in vegetation
phenology, soil moisture, surface temperature, terrain, and elevation, or
visually identifying irrigation features such as surface water bodies and
center pivot schemes19–21,25,26. However, these methods come with con-
siderable uncertainties and biases stemming from prior hypotheses, image
classification strategies, and data sources, including issues like mixed pixels,
misclassification, cloud cover, data scale transfer difficulties, and time lags
between irrigation practices and actual observations14,27,28. In the context of
these challenges, remote sensing is considered relatively accurate in arid and
semi-arid regions15,27,29, whereas for humid and temperate regions such as
Western and Central Europe, results may deviate from ground surveys2.
This is mainly due to the difficulties in detecting slight irrigation signals in
humid areas, and the impacts of cloud cover on crop phenology detection.
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Moreover, Central and Eastern Europe underwent substantial changes in
irrigation extent around 1990 due to political and socio-economic factors30.
Unfortunately, the existing remote sensing products either do not cover
long-time periods or have substantial limitations in accurately mapping
irrigation in humid regions.

Simple interpolation is suitable for gap filling of time series for the area
equipped for irrigation (AEI) due to its relative stability over short time
periods. However, when dealing with the area actually irrigated (AAI),
simple interpolation may not be suitable since it fails to account for the
multifaceted factors affecting interannual variability in AAI such as the
different benefits of using irrigation in dry andwet years. For example, in the
Netherlands, the reported AAI was 62,190 hectares in the wet year 2002 but
202,260 hectares in the dry year 200624. Little is known whether such
observations can be generalized for other time periods and countries in
Europe. Since the European farm structure surveys were not undertaken in
the years 2003 and 2018, when large parts of Europe were affected by severe
drought, it is also not known how much these droughts contributed to
variations in AAI and how large total irrigated area has been in these years.

To improve the understanding of trends and interannual variability in
the extent of irrigated land, this study addresses the following research
questions: (1) What are the impacts of climate variability on the annual
extent of irrigated land across Europe for the period 1990 to 2020? (2) How
large is the difference of the irrigated area in wet and dry years across
Europe? (3) How large are differences in the estimated irrigated area when
considering the impacts of climate variability on irrigated area versus linear

interpolation (simple approach)of observations?Toanswer these questions,
we combined irrigationdata collectedbyEuropean-wide surveyswith a crop
drought indicator (CDI) simulated by the process-based global crop water
model (GCWM)31,32. Irrigated area estimated by this advanced approach,
will then be compared to those obtained via the simple approach of data
points obtained from surveys and with independent datasets available for
some specific years in the considered time period (Fig. 1).

Time series of areas equipped for irrigation
The total AEI of 32 countries had its maximum of 18.9 million hectares at
the beginning of the time series in 1990, declined to a minimum of 15.7
millionhectares in2011, and increased later again to16.7millionhectares by
2020 (Dataset 3 in Fig. 2). The regional hotspots of AEI remained consistent
over this extended time period, but trends varied across regions (Supple-
mentary A Fig. S1). In the first decade, a distinct pattern of AEI intensity
(percentage of AEI to total area) emerged with a notable western increase,
eastern decrease trend. For instance, Spain and France reported AEI
increases of 41% and 30%, while Bulgaria and Germany experienced
reductionsof 74%and57%(Fig. 2).During the seconddecade,AEI intensity
changes were primarily concentrated in the Central and Eastern regions
(Supplementary A Fig. S1). Apart from Poland, the countries in Eastern
Europe continued to experience decliningAEI intensity. In contrast, certain
Central European areas like the northern Balkan Peninsula, witnessed slight
increases, while AEI in other regions remained relatively stable. In the last
decade, AEI exhibited a considerable increase in regions around 50–55°N

Fig. 1 | Scheme of generating European long-term irrigation area dataset
(ELIAD). ELIAD provides subnational annual data on cropland areas equipped
with irrigation infrastructure (irrigable area, AEI) and areas actually irrigated (AAI)
for 32 European countries from 1990 to 2020. AAI/AEI × 100% is irrigation per-
centage, namely the fraction of AEI that is actually irrigated. GCWM is the global

crop water model32. CDI is crop drought indicator calculated using actual and
potential evapotranspiration simulated by GCWM31. EnS is the environmental
stratification of Europe. Nomenclature of Territorial Units for Statistics (NUTS) is a
statistical classification system; NUTS0 represents the national level, while the
subnational levels in this study correspond to NUTS1 or NUTS2.
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and the eastern Balkan Peninsula. The Scandinavian Peninsula and
northern Great Britain experienced decreases in AEI intensity, while other
western and southern regions maintained stable AEI intensity. It is worth
noting thatmost of the countries in Eastern Europe underwentAEI growth,
distinguishing this decade from the previous two.

