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Research

There is considerable evidence of elevated 
mortality, and increasing evidence of increased 
morbidity, associated with heat waves and 
extreme hot weather conditions (Basu 2009; 
Basu and Samet 2002). Particular population 
subgroups are at increased risk of mortality 
during extreme heat, including the elderly 
(Fouillet et al. 2006; Medina-Ramon et al. 
2006), people of lower socioeconomic sta-
tus (Curriero et al. 2002; Naughton et al. 
2002; Rey et al. 2009), people who live alone 
(Naughton et al. 2002; Semenza et al. 1996), 
people with less education (Medina-Ramon 
et al. 2006; O’Neill et al. 2003), people of 
races other than white (O’Neill et al. 2003; 
Schwartz 2005; Whitman et al. 1997), peo-
ple with preexisting health conditions such as 
cardiovascular disease, diabetes, renal disease, 
nervous disorders, cerebrovascular disease, pul-
monary conditions, and mental health condi-
tions (Schwartz 2005; Semenza et al. 1996, 
1999; Stafoggia et al. 2006, 2008), people 
without access to cooling devices such as air 
conditioning (Chestnut et al. 1998; Curriero 
et al. 2002; Semenza et al. 1996), and peo-
ple in neighborhoods with less green space 
(Kilbourne et al. 1982; Tan et al. 2007).

Heat waves are projected to increase in 
frequency, severity, and duration in many 
parts of the world because of climate change 
(Meehl and Tebaldi 2004). Municipal inter-
ventions to prevent heat-related deaths have 
been shown to decrease mortality in subse-
quent heat events (Ebi et al. 2004; Fouillet 
et al. 2008; Naughton et al. 2002). There is 
some question, however, as to whether the 
most vulnerable populations are being reached 
by these interventions (Bassil and Cole 2010). 
Although there is an increased understanding 
by city governments of the need to have heat 
warning plans, they have also expressed their 
desire for more information to develop and 
implement such plans (Balbus et al. 2008; 
O’Neill et al. 2010).

Maps that identify which populations and 
areas within a city are most vulnerable to heat 
can help local governments allocate resources 
to the areas in greatest need (O’Neill et al. 
2009). Reid et al. (2009) created a national 
heat vulnerability index (HVI) to locate popu
lations vulnerable to heat at the submetro
politan level using variables associated with 
vulnerability in previous studies. Although 
others have created heat vulnerability maps 

for specific metropolitan areas (Johnson et al. 
2009; Lindley et al. 2006; Loughnan et al. 
2009; Rinner et al. 2009; Sister et al. 2009; 
Vescovi et al. 2005), the HVI is the only vul-
nerability map that is national in scope. The 
HVI suggests substantial variability in heat 
vulnerability across the United States as well 
as within metropolitan areas, but additional 
information is needed to confirm that higher 
rates of death and illness occur during abnor-
mally hot days in areas that the HVI identifies 
as more vulnerable.

People adapt physiologically and tech-
nologically to the climate in which they live 
(Kinney et al. 2008). Heat waves earlier in 
the summer can be more hazardous to health 
than those later in the summer (Anderson 
and Bell 2011). Therefore, we investigated the 
impact of days that were much hotter than 
normal, for a given location and time of year, 
on hospitalization and mortality rates. Our 
study addresses the extent to which areas with 
higher HVI values experience higher morbid-
ity and mortality on abnormally hot days.

This study is the result of a data link-
age project within the Centers for Disease 
Control and Prevention’s (CDC) National 
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Background: Extreme hot weather conditions have been associated with increased morbidity and 
mortality, but risks are not evenly distributed throughout the population. Previously, a heat vulner-
ability index (HVI) was created to geographically locate populations with increased vulnerability to 
heat in metropolitan areas throughout the United States. 

Objectives: We sought to determine whether areas with higher heat vulnerability, as characterized 
by the HVI, experienced higher rates of morbidity and mortality on abnormally hot days. 

