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Executive Summary 
Data for thousands of systems by multiple sources were transmitted to NREL for 
evaluation. Initial automated data quality assurance (QA) checks identified hundreds of 
systems (QA Tier 1) with high-quality meteorological and AC production data and 
hundreds of QA Tier 2 systems with adequate data quality. A standard RdTools analysis 
was conducted for these systems, evaluating performance loss on an annualized basis. To 
date with the systems evaluated so far, we find the median performance loss rate (aka Rd 
or degradation rates)is in line with historical degradation rates previously published for 
modules and systems (−0.5% to −0.9% / yr, Jordan et al. 2016). Updated median values 
and quantile statistics will be appended to this report annually as additional partners are 
recruited, and as data techniques are refined.  

 
Figure ES-1. Fleet-level Rd distributions using AC inverter data. QA-compliant Tier 1 

systems were analyzed using site-measured irradiance and temperature 

While abnormally low or high values do appear in the above distribution, a detailed study 
in Section 4.3 shows that many of these entries arise from data quality issues or system 
configuration changes not corrected by our automatic analysis. Some negative Rd values 
may indeed suggest corrective action is needed on individual systems, which may be 
identified by individual underperforming inverters.  
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1 PV Fleet Performance Data Initiative 
Introduction 

The information contained in this report is part of an ongoing analysis effort by the National 
Renewable Energy Laboratory (NREL) and the U.S. Department of Energy (DOE). This 
Photovoltaics (PV) Fleet Performance Data Initiative supports the U.S. PV community by 
pooling and analyzing plant operation data and providing PV performance assessments of 
individual solar assets using standardized state-of-the-art methods. The analysis results 
provide plant owners and operators with a confidential detailed assessment of their fleet 
performance, while also providing the broader community an aggregate benchmark for the 
performance of the U.S. solar fleet. The outcomes will enable more efficient operation of 
PV installations and improve financial assessment accuracy for current and future PV 
power plants. All the data provided are protected by confidentiality agreements, are 
maintained by NREL in a secure database (i.e., the DuraMAT DataHub), and will not be 
shared with any person or group not authorized by the data owner. 

The initiative uses power output data, mainly from medium and large (>250 kilowatts) PV 
installations over at least two years to provide performance assessments using RdTools. 
RdTools is a set of open-source Python-based PV data analysis tools used to calculate 
plant-level degradation rates, as well as performance impacts by soiling, inverter clipping, 
and plant availability. The analysis provides system-level evaluation of individual PV 
plants, including degradation rates and events affecting the plant performance, and 
compares the performance of a specific power plant to an aggregate benchmark. The 
analysis provided in this report is for the combined Energy fleet. 

2 Data Partner Fleet Summary 
2.1 Fleet Metadata Details 
Performance data from the data partners consists of over a thousand systems spread across 
the country (Figure 1). A histogram of system sizes and types of PV indicates a variety of 
sizes (Figure 2, Figure 3), with median system size of 1 MW DC and 4.5 years of data on 
average. 
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Figure 1: Spatial map of the data partner systems 

As new data partners are recruited, new findings and results will be posted in semi-annual 
bulletin updates through the nrel.gov publications page. 

 

 

 

 

Figure 2: Distribution of power sizes fleet Figure 3: Module technology 
breakdown 

Time-series data were transferred from the repository where the original system data 
resides. Site metadata details were also collected from there. A CSV file of site information 
provided by the owner/operator was used to fill gaps or missing data. This metadata 
included system geographic location, tilt and azimuth orientation, module, inverter 
components, meters, weather stations, and reference cells. We merged the available 
geographic location with climate data including the PV climate stressor information to 
evaluate possible vectors for degradation in the fleet [Karin 2019]. 
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Figure 4: PV Climate stressors and PV mounting configurations. The higher climate zone 

numbers for temperature and humidity, the greater possible stress on the system 
modules. Temperature climate numbers are for ground-mount. Roof-mounted installations 
will tend to have even higher stress than ground due to the more restricted air flow [Karin, 

2019].  

 For analyzing each system, we prefer to have measured data streams for AC power 
production data, module temperature, and plane-of-array (POA) irradiance. Other 
combinations of measurements could allow us to compute these values, but with perhaps 
increased analysis uncertainty. 