Impacts of drought conditions on the use of irrigation
infrastructure
Linear regressions between CDI and reported irrigation percentage
(100%×AAI/AEI, around 5–8 sample years) are developed for estimating
annual irrigation percentage (Fig. 1). CDI emerges as a robust indicator for
capturing irrigation area fluctuations, with correlation coefficients (r)
between CDI and irrigation percentage between 0.50 and 0.75 for most
regions (Fig. 3, p < 0.05). The strongest correlations are found for humid
countries in Western Europe such as Belgium and the Netherlands, with
positive r-values larger than 0.75 (Fig. 3d, e, p < 0.05), indicating that irri-
gation percentage is higher in dry years. In Central and Eastern European
regions like Bulgaria, Slovakia, and Hungary, CDI-irrigation percentage
correlations are weaker (0.50–0.75, Fig. 3b, c, e), likely because other factors
than climate contributed considerably to AAI variability. Here, agricultural
economic water scarcity often stems from socioeconomic and political
factors rather thanphysicalwater scarcity33,34.Mediterranean regions exhibit
generally weaker CDI-irrigation percentage correlations than temperate
regions, particularly at the national level (Fig. 3a, e). Water scarcity, a pri-
mary driver in the Mediterranean, prompts adaptations frequently
impacting water utilization and resources, and agricultural practices5,35.
Spain and France show lower r-values at the national level, potentially
influenced by their extensive geographical coverage acrossmultiple climatic
zones. Notably, we found negative CDI-irrigation percentage correlations

for Spain, Cyprus, and Malta (Fig. 3a), possibly due to higher blue water
scarcity, constraining the use of irrigation in dry years. Besides, CDI and
irrigation percentage correlations are stronger when using smoothed AEI
time series for Denmark, Finland, and Hungary but stronger when using
reportedAEI for Bulgaria, Switzerland, andAustria (Fig. 3a–d), therefore no
clear preference can be determined for the superiormethod - using reported
or smoothed AEI for calculating irrigation percentage (details about irri-
gation area data generation are in Data and Method, Fig. 1).

AAI in dry and wet years and AAI differences using two
approaches
Considering the trends in AEI and the impacts of drought on the irri-
gation percentage, areas actually irrigated in the period 1990–2020 are
estimated (Fig. 1). The largest AAI was estimated for the dry years 2003
(11.93 million ha) and 2018 (11.77 million ha) (Dataset 6, Fig. 4a, b).
These years are characterized by drought in Central- and Western
Europe and relatively wet conditions in Southern Europe (except for
northern Italy in 2003, Fig. 5). The 2003 heatwave is considered a severe
event in European recent history, while strengthened circulation patterns
in 2018 caused drought in Central and Northern Europe36. AAI showed
positive anomalies in particular in the drought-affected regions in
Western- and Central Europe (Fig. 5c, d). AAI across the whole study
region was smallest in the wet years 2002 (10.71 million ha) and 2014
(10.31 million ha) (Fig. 4a, b). These two years are wet years in most parts
of Europe except the Baltic region (2002) and Spain (2014). AAI clearly
shows negative anomalies in most of the regions affected by wetness in
the growing season (Fig. 5a, b).

Differences in estimated AAI using the two approaches (Fig. 1) are
more noticeable in temperate and Northern European regions than in

Fig. 2 | Total irrigation area of six ELIAD datasets in 32 European countries and
national-level accumulated total AEI. a Total irrigation area of six ELIAD datasets
in 32 European countries. Accumulated national-level total AEI of (b) Southern-,
(c) Central and Eastern-, (d) Other Central and Eastern-, (e) Western and Northern-,
and (f) Other (with low AEI) European (EU) countries. “Others” in (b) is the sum of

AEI in other countries shown in (c–f). AEI data shown in (b–f) is from ELIAD
Dataset 3. AAI and AEI are irrigated and irrigable area, respectively. D1–D6 represent
Datasets 1–6 in ELIAD, and details for six datasets see the Data and Method section.
Malta (MT) and Cyprus (CY) were not shown in the Southern European subfigure due
to their small AEI values for better visualization.
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Fig. 3 | Pearson correlation coefficients (r values) between CDI and irrigation
percentage at the national and subnational levels for 29 European countries.
a Southern-, (b) Central-, (c) Eastern-, and (d) Western and Northern European
countries at the national level, and (e) for the entire study region at the subnational
level with significance levels. Data selected for creating ELIADDataset 6 is shown in
(e). RO1 and RO2 represent two time periods for Romania, i.e., before 2010 and after

2010; subnational data for Romania is shown only for the RO2 period. Details for
irrigation area datasets are explained in the Data and Methods section and Fig. 1.
Country abbreviations are shown in Supplementary A Table S1. Only 29 countries
are shown, because the AAI in Iceland is set as constant at 50 hectares, while no AAI
data for Luxembourg (LU) and Ireland (IE).
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Mediterranean regions (Fig. 6). Specifically, Spain and Italy exhibit the
smallest differences in estimated AAI between the two interpolation
methods, while the United Kingdom (UK) and the Netherlands show large
AAI differences. The advanced approach considering the impact of dry and
wet conditions on irrigation percentage exhibited more interannual varia-
bility in AAI compared to the simple approach.