Methods: We used Poisson regression to model the interaction of HVI and deviant days (days 
whose deviation of maximum temperature from the 30-year normal maximum temperature is at or 
above the 95th percentile) on hospitalization and mortality counts in five states participating in the 
Environmental Public Health Tracking Network for the years 2000 through 2007.

Results: The HVI was associated with higher hospitalization and mortality rates in all states on 
both normal days and deviant days. However, associations were significantly stronger (interaction 
p-value < 0.05) on deviant days for heat-related illness, acute renal failure, electrolyte imbalance, 
and nephritis in California, heat-related illness in Washington, all-cause mortality in New Mexico, 
and respiratory hospitalizations in Massachusetts. 

Conclusion: Our results suggest that the HVI may be a marker of health vulnerability in general, 
although it may indicate greater vulnerability to heat in some cases.
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Environmental Public Health Tracking 
(EPHT) Network in which researchers at 
the University of California–Berkeley (UCB) 
collaborated with public health professionals 
from EPHT programs in several states.

Materials and Methods
Our study compared associations between the 
HVI and daily rates of morbidity and mortal-
ity on abnormally hot days and other days in 
five states that joined the Academic Center of 
Excellence research project being run by UCB 
as part of the EPHT Network. Although the 
HVI was calculated only in areas where air 
conditioning prevalence data were available 
(Reid et al. 2009), the analysis presented here 
includes 1,205 ZIP codes in California, 392 
in Massachusetts, 20 in New Mexico, 119 in 
Oregon, and 212 in Washington that corre-
spond to approximately 71%, 79%, 7%, 30%, 
and 40% of ZIP codes in each state, respec-
tively [see Supplemental Material, Figure 1 
(http://dx.doi.org/10.1289/ehp.1103766)].

For the years 2000 through 2007, each 
participating state assembled daily counts for 
hospitalization due to electrolyte imbalance 
[International Classification of Diseases, Ninth 
Revision, Clinical Modification (ICD-9-CM), 
code 276 (CDC 1979)], cardiovascular 
diseases (codes 390–398, 402, 404–429, 
440–448), cerebrovascular disease (codes 
430–438), respiratory illness (codes 460–519), 
nephritis and nephrotic syndrome (codes 
580–589), acute renal failure (code 584), 
heat-related illness (code 992), and internal 
causes of hospitalization (all ICD-9-CM codes 
0–799.9 except accidents, injuries, suicides, 
and homicides) and daily mortality counts, 
including all-cause mortality [all ICD-10 codes 
V01–Y98 (WHO 2007) except accidents, 
injuries, suicides, and homicides, excluding 
X30 (heat-related illness)], cardiovascular 
mortality (codes I00–I99), and respiratory 
mortality (codes J00–J99). These health 
outcomes have been analyzed in previous 
studies of extreme heat (Basu 2009; Knowlton 
et al. 2009; Ye et al. 2012). Daily counts for 
each outcome were calculated by searching 
all primary diagnoses and the first nine 
secondary diagnoses in hospital discharge and 

mortality data, similar to previous research 
(Knowlton et al. 2009). Data were obtained 
from the respective data stewards for each state. 
Mortality data come from the California Office 
of Vital Records, Center for Health Statistics 
(Sacramento, CA); Massachusetts Department 
of Public Health’s Registry of Vital Records 
and Statistics, Bureau of Vital Records and 
Health Statistics (Boston, MA); New Mexico 
Department of Health, Epidemiology and 
Response Division, State Center for Health 
Statistics (Santa Fe, NM); Oregon Health 
Authority, Public Health Division, Center for 
Health Statistic (Salem, OR); and Washington 
State Department of Health, Center for Health 
Statistics (Olympia, WA). Hospitalization data 
were obtained from the California Office of 
Statewide Health Planning and Development 
(Sacramento, CA); Massachusetts Division 
of Healthcare, Finance and Policy, Hospital 
Inpatient Discharge Database (Boston, MA); 
New Mexico Health Policy Commission, 
Office of Health Policy and Research, 
New Mexico Hospital Inpatient Discharge 
Data (Albuquerque, NM); Oregon Health 
Authority; and Washington State Department 
of Health (Olympia, WA), Center for Health 
Statistics, Comprehensive Hospitalization 
Abstract System (Salem, OR). These data were 
collected by the state partners and were not 
shared with the researchers at UCB.

The development of the HVI was pre-
viously described in Reid et  al. (2009). 
Briefly, the HVI is composed of four factors 
derived from a principal components analysis 
(Table 1). Each factor has possible values of 
1–6, with higher values denoting higher vul-
nerability. The HVI is the sum of the four fac-
tors (possible values of 4–24 for a given census 
tract). For this analysis, we calculated the HVI 
for each ZIP code as the area-weighted mean 
value of the census tracts that intersected with 
the ZIP code using the Geospatial Modeling 
Environment (Spatial Ecology LLC 2010); 
therefore, the HVI for each ZIP code is con-
stant throughout our study. ZIP codes were 
assigned to weather stations based on both 
proximity and similarity of climate. First, we 
determined the 30-year (1971 through 2000) 
warm-season normal temperature for each 

ZIP code centroid in the study area based on 
30-year warm-season normal data from the 
Oregon State University Parameter-Elevation 
Regressions on Independent Slopes Model 
(PRISM) Climate Group (2010) normals 
product. Next, we obtained data on 30-year 
daily normals for maximum temperature for 
all weather stations in the study states and 
contiguous states from the National Climatic 
Data Center (2010) CLIM84 daily normals 
product. We then assigned each study area 
ZIP code to a weather station, such that ZIP 
codes that contained a single weather station 
(7.7%) were assigned to that weather station 
and ZIP codes that contained more than one 
weather station (0.5%) were assigned to the 
station whose 30-year warm-season normal 
was the closest to the ZIP code’s PRISM-
derived 30-year warm-season normal. For 
ZIP codes with no weather station (91.9%), 
we assigned them to the weather station (out 
of the three closest stations) with the 30-year 
warm-season normal that was closest to that 
of the ZIP code’s PRISM-derived 30-year 
warm-season normal. ZIP code assignment to 
monitors was done using ArcGIS (version 9.3; 
ESRI, Redlands, CA).

For each day from 1 May through 
30 September, for 2000 through 2007, we 
calculated the deviation of the daily maxi-
mum temperature from each weather station’s 
30-year (1971 through 2000) daily normal 
maximum temperature. “Deviant days” were 
defined as days on which the deviation of maxi-
mum temperature from the 30-year normal was 
in the upper 5th percentile of the deviations for 
the 8 years of this study (2000 through 2007) 
for that weather station. “Extreme days” were 
defined as days in the upper 5th percentile of 
the absolute maximum temperature for the 
8 years of this study (2000 through 2007) for 
a given weather station (Figure 1). Deviant and 
extreme days whose maximum temperature was 
< 85°F (29.4°C) were reclassified as nondeviant 
or nonextreme because we wanted to focus on 
the health effects of higher temperatures.

Each state partner calculated incidence 
rate ratios (RRs) for each hospitalization and 
mortality diagnosis using generalized esti-
mating equation (GEE) Poisson regression 
clustering by ZIP code with an exchangeable 
working correlation matrix and the 2000 U.S. 
Census (population as an offset term) (U.S. 
Census Bureau 2002). GEE methods are 
robust to misspecification of the correlation 
matrix and to overdispersion. Daily counts of 
each health diagnosis category were regressed 
against HVI, deviant day, and the interaction 
between deviant day and the HVI while con-
trolling for day of week, month, and daily 
maximum 8-hr ozone level. Similar models 
were run for extreme days. Separate models 
were also constructed to estimate the effects of 
HVI and deviant day or extreme day without 

Table 1. Components of each factor in the HVI.