Irrigation percentage and differences between AAI and
AEI time series
The subnational linear regression slope of 0.87 confirms the reliability of the
estimated irrigation percentage in reflecting reported information, while the
low R2 is primarily due to biases in Eastern and Western Europe (Supple-
mentary A Fig. S2). Over three decades, the coefficients of dispersion
(CVMnAD,Table 1)

37 forAEI in Southern andNorthernEurope ranged from
2–16% (excluding Malta), but 5–19% in the humid temperate regions of
WesternEurope. In contrast,many countries inCentral andEasternEurope
showed considerable AEI dispersion in the study period, even over 100%
(Table 1). This strong variability inAEI affected total AAI in these regions as
well and contributedmore to the total variability of AAI in the study period
than year-to-year variations caused by distinct climatic conditions (Fig. 4c).
The spatial and temporal patterns of AAI closely aligned with AEI (Sup-
plementary A Figs. S1 and S3), but AAI demonstrated more noticeable
interannual fluctuation as indicated by CVMnAD (Table 1). The average
irrigation percentage across the study region was 65%, with South Europe
showing the highest AAI and irrigation percentage (62%–89%), whilst
modestAAIdispersion ( ≤ 15%, excludingMalta). Spain stands outwith the
highest irrigation percentage of 89%. The Eastern region, strongly influ-
enced by trends in AEI, exhibited the most substantial AAI dispersion (can
be over 100%). Notably, Northern and Western regions showed high AAI
dispersion values (10%–50%), while their AEI dispersion coefficients were

less pronounced (5%–20%), suggesting a considerable impact of climate on
actual irrigation there.

Discussion
Ourfindings show that inmost parts of Europe, thepercentage ofAEI that is
really beingused for irrigation varies considerably betweenyearswithhigher
irrigation percentages in dry years. This means that drought has a double
effect on irrigation water requirements: increased irrigation water require-
ment per hectare of irrigated land and increased extent of irrigated land.
Assessments ignoring the impact of drought on irrigated area will therefore
underestimate irrigation water requirements in dry years considerably, in
particular in Western-, Central-, and Northern Europe with increases of
AAIofmore than35% indry years (Fig. 4).Aquantificationof this effectwill
only become possible when gridded time series of the extent of irrigated
crops become available.

Due to the limited availability of irrigation data, we used all records to
generate the dynamic irrigation area dataset. Assessment is achieved by
comparing our datasets with independent data, including Land Use/Cover
Area frame statistical Survey (LUCAS) and remote sensing products (see
Data and Methods). Datasets using the advanced approach and farm
structure survey results (Fig. 1) exhibited moderate agreement of the irri-
gation percentage with results of the independent LUCAS survey (Fig. 7).
Despite goodagreement inWestern (except for Swedenand theUK in2018)
and Mediterranean regions, irrigation percentage was larger in our dataset
compared to observations in LUCAS for Central and Eastern Europe,
revealing anomalies in these regions like Poland and Bulgaria. This differ-
ence may be caused by the specific setup of the LUCAS campaign in which
sites are visited only once per year, potentially missing irrigation events in
other periods of the season. Farm structure surveys provide a more com-
prehensive view of year-round irrigation practices. Mediterranean areas

Fig. 4 | Relative AAI anomalies and accumulated AAI across 29 European
countries. a Relative AAI anomalies in 29 European countries at the national level.
Accumulated national level total AAI of (b) Southern-, (c) Central and Eastern-, (d)
Other Central and Eastern-, (e) Western and Northern-, and (f) Other (with low
AAI) European (EU) countries. AAI data is from ELIAD Dataset 6 which is

considered our best guess. Details for calculating the relative AAI anomalies are in
the Data and Methods section. “Others” in (b) is the sum of AAI in other countries
shown in (c–f). no AAI data for Luxembourg (LU) and Ireland (IE).Malta (MT) and
Cyprus (CY) were not shown in the Southern European subfigure due to their small
AAI values for better visualization.
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Fig. 5 | Subnational relative AAI anomalies and CDI values for wet and dry years
in Europe. Subnational relative AAI anomalies in the years (a) 2002, (b) 2014, (c)
2003, and (d) 2018. Subnational CDI in the years (e) 2002, (f) 2014, (g) 2003, and (h)
2018. These four years are identified from the anomalies of relative AAI in Fig. 4a.
Years 2002 and 2014 are identified as wet years, while 2003 and 2018 are identified as

dry years for Europe. Red indicates the AAI in a specific year is higher than the
expected AAI from the AAI smooth trendline, while blue indicates the lower con-
ditions in (a–d). AAI is from the ELIADDataset 6. CDI in green indicates the specific
year is wetter than the long-term reference year (1986–2015), while CDI in orange
indicates dryer conditions.
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necessitate regular irrigation due to hot and arid climates38, promoting the
transition tofixed and efficient irrigation systems like drip irrigation, readily
documented during on-site surveys. In contrast, the Eurostat 2010 survey
found over 90% of Bulgarian farmers predominantly utilized surface irri-
gation, characterized by substantial water requirements. Such infrequent
irrigation application is often underrepresented in one-time on-site surveys.
Notably, the 2018 irrigation solely derived from our estimate without farm
structure surveys, closely aligns with LUCAS data for most countries (1:1
line, Fig. 7), affirming the reliability of our datasets in most European
regions.