Factor Main componentsa

1 Social/environmental Percentage of population below the poverty line
Percentage of population of a race other than white
Percentage of population with less than a high school diploma
Percentage of nongreen space

2 Social isolation Percentage of population that live alone
Percentage of population > 65 years of age that live alone

3 Air conditioning prevalence Percentage of homes without central air conditioning
Percentage of homes with no air conditioning of any kind

4 Preexisting health conditions Percentage of population diagnosed with diabetes
Percentage of population > 65 years of age

aThe factors were created using principal components analysis. Listed here are the variables that loaded most heavily 
on each factor. Reid et al. (2009) explained how the factors were created.
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adjustment for one another. Daily ground-
level ozone measurements were obtained from 
the U.S. Environmental Protection Agency’s 
Air Quality System (2010) for all monitors 
and days in the study area and time period. 
We calculated the daily maximum 8-hr aver-
age ozone value in a 24-hr period starting at 
0800 hours for each monitor. ZIP codes were 
assigned the daily ozone data from the nearest 
air quality monitor.

To investigate potential nonlinear relation
ships between HVI and hospitalizations and 
mortality, we modeled indicator variables for 
low, medium, and high HVI categories based 
on tertiles of the HVI distribution for all ZIP 
codes included in this analysis. All analyses 
were done using SAS (versions 9.1 and 9.2; 
SAS Institute Inc., Cary, NC) and R (version 
2.11.1; R Project for Statistical Computing, 
Vienna, Austria). Statistical significance was 
determined as 95% confidence intervals (CIs) 
that did not cross 1, which assumes an α level 
of 0.05.

Results
Mean HVI values were similar in each state 
(Table 2). Tertiles of HVI were driven heav-
ily by the distribution of HVI values in 
California, which included 60% of the 
ZIP codes in our analysis. California and 
Washington each had a greater percentage of 
ZIP codes in the highest HVI tertile (38% 
and 40%, respectively) than the other states 
(5–20%). California had the highest daily 
mean counts of hospitalizations for each out-
come. New Mexico had the fewest observa-
tions (ZIP code-days) of any state because 
it had only 20 ZIP codes for which an HVI 
value could be calculated. Hospitalizations 
for heat-related illness were rare, occurring on 
< 2% of ZIP code-days in each state. Means 
and standard deviations of daily mortality and 
morbidity counts were similar across all five 
states. Washington had the fewest days classi-
fied as deviant (Table 2) because it had more 
days that were categorized, initially, as devi-
ant that had maximum temperatures < 85°F. 
Reclassification of deviant days to nondeviant 
ranged from 3.9% of days in New Mexico 
to 29.5% in Washington. No extreme days 
were reclassified in Massachusetts or New 
Mexico, but a high of 8.1% were reclassified in 
California. The days classified as deviant were 
most likely to be in May for California and 
New Mexico and in June for Massachusetts, 
Oregon, and Washington, whereas days clas-
sified as extreme were most likely to be in July 
in all states except Massachusetts, where most 
extreme days occurred in August (Table 3).

On nondeviant days, the HVI was asso-
ciated with higher rates of hospitalizations 
for electrolyte imbalance, acute renal failure, 
respiratory hospitalizations, and all-cause 
and cardiovascular mortality (p < 0.05) in 

all five states, and for nephritis and neph-
rotic syndrome in all states but New Mexico 
[Figure 2; see also Supplemental Material, 
Table   1 (http://dx.doi .org/10.1289/
ehp.1103766)]. The magnitude of the 

estimated effect of HVI on health was essen-
tially the same on deviant and nondeviant 
days for almost all outcomes in all states, 
an indication that living in a ZIP code with 
a higher HVI score denotes increased risk 

Figure 1. Deviant days and extreme days by daily observed temperature and daily normal temperature 
for one ZIP code for June 2003, as defined in “Materials and Methods.” For this specific ZIP code, a day 
was designated as a deviant day (*) if its observed maximum temperature was ≥ 14°F greater than the 
30-year normal maximum temperature for that day, whereas a day was designated an extreme day (#) if its 
observed maximum temperature was ≥ 99°F.
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Table 2. Study variables for ZIP code-days by state.

Variable
CA 

(n = 1,474,920)
MA 

(n = 479,808)
NM 

(n = 24,480)
OR 

(n = 145,656)
WA 

(n = 259,488)
Mortality counts (mean ± SD)
All cause 0.40 ± 0.71 0.29 ± 0.61 0.45 ± 0.78 0.29 ± 0.61 0.30 ± 0.60
Cardiovascular 0.16 ± 0.43 0.10 ± 0.34 0.15 ± 0.42 0.10 ± 0.33 0.11 ± 0.34
Respiratory 0.04 ± 0.20 0.03 ± 0.18 0.05 ± 0.22 0.03 ± 0.16 0.03 ± 0.17
Hospitalization counts (mean ± SD)
Internal causes 6.85 ± 6.75 4.88 ± 5.42 5.97 ± 5.63 3.65 ± 4.15 4.01 ± 3.77
Cardiovascular diseases 1.90 ± 2.18 1.57 ± 2.01 1.23 ± 1.54 1.02 ± 1.43 1.09 ± 1.35
Respiratory diseases 1.42 ± 1.77 1.15 ± 1.62 1.14 ± 1.44 0.72 ± 1.12 0.86 ± 1.15
Cerebrovascular disease 0.35 ± 0.67 0.22 ± 0.52 0.23 ± 0.52 0.18 ± 0.46 0.18 ± 0.45
Electrolyte imbalance 0.90 ± 1.27 0.61 ± 0.61 0.68 ± 1.01 0.45 ± 0.82 0.56 ± 0.88
Heat-related illnesses 0.002 ± 0.05 0.001 ± 0.03 0.001 ± 0.03 0.001 ± 0.03 0.001 ± 0.02
Nephritis and nephritic syndrome 0.38 ± 0.76 0.28 ± 0.28 0.06 ± 0.40 0.19 ± 0.50 0.22 ± 0.53
Acute renal failure 0.20 ± 0.49 0.16 ± 0.44 0.13 ± 0.38 0.10 ± 0.34 0.12 ± 0.37
Exposure variables (%)a
Deviant days 5.11 4.59 5.39 4.79 3.97
Extreme days 5.39 5.88 6.20 5.47 5.50
Vulnerability variables (mean ± SD)
HVI (continuous) 14.5 ± 1.74 13.3 ± 1.38 13.3 ± 1.20 13.9 ± 1.13 14.5 ± 1.58
Social/environmental (factor 1) 3.49 ± 0.83 2.74 ± 0.68 3.25 ± 0.64 2.80 ± 0.48 2.85 ± 0.51
Social isolation (factor 2) 2.99 ± 0.79 3.53 ± 0.69 3.68 ± 0.92 3.37 ± 0.60 3.39 ± 0.85
Air conditioning prevalence (factor 3) 4.21 ± 1.14 4.01 ± 0.03 4.00 ± 0.00 5.00 ± 0.003 5.57 ± 0.77
Preexisting conditions (factor 4) 3.83 ± 0.58 2.98 ± 0.69 2.40 ± 0.48 2.73 ± 0.59 2.67 ± 0.66
HVI (categorical) 2.12 ± 0.81 1.57 ± 0.67 1.55 ± 0.59 1.82 ± 0.74 2.16 ± 0.78
Low (%) 27.9 53.1 50.0 38.5 24.1
Middle (%) 34.1 36.5 45.0 41.8 36.3
High (%) 37.9 10.4 5.0 19.7 39.6
8-hr ozone (ppm) 0.05 ± 0.02 0.04 ± 0.02 0.06 ± 0.01 0.03 ± 0.01 0.03 ± 0.01