The comparison to the remote sensing GIAM (Global Irrigated Area
Map) (2000) product in AAI intensity revealed a considerable difference
(SupplementaryAFigs. S4 and S5). GIAMexhibited higherAAI intensity in

countries like the Netherlands and Romania, possibly due to neglecting the
irrigation fraction within each pixel, especially in areas with mixed features
like fragmented farmlands and forests due to the coarse spatial resolution of
the imagery16,39,40. The comparison to GRIPC (Global Rain-fed, Irrigated,
andPaddyCroplands) (2005)19 showedhigh consistency,while our data can
detect smaller irrigation areas inCentral andEasternEurope.GMIE (Global
Maximum Irrigation Extent) omitted regions with high irrigation intensity
like parts of France and the Iberian Peninsula, due to the exclusion of
permanent and fodder crops21. Overall, various datasets effectively identify
irrigation hotspots. However, remote sensing has limited capability in
detecting irrigation in Central and Eastern Europe, whereas the AAI in
Western Europe shows noticeable discrepancies compared to our dataset.
Remote sensing products, commonly derived from thermal, optical, and

Fig. 6 | Differences of AAI using simple and advanced methods and AAI in two
countries with high and low differences. aDifferences of AAI using simple (ELIAD
Dataset 2) and advanced (ELIADDataset 6)methods at subnational levels in Europe.
Estimated AAI using simple and advances methods for (b) Spain (ES) and Italy (IT)
with low AAI differences, and (c) the Netherlands (NL) and the United Kingdom
(UK) with high AAI differences. The AAI difference for each subnational region is

calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 AAIsimi � AAIadvi

� �2
q

=½0:5× AAIsim þ AAIadv
� ��; darker

green indicates higher values, signifying higher disparities in estimated AAI between
simple (AAIsim) and advanced (AAIadv) approaches; i is the sequence of year;
excluded are AAI estimated using extrapolation, and specific time periods for AAI
differences calculation are detailed in Supplementary A Table S1.
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microwavedata, encounter challenges in capturing irrigation in regionswith
diverse crop development stages, especially in areas with mixed crop types
and lushnatural vegetationwithhumid climates15,41. Thermal information is
less responsive to irrigation signature in humid regions due to reduced
evaporative demands. Microwave sensitivity decreases with slight soil
moisture differences in rainfed and irrigated cropland, particularly in areas
with drip irrigation and proximity to water bodies27.

Explaining differences between reported AAI data and estimated
cropland area actually irrigated is challenging. These differences are
attributed to data collectionmethodologies, objectives, and the potential for
systematic over- and underresporting39,42. For instance, potential reasons for
differences include consideration of water availability in defining AEI for
Austria, andaverage conditions for theperiod2008–2010used in thePoland
2010 Agricultural Census. Reported irrigation data show differences in data
availability, with Southern Europe having extensive records, while central
and northern regions face limited information; pre-2000 data scarcity
amplifies uncertainties regarding earlier periods. Regarding the irrigation
reference period, we assumed July and August as high-irrigationmonths to

alleviate dry and hot conditions experienced by crops, excluding irriga-
tion for winter crops. Determining irrigation reference years is challen-
ging in countries with surveys conducted in June and early July, such as
Slovenia, Poland, Norway, and the UK. Testing different reference years
(Supplementary B) helps alleviate potential uncertainties. Besides, data
filtering has been made for evident outliers in reported data (Fig. 1), like
abrupt variations in AEI values for the UK in Eurostat (Supplementary
Data C1).

Three main factors in our advanced approach affect AAI estimation
(Fig. 1). AEI filtering thresholds and smoothing are crucial since AAI esti-
mation relies on correlations ofCDIwith irrigationpercentage. AAI trend is
determined by AEI, whilst CDI influenced interannual variations of AAI.
However, CDI has inherent uncertainties and limitations stemming from
input data sources, model structure, and assumptions made in the
GCWM32. Notably, CDI calculation relies on static irrigated and rainfed
crop information in MIRCA2000 (global Monthly Irrigated and Rainfed
Crop Area around the year 2000) dataset17, introducing uncertainties for
characterizing climate conditions over the extensive time period, during

Table 1 | Summary of irrigation extent of each country for the period 1990–2020

Regions NUTS0 TA (103 ha) Mean
AEI (103 ha)

Mean
AAI (103 ha)

Mean AAI/
Mean AEI

AEI CVMnAD (%) AAI CVMnAD (%) Irrigation
contribution (%)