Abbreviations: CA, California; MA, Massachusetts; NM, New Mexico; OR, Oregon; WA, Washington.
aThe percentages for deviant days and extreme days by state can be > 5% because the temperature was equal to the 
95th percentile value on many ZIP code-days.
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of mortality or hospitalization regardless of 
how hot the day is. However, some evidence 
of effect modification by deviant day was 
observed for heat-related illness, specifically 
in California [RRs (95% CIs): nondeviant 
day, 0.94 (0.90, 0.97); deviant day, 1.11 
(1.05, 1.17)], Washington [nondeviant day, 
0.91 (0.80, 1.04); deviant day, 1.22 (0.95, 
1.56)], and Massachusetts [nondeviant day, 
1.11 (1.01, 1.21); deviant day, 1.26 (1.10, 
1.44); Figure  2A; see also Supplemental 
Material, Table 1 (http://dx.doi.org/10.1289/
ehp.1103766)]. In Oregon, rates for this 
outcome show no difference between non-
deviant and deviant days, whereas in New 
Mexico, there was a significant decrease 
in heat-related hospitalizations on deviant 
days for a one-unit increase in HVI. A sig-
nificant interaction was also found for all-
cause mortality in New Mexico [RRs (95% 
CIs): nondeviant day, 1.18 (1.06, 1.31); 

deviant day, 1.30 (1.15, 1.47); Figure 2B]. 
We also found statistically significant inter-
action terms for respiratory hospitalizations 
in Massachusetts and for electrolyte imbal-
ance, nephritis and nephrotic syndrome, and 
acute renal failure in California; however, the 
magnitudes of the differences in estimated 
effects for deviant days and nondeviant days 
were small [Figure 2A; see also Supplemental 
Material, Table 1 (http://dx.doi.org/10.1289/
ehp.1103766)]. The association between HVI 
and cardiovascular mortality was stronger 
on nondeviant days than on deviant days in 
Washington [RRs (95% CIs): nondeviant 
day, 1.13 (1.09, 1.17); deviant day, 1.05 
(1.00, 1.11); Figure 2B]. The patterns for 
Oregon, except for heat-related illness, were 
similar to those in the other states where we 
had more power to see an effect.

Analys is  of  extreme days  showed 
almost the same effect estimates and similar 

patterns to that observed with deviant days 
[see Supplemental Material, Table 2 (http://
dx.doi.org/10.1289/ehp.1103766)]. The main 
difference is that for extreme days, there was 
consistency across all states for heat-related 
illness, with higher risk on extreme days com-
pared with nonextreme days for a one-unit 
increase in the HVI.

Deviant days were identified as extreme 
days about half the time in most states, with 
the lowest percentage of agreement in New 
Mexico (21.7% of deviant days were extreme 
days) and the highest in Washington (81.4% 
of deviant days were extreme days). Given the 
relatively low agreement, it is interesting that, 
for the most part, there were no large differ-
ences in effect estimates for deviant days com-
pared with extreme days in models without 
the HVI [see Supplemental Material, Table 3 
(http://dx.doi.org/10.1289/ehp.1103766)].

When we analyzed tertiles of the HVI, 
we did not find evidence against the use of 
HVI as a continuous variable in our analyses 
(data not shown); however, because our study 
examined only five states, this should be 
further investigated in future studies.

Discussion
The main purpose of our study was to inves-
tigate whether people living in more heat-
vulnerable ZIP codes, as characterized by the 
HVI, experienced higher rates of mortality 
and morbidity during abnormally hot days 
than during other days. Overall, our find-
ings indicate that HVI was consistently asso-
ciated with most health outcomes on both 
normal (nondeviant days) and abnormally 
hot (deviant) days. Therefore, HVI may be a 

Table 3. Percentage of deviant days and extreme days in each month by state from May through 
September 2001 through 2007 (n = number of deviant days or extreme days).