All - 488942 17112 11143 65.1 5.9 2.7 51.2

Southern CY 924 42 29 70.5 7.4 7.7 75.5

EL 13183 1437 1211 84.3 8.8 8.6 64.1

ES 50602 3432 3052 88.9 6.4 6.6 64.1

FR 63837 2630 1641 62.4 3.4 4.9 36.6

IT 30068 3866 2592 67.0 2.0 2.8 38.4

MT 32 2.6 2.3 86.9 36.4 36.5 76.0

PT 9200 673 520 77.3 15.8 14.8 65.8

Western BE 3066 26 8.0 31.2 15.7 48.2 15.3

CH 4129 52 37 70.6 5.4 17.4 3.2

NL 3551 466 167 35.9 11.8 36.0 15.4

UK 24481 221 129 58.3 18.9 30.0 25.9

Central AT 8393 108 39 36.5 9.7 12.7 25.2

CZ 7888 77 36 46.6 73.4 77.0 21.1

DE 35777 685 372 54.4 17.7 24.6 24.6

HR 5663 22 14 61.1 38.9 38.2 33.6

HU 9302 253 109 43.1 14.6 23.1 35.6

SI 2027 6 2.7 49.2 23.1 27.3 10.1

SK 4903 158 52 32.7 25.8 35.4 31.1

Northern DK 4311 428 258 60.3 7.0 11.9 9.5

FI 33796 83 11 13.2 4.7 25.4 9.3

IS 10266 0 0 - - - -

NO 32393 108 47 43.3 13.2 27.5 7.6

SE 44991 150 48 32.3 8.4 10.8 17.0

Eastern BG 11098 329 214 64.9 144 142 39.7

EE 4537 3 1.9 71.8 103 105 12.4

LT 6490 9 4.8 55.4 76.5 100 12.2

LV 6460 3 2.3 83.7 326 333 16.7

MK 2544 128 83 64.9 5.3 5.1 49.2

PL 31192 233 80 38.6 36.4 45 20.5

RO 23839 1482 369 24.9 112 109 40.0

The total area (TA) in eachcountry is derived fromNUTS2010data inEurostat. AAI is area actually irrigated. AEI is area equipped for irrigation. AAI/AEI is irrigation percentage, calculatedby thepercentageof
AAI to AEI. AAI is from our generated European Long-term Irrigation Area Dataset (ELIAD), Dataset 6; AEI is from ELIAD Dataset 3. CVMnAD is the coefficient of dispersion based on the mean absolute
deviation around themedian (MnAD)37; A high CVMnAD value indicates a high degree of dispersion. The irrigation contribution is calculated by CWUB/(CWUB+CWUG), representing themean contributions
of irrigation to total crop water requirement; CWUG and CWUB are green and blue water use (m3) of irrigated crops using the global crop water modeling31,32, respectively. NUTS0 codes are described in
Supplementary A Table S1.
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which the changes of crop cultivation, patterns, and extents due to various
factors like urbanization, economic development, political influences, and
climate change10,43,44. A potential improvement is allocating reported irri-
gation extent to different crops, and then filling temporal irrigation gaps
based on continuous crop cultivation information, but this requires large
effort and introduces new uncertainties related to disaggregation strategies
and crop cultivation extent. The SPAM (Spatial Production Allocation
Model) dataset provides global crop-specific irrigation area approximately
every 5 years since 200045; however, its irrigation information is derived
from GMIA v5.0 (Global Map of Irrigation Area) AEI data with a fixed
reference year of 2005. Lastly, data from some regions with the same
environmental condition (EnS zone46) orupper-level administrative unit are
aggregated to establishmore robust correlations betweenCDI and irrigation
percentage when irrigation information of individual regions is insufficient,
so AAI estimation is influenced by expert comprehensive judgment applied
to the data aggregation from subnational regions (SupplementaryData C2).
Determining the best aggregation strategy is challenging, especially when
multiple eligible subnational regions exist.

We consider in our study the impact of climate on irrigation percen-
tage. Nevertheless, irrigation percentage is influenced by various other
factors, and climate importance may change over time and across regions.
Freshwater availability is the prerequisite, and regions heavily reliant on
irrigationmay face a high probability of water scarcity resulting from severe
or frequent drought10. Irrigation decision-making is dynamic, influenced by
crop rotations, fallow periods, climate variability, and economic factors;
rising crop prices often drive farmers to expand irrigation for better
yields15,47. Besides, farm size, infrastructure development, innovations in
crop cultivation and irrigation systems, and subsidy policies also play roles
in water management35,48. Nonetheless, climate conditions display strong
correlations with irrigation percentages in temperate regions. This bolsters
the credibility of our datasets in suchhumid regionswhere other approaches
such as remote sensing observations have usually posed considerable
challenges.

Data and Methods
AEI (in hectares) is the extent of agricultural land and pastures (excluding
kitchen gardens and crops under greenhouses) equipped with irrigation
systems, regardless of actual irrigationpractices;AAI (in hectares) is the area
that received artificial water supplies at least once a year to alleviate drought
stress. The irrigation percentage (0–100%) is the percentage of AEI that is
actually irrigated (100%×AAI/AEI). Irrigation intensity is the percentage of
the total area of a specific region that is irrigable or irrigated.

The European long-term irrigation area dataset (ELIAD, Supple-
mentary Data D) generated in this study is referred as the dynamic dataset,
emphasizing its superior temporal resolution (annual) compared to the
majority of current irrigation area datasetswhichare typically updated every
3–5 years or refer to specific years. The main input data include AAI and
AEI primarily reported by Eurostat22–24 (denoted as reported AAI and AEI,
about 5–12 sample years), annual CDI computed with GCWM31,32, the
Environmental stratification of Europe (EnS), and nomenclature of terri-
torial units for statistics (NUTS) zones49 (Fig. 1). Data processing followed
the NUTS zones from Eurostat (Supplementary A Fig. S6), same as the
classification standard of reported irrigation data. Specifically, all data were
initially segregated by country (NUTS0), followedby the processing for each
subnational unit within each country. For the UK, Germany, and Ireland,
datawereprocessedat theNUTS1 leveldue to limiteddata availability;while
for all other countries, data were processed at the NUTS2 level. NUTS1 and
NUTS2 are referred to as subnational levels (239 subnational units in total).
Considering data availability, 32European countries assigned tofive regions
are included in ELIAD (Supplementary A Table S1). EnS is employed to
categorize subnational units into 13 zones based on climate and topography
conditions46. Details on EnS determination for each subnational unit are in
Supplementary A Fig. S6. The EnS and NUTS classifications aim to
aggregate data from subnational units with similar environmental condi-
tions or the same upper-level administrative unit to establish robust CDI-
irrigation percentage correlations, when their individual reported irrigation
information is insufficient. This data aggregation strategy was based on