State May June July August September
Deviant days

CA (n = 70,224) 38.5a 16.6 14.5 6.1 24.3
MA (n = 21,659) 26.9 31.0a 5.6 18.1 18.4
NM (n = 1,294) 44.1a 6.5 11.1 24.0 14.3
OR (n = 6,603) 20.3 33.5a 22.5 11.2 12.5
WA (n = 10,028) 13.3 33.3a 31.0 10.1 12.3

Extreme days
CA (n = 74,388) 5.8 11.9 33.5a 23.1 25.7
MA (n = 27,661) 6.4 20.8 29.0 38.9a 4.9
NM (n = 1,479) 4.3 19.6 60.9a 14.8 0.3
OR (n = 7,909) 4.2 15.6 39.6a 31.7 10.0
WA (n = 15,063) 4.4 19.2 43.0a 26.8 6.7

Abbreviations: CA, California; MA, Massachusetts; NM, New Mexico; OR, Oregon; WA, Washington.
aState’s month, with the highest percentage of deviant or extreme days.

Figure 2. RRs for a one-unit increase in the HVI for five hospitalization diagnoses (A) and three mortality categories (B), by state, on nondeviant and deviant days.
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good indicator of overall health vulnerabil-
ity, independent of exposure to heat. Given 
that the HVI incorporates many variables that 
are known to be strong determinants of ill 
health, this is not surprising. However, in at 
least some of the states, health outcomes were 
more strongly associated with HVI on abnor-
mally hot days than on other days, especially 
for heat-related illness.

We found stronger associations between 
HVI and cardiovascular mortality on non
extreme days than on extreme days and 
between HVI and all-cause mortality on 
nondeviant days than on deviant days in 
Washington. This could be due to residual 
seasonal confounding because cardiovascular 
mortality is lowest in the middle of the sum-
mer, when deviant and extreme days were 
most likely to occur for Washington. The 
finding of a similar effect for heat-related hos-
pitalizations in New Mexico could be due to 
small numbers.

No significant interactions were found 
in Oregon, which could imply that the HVI 
is not predictive of increased risk of adverse 
health effects on abnormally hot days in all 
parts of the country. Oregon had the second 
fewest ZIP codes, and, for some health out-
comes, daily counts were low, so null find-
ings might have been due to lower statistical 
power. However, the general pattern of higher 
RRs on deviant compared to nondeviant days 
for most health outcomes is consistent with 
our other findings.

Most previous studies of heat-related 
health effects have used time-series methods 
to determine whether day-to-day changes in 
temperature are associated with changes in 
health effects. To have sufficient power to test 
their hypotheses, these studies have aggre-
gated health outcome data over larger spatial 
areas (e.g., county or populated metropolitan 
areas). The purpose of the HVI, however, 
is to identify the most vulnerable neighbor-
hoods within a metropolitan area. Therefore, 
spatial aggregation beyond the ZIP code level 
was not appropriate for our analysis. Our 
recalculation of the HVI from census tracts 
to ZIP codes could have slightly changed the 
relationships observed, had health data been 
available at the census tract level.

This study is, to our knowledge, the first to 
investigate deviation of maximum temperature 
from the daily 30-year normal maximum 
temperature as a heat exposure metric. One of 
the primary benefits of this heat metric is that 
it captures the health effects of abnormally hot 
days earlier in the warm season that would 
have been missed by investigating the effect of 
the hottest days using absolute temperature. 
Temperature thresholds above which adverse 
health outcomes increase have been used in 
previous studies; some of these thresholds 
were determined statistically, whereas other 

studies used an a priori cut-point of the 95th 
or 99th percentile of temperature (Basu 
2009). Our analysis used the 95th percentile 
of deviant maximum temperature for 8 years 
of warm seasons, 2000 through 2007, by 
weather station to attain an estimate of a local 
threshold temperature for each location. We 
found some differences between estimated 
effects of HVI on deviant days versus extreme 
days, but results were consistent overall. 
The reason for introducing the concept of 
a “deviant” day was to allay a concern that 
our analysis could have residual seasonal 
confounding if we used only extreme days 
because they are most likely to fall in July and 
August (Table 3), when outcomes such as 
cardiovascular hospitalizations are lowest and 
extreme days are most likely. Deviant days 
are less likely to follow the temporal pattern; 
therefore, we were less concerned about 
temporal confounding than with extreme 
days. Time-series analysis of these exposure 
metrics could shed more light on whether 
deviance from normal temperature is a valid 
or more precise way to estimate the effect of 
high temperatures on health.

Previous efforts to create heat vulnerabil-
ity maps (e.g., Johnson et al. 2009; Loughnan 
et  al. 2009) have differed in the variables 
selected, the methods used to combine the 
variables, and whether they have been evalu-
ated for their ability to predict spatial variabil-
ity in health risks. Further analysis is needed 
to determine whether cities differ with regard 
to important predictors of heat-related mor-
bidity or mortality, or if variation in results 
among studies is due to methodological dif-
ferences. Over time, patterns of heat vul-
nerability are likely to change, for example, 
because of shifts in aging population distri-
butions or changing patterns of underlying 
disease, necessitating periodic reevaluation of 
vulnerability maps.

The HVI was created using a principal 
components analysis for all areas in the United 
States for which data on component variables 
were available. If the HVI were created instead 
based on data from a single metropolitan loca-
tion or state, the resulting HVI values might 
change because of different variable loadings 
on the factors. Indeed, a study conducted in 
Phoenix, Arizona, found that although the 
factors had different combinations of the same 
10 vulnerability variables used in the national 
HVI, this locally derived HVI did predict 
locations with heat-related deaths (Harlan 
2010). Although evidence exists of local dif-
ferences in vulnerability to heat (Basu 2009), 
future research should investigate whether 
specific subcomponents of the HVI are more 
important in some regions of the country 
than in others. It is likely unreasonable to 
expect every local health department to create 
its own heat vulnerability map, and therefore, 

a national HVI created through freely avail-
able national data sets is useful.

Our study was limited by the number of 
states that participated in this project. The 
states involved in this study do not represent 
the diversity of climates or vulnerability 
patterns that exist throughout the United 
States. Additionally, because of confidentiality 
concerns on the part of data providers, health 
data were not able to be shared with UCB, 
and thus we could not combine the data into 
one “national” analysis. Our research was also 
limited by the few ZIP codes for which we 
could analyze data in each state because of 
where the original HVI had been calculated. 
Further research that includes more states 
and allows for sharing of data could further 
the understanding of spatial vulnerability to 
heat and the usefulness of a national HVI for 
climate change adaptation purposes.

Conclusions
Climate change will likely exacerbate health 
risks that populations already experience, 
including, but not limited to, health effects 
related to exposure to extreme heat. Mapping 
the locations of populations that are vulnerable 
to climate-change–related risks facilitates plan-
ning of interventions to prevent adverse health 
events. Our results suggest that the HVI can 
be used to identify areas with increased risks of 
adverse health outcomes in general, and that 
it may identify areas at increased risk of heat-
related illness and possibly other heat-related 
outcomes on abnormally hot days. Heat may 
exacerbate preexisting health disparities associ-
ated with the HVI. Deviant days and extreme 
days were found to capture health effects asso-
ciated with heat similarly well. Further investi-
gation is warranted to assess whether the HVI 
indicates increased risk of health effects in asso-
ciation with different heat exposure metrics and 
whether the HVI should be modified for differ-
ent regions of the country. Targeting resources 
toward decreasing inequities in vulnerability 
now may increase communities’ resilience to 
multiple hazards to health in the future.
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