Fig. 7 | Irrigation percentage comparison between
LUCAS and ELIAD datasets. Data comparison in
the years (a) 2009, (b) 2012, (c) 2015, and (d) 2018.
The irrigation percentage (AAI/AEI × 100%) is
calculated by the percentage of AAI using the
advanced approach (ELIADDataset 6) to smoothed
AEI (ELIAD Dataset 3); calculations of LUCAS
irrigation percentage see the Data and Method
section.
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expert judgment, comprehensively considering the correlation coefficients
and significance levels betweenCDI and irrigation percentage (details are in
Supplementary Data C2).

The generation of dynamic AAI and AEI datasets utilized both simple
and advanced approaches (Fig. 1). The simple approach employed linear
interpolation to fill in temporal gaps in reported AEI and AAI, resulting in
Datasets 1 and 2, respectively. Dataset 3 (smoothed AEI) was produced
using the advanced approach, which entailed filtering reported AEI and
subsequently applying spline interpolation to the filteredAEI. The dynamic
AAI generated by using the advanced approach relied on the time-series of
AEI, and linear regression between CDI and irrigation percentage. Two
strategies were implemented for calculating irrigation percentage, resulting
in Datasets 4 and 5. The best guess of AAI estimate from Datasets 4 and 5
createdDataset 6. Datasets 1 and 2, generated by using the simple approach,
adhered completely to the available reported values, while the other four
datasets produced using the advanced approach exhibited partial disparities
from the reported data.

Irrigation area data sources
The AAI and AEI data, primarily originate from Eurostat (accessed on
March 10, 2023), national official statistics, historical irrigation dataset18,
and FAO Aquastat (accessed on July 01, 2023). Eurostat data is prioritized
for its consistency and extensive records from farm structure surveys. If
Eurostat data is unavailable, other datasets are utilized.When discrepancies
arise between Eurostat and alternative sources, priority is given to Eurostat
provided it doesnot exhibit conspicuous errors. For example, theAEI values
for 2009 from Croatia national statistics (5219 ha) did not align with those
provided by Eurostat (14490 ha). However, in subsequent years like 2012
and 2015, Eurostat reported AEI values of 13430 ha and 16070 ha, respec-
tively, so we utilized the Eurostat data for 2010. In the case of the UK, AAI
andAEI reported by Eurostat for the year 2002were identical, indicating an
irrigation percentage of 100%. Considering data from other years, we
retained these values for AEI. Besides, Irrigation data are reported in
Eurostat in intervals of twoor threeyears,with considerable data gaps before
2000, especially forAAI. Specific sources of reported irrigation data for each
region are detailed in SupplementaryATables S2 and S3, and details of data
processing are in Supplementary C. For consistency in time-series com-
parison, the NUTS2010 regional subdivision was used for mapping.

The reference periods of reported irrigationdatawere defined based on
the information contained in the metadata of the farm structure surveys
(SupplementaryATable S4, SupplementaryB). For regionswhere irrigation
information was recorded 12 months before the survey date, we assumed
that irrigation practices primarily occurred during crop growing periods
highly susceptible to drought or heat events, particularly in July andAugust.
For example, in the case ofGermany, farmstructure surveydata reported for
2010 captured irrigationpractices in the period 12months beforeMay 2010,
so the reference year for Germany was set to 2009 instead of 2010. For
countries where surveys were conducted in early July and June, such as
Slovenia, Norway, Poland, and the United Kingdom, we examined the
relationships between year-specific CDI and irrigation percentage to
determine the appropriate irrigation reference year. A correct reference year
is in particular relevant when correlating reported irrigated area with
drought information obtained from GCWM.

Crop drought index (CDI)
The global crop water model - GCWM31,32 was employed to compute crop
water use (CWU, m3) based on a daily soil water balance considering eva-
potranspiration, precipitation, runoff, and irrigation. The CWU includes
green (CWUG) and blue crop water use (CWUB). CWUB is the amount of
evapotranspiration on cropland stemming from irrigation; CWUG is the
fraction of in-situ rainfall that infiltrates into the soil and is available for
crops. For irrigated crops, the crop evapotranspiration is assumed at the
potential level (PETc, mm day–1) which is the maximum daily evapo-
transpiration of crops under healthy andwell-watered conditions, impacted
by specific crop type and phenological phases of crops. PETc is calculated by

multiplying reference evaporation (ET0, mm day–1) with a crop coefficient.
The GCWM adopts the FAO Penman-Monteith method50 to calculate
ET0. CWUG of irrigated crops is set to the actual evapotranspiration of
crops (AETc), which would be observed without irrigation. CWUB of irri-
gated crops is set to the difference between PETc and its CWUG. CDI is
calculated as

CDI ¼ 1� CWUG Y=ðCWUG Yþ CWUB YÞ
CWUG LT=ðCWUG LTþ CWUB LTÞ ¼ 1� AETc Y=PETc Y

AETc LT=PETc LT
ð1Þ

Where Y is the specific year Y; LT is the reference time period
1986–2015;AETc_Y is the actual evapotranspirationof irrigated crops in the
year Y, and AETc_LT is the average actual evapotranspiration of irrigated
crops for the period 1986–2015. For CDI calculation, the annual total of
CWU, AET, and PET for all 26 crop groups was computed. CDI reflects
therefore the drought condition in a specific year compared to the drought
condition in the reference period 1986–2015. Positive valuesofCDI indicate
that the conditions in the yearY are dryer than on average in the long-term
reference period, whereas negative CDI values indicate wet years.

The spatial resolution of GCWM simulation results is 5 arc min.
GCWM inputs include the cropping pattern and cropping season, climate,
and soil conditions. Monthly growing areas and cropping seasons were
obtained from the MIRCA2000 dataset17, covering the growing area of 26
crop classes (all major food crops, cotton, and other unspecified perennial,
annual, and fodder grasses) and their corresponding growing period from
the start of cultivation to harvest months in the year 2000 (center of refer-
ence period), distinguishing irrigated and rainfed crops. MIRCA2000
represents multiple-cropping systems and maximizes the agreement with
national and subnational statistical surveys. The gridded daily climate and
soil data are derived from ERA5 global reanalysis51 and ISRICWISE30sec
v1.052, respectively. The gridded CDI was transferred to NUTS levels by
calculating the harvested area weighted average values of CDI for all pixels
within each NUTS unit.

Developing AEI time series
The simple approach for developing theAEI time series involved employing
linear interpolation of the reported AEI (about 10–12 sample years, Fig. 1
and SupplementaryATable S2). For instance, if AEI valueswere reported in
2010 and 2013, those for 2011 and 2012 were estimated using the linear
interpolation between data in 2010 and 2013. To extrapolate AEI data prior
to and after the years for which AEI values were available, the values from
thenearest yearwereutilized. For example, if the earliest reportedAEIwas in
1995, AEI for the years 1990–1994 was assumed to be the same as that for
1995; similarly, if the latest reported AEI was in 2016, AEI for 2017–2020
was assumed to be the same as that for 2016. This approach resulted in the
development of Dataset 1.

However, AEI change is expected to be a gradual trend rather than
abrupt fluctuations, as irrigation facilities do not tend to disappear or
reappear suddenly within short periods. Nevertheless, reported data reveals
that some AEI values undergo notable and abrupt variations such as in
Austria and the UK, possibly due to inconsistencies during data collection
and statistical processing, as well as the influences of AEI definition. For
example, the AEI definition in Austria considers irrigation equipment and
water resource availability; Poland neglected the farmland with a size of less
than20 ha; SwitzerlanddefinedAEI as irrigated area in thedry year 2006.To
alleviate this issue, the advanced approach – data filtering and spline
interpolation – is adopted for generating annual AEI time series (Dataset 3,
smoothed AEI). We applied a filter to exclude only those AEI values that
were lower than expected. Specifically, the reported AEI is filtered using the
following approach:

AEIexpect;i ¼ aiþ b ð2Þ

γ ¼ k � AEIexpect;i ð3Þ
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Where AEIexpect, i is the expected AEI in the year i. The coefficients a
and b are determined based on the AEI values from the preceding and
subsequent years. We conducted tests on k ranging from 0.70 to 0.95, with
increments of 0.05. The default coefficient k is set to 0.85 after visually
inspecting with a particular focus on regions experiencing notable AEI
changes, and ensuring an adequate number of AEI records for spline
smoothing. Generally, for subnational regions within a country, their k
values are assumed to be the same. However, due to AEI data features (such
as impacts by historical factors in Central and Eastern European countries)
and the limitation of data availability, the k values of these NUTS units were
adjusted. The γ is the threshold for AEI filtering; the AEI value in the year i
will be filtered if it is lower than γ. Details of generating dynamic AEI
datasets are shown in Supplementary Data C1.

Following the AEI data filtering, the spline interpolation is conducted
to obtain smoothed AEI (Dataset 3) using the smooth.spline function in R
4.2.0. In this smooth function, the parameter spar is the smoothing para-
meter that controls the degree of smoothness, with larger values leading to
smoother curves while smaller values result in more detailed curves. A
default value of 0.45 is used after several trials.

Developing AAI time series and calculating AAI anomaly
Our essential assumption is that the interannual variation of irrigation
percentage is influenced bywet and dry climate conditions characterized by
CDI. Therefore, the estimation of dynamic AAI data was established by
using the AEI time-series, and the correlations between CDI and reported
irrigation percentage as follows (Fig. 1):

AAIi
AEIi

%ð Þ ¼ β0 þ β1 ×CDIi ð4Þ

Where AEIi is the smoothed AEI in the year i (annual, 1990–2020,
Dataset 3); AAIi is the estimated AAI in the year i (annual, 1990–2020); β0
and β1 are coefficients (shown in Supplementary Data C2) calculated from
the ordinary least square linear regressions between CDI and reported
irrigation percentage (about 5–8 sample years). One strategy involved cal-
culating reported irrigationpercentage via thepercentage of reportedAAI to
reported AEI, adhering to the reported irrigation percentage, resulting in
Dataset 4 (Fig. 1).Another strategy calculated reported irrigationpercentage
via the percentage of reported AAI to smoothed AEI, aiming to mitigate
potential biases in the reported AEI from issues such as varying definitions
across regions, resulting inDataset 5 (Fig. 1).Dataset 6, representing the best
guess AAI, was derived from the comparison of Datasets 4 and 5 by eval-
uating their correlation values (r) between CDI and reported irrigation
percentage with corresponding significance levels, and the relative root
mean square error (RRMSE, ha) between estimated and reported AAI.
Generally, we prefer AAI estimated using the AAI/reported AEI strategy
(Dataset 4), unless the AAI/smoothed AEI strategy (Dataset 5) performs
obviously better (AAI selection for Dataset 6 is in Supplementary Data C2).
Above AAI Datasets 4–6 were generated using the advanced approach,
whileDataset 2was created through the simplemethod (the same as that for
AEI in Dataset 1) of the reported AAI.

Furthermore, due to the conversion of political systems in Eastern
European socialist countries, theypossessed a considerable number of large-
scale irrigation facilities in the early 1990s.However, these facilities gradually
ceased operation, leading to drastic changes in irrigation30. To establish
robust relationships betweenCDI and irrigationpercentage,weundertook a
temporal partitioning of irrigation data processing for Romania. This
involved separating the data into periods before 2010 reflecting declining
irrigation extent and after 2010 reflecting a partial rehabilitation after the
transition (Supplementary Data C2).

To show the variations in AAI time series across regions and identify
years with obviously higher or lower irrigated areas than expected, we cal-
culated the relative AAI anomalies. Specifically, the AAI time series derived
from the advanced approach (Dataset 6) underwent Min-Max

normalization, with values ranging from 0 to 1. Subsequently, spline
interpolation was applied to the relative AAI for each region to obtain the
smoothed trendline, using the smooth.spline function in R 4.2.0 with a spar
value of 0.45 (same as theAEI smoothing). The anomaly of relativeAAIwas
calculated as the difference between the smoothed trendline and the relative
AAI. Therefore, the anomalies of relative AAI represent the differences
introduced by considering the impacts of dry and wet conditions on AAI
(Fig. 4a and Fig. 5a–d).

Assessment of generated irrigation datasets
The assessment focuses on Datasets 3 and 6 - dynamic AEI from data
filtering and spline smoothing and best-guess AAI generated using the
advanced approach, as they provide annual dynamics and potentially more
accurate irrigation information, and these two datasets were recommended
for application. Given that all reported irrigation data were used for data
generation, this study utilized remote sensingproducts andLandUse/Cover
Area frame statistical Survey (LUCAS) data to evaluate the generated irri-
gation dataset.

The LUCAS surveydivided regions into 2 kmx2 kmgrids, conducting
a point-level field observation within each grid for the years 2006, 2009,
2012, 2015, and 2018, independent fromour datasets. To align LUCASwith
our data, we converted the point-level information into subnational levels.
The original LUCAS points were firstly filtered based on specific water
management (WM) series, including irrigation (1), potential irrigation (2),
drainage (3), irrigation and drainage (4), no visible water management (5),
and not relevant (8). We focused on WM codes 1–5, isolating irrigation-
related points (8) in farmland. Then, we confirmed the land use and cover
labels of these points were related to agricultural land use and covered
by crops.

Due to no available irrigation data in 2006 and limited irrigation
information in subnational LUCAS surveys, we compared our irrigation
areadatasetswith LUCASat the country level for the years 2009, 2012, 2015,
and2018.Countrieswith fewer than30 irrigable pointswere excluded. Since
converting LUCAS point data to irrigation extent was impractical, we
compared the irrigation percentage of two datasets. The irrigation percen-
tage for LUCAS data (AAI/AEI_LUCAS, %) is calculated as follows,

AAI=AEI LUCASð%Þ ¼ 100%× nirrigated=nirrigable ð5Þ

Wherenirrigated is the count of points that are irrigated, equal to the sum
of points categorized under WM codes 1 and 4; nirrigable is the count of
irrigable points, encompassing the sum of points underWMcodes 1, 2, and
4. The spatial distribution of LUCAS irrigable and irrigated points is shown
in Supplementary A Fig. S7.

Challenges arose in remote sensing-derived irrigation products due to
limitations in comprehensive datasets covering time and regions. Our
comparisons were conducted regionally or for specific time frames. We
chose three global remote sensing-derived irrigation area-specificdatasets—
GIAM16, GRIPC19, and GMIE21. While GIAM is exclusively derived from
remote sensing, GRIPC and GMIE incorporate survey data to some extent.
Details for the above remote sensing datasets are outlined in
Supplementary E.

Data availability
The ELIAD dataset, supplementary materials, and the data used for figures
and tables (Supplementary Data F) in the manuscript are available open-
access at https://doi.org/10.5281/zenodo.10715269.
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