2.2 Data Quality Details 
EachEach system is processed through autonomous prototype quality assurance (QA) 
checks described in detail in Section 3.2. Initial QA results suggest that additional systems 
can be re-analyzed after manual corrections are applied. For example, certain systems were 
found to have multiple azimuth orientations while the metadata included just one 
orientation. In the current version of QA, all inverters or irradiance sensors that did not 
match the specified orientation were failed. In the future, these systems can be reclassified 
and contribute to the Fleet-wide statistics. In total, thousands of AC power sensors, 
irradiance sensors, and temperature sensors were processed through the QA software. 
Table 1. through Table 3 provide a breakdown of the QA reject information for each sensor 
type. 
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Table 1. AC Power - Initial Data Quality Check 
AC power measurements  
13% overall reject rate 
QA failure reason % of total sensor rejected 

Timestamp issue (timezone, daylight savings, or gross azimuth error) 7% 
Smaller azimuth reporting error 2% 
Poor summer or winter data fits (shading likely) 1-2% 
Insufficient data for fits 1-2% 
Inconclusive “tracking or fixed” check 1% 
Ambiguous “tracking or fixed” due to clipping < 1% 

Table 2. Irradiance – Initial Data Quality Check 
Irradiance measurements  
36% overall reject rate 
QA failure reason % of total sensor rejected 

Number of days with unreasonably low irradiance 10% 
Inconclusive “tracking or fixed” check 9% 
Less than 25% valid data 8% 
Timestamp issue (timezone, daylight savings, or gross azimuth error) 4% 
Likely mislabeled orientation 1-2% 
Poor summer or winter data fits (shading or noisy data likely) 1-2% 
Insufficient data for fits <1% 

Table 3. Temperature – Initial Data Quality Check 
Temperature measurements  
30% overall failure rate 
QA failure reason % of total sensor rejected 

Less than 85% valid data 20% 
Poor correlation between module temperature and valid irradiance 10% 

Here data quality reject does not necessarily indicate that system data could not eventually 
be evaluated. Our initial focus on high-quality system data in an automated fashion 
identified potential issues with specific systems that should manually be evaluated. 

3 Methods 
3.1 Overview of PV Fleet Analysis Methods 
 PV Fleet performance analysis follows the workflow shown in Figure 5, starting with 
quality assessment of system data then proceeding to time-series degradation and loss-
factor analysis. The analysis is largely automatic and unsupervised, requiring initial data 
screening to reject systems and channels with errors in measurement or configuration. The 
intent is to remove erroneous, unphysical system data prior to analysis to avoid skewing 
the resulting fleet performance degradation distribution. Using QA-validated system data, 
we then use the open-source RdTools software toolkit [RdTools 2019] to generate 
annualized degradation rates (annual system performance loss rates) at the meter and 
inverter level. 
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Figure 5: Analysis procedure for PV fleet data showing data QA, Rd, and Loss Factor 

analysis, along with partner reporting 

Additional analysis, such as loss factor evaluation (soiling, data availability, and modeled 
vs measured Performance Index), will be included at a later date. 

3.2 Initial Data Quality Checks 
Each irradiance, temperature, and power measurement within a given PV system is 
validated by a series of data quality assurance (QA) checks. The first QA check is to 
determine erroneous, extreme, or stuck data points within the given time series. Stuck data 
is considered any four or more consecutive data points in the given time series where the 
values are identical. The boundaries for acceptable data are given in Table 4 per 
measurement type. 

Table 4. Ranges of Accepted Data for Sensor QA Checks  

 Minimum accepted value Maximum accepted value 
Irradiance sensor >0 1300 W/m2 
Inverter power >0 Mean value + 3 standard 

deviations 
Ambient temperature −40 °C 50 °C 
Module temperature −40 °C 85 °C 

After determining erroneous or extreme data according to Table 4, the remaining data sets 
are applied to sequential QA checks specific to each type of sensor. If an individual sensor 
fails any one of the specific sequential tests, the sensor is rejected. Figure 6 shows an 
illustration of the sequential tests applied to irradiance sensors. A similar sequence applies 
to power measurements while temperature checks are significantly different. 
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Irradiance and power QA sequence 
Irradiance and power sensors are checked per the sequence shown in Figure 6:  

1) Check for at least 25% remaining data after removing erroneous data (~50% 
remaining is typical).  

2) Determine if the time series indicates a measurement on solar tracker or for a 
fixed orientation system. The sensor is failed if the determination of “tracking” or “fixed” 
does not match the specified orientation of the given sensor. The sensor is also failed if the 
fits to determine “tracking” or “fixed” do not pass a goodness of fit test, deemed 
“Inconclusive” orientation. Qualitative analysis across a large number of systems supports 
that an “Inconclusive” orientation result for an irradiance sensor occurs primarily due to 
the following reasons: sensor shading, erroneous sensor outputs that do not correlate with 
time-of-day changes in irradiance, significant missing data, or generally noisy data.  

3) Daily clear-sky irradiance totals are generated for the location and orientation of 
the irradiance sensor under test. The daily clear-sky totals are then used to set an upper and 
lower expected boundary for the daily measured irradiance total. The total number of days 
in exceedance of the upper and lower boundary are determined. A sensor is rejected if 33% 
of the total days exceed the upper boundary or 33% of the total days exceed the lower 
boundary.  

4) The timestamp of the sensor is then checked for discrepancies over the time 
period in the data set. This check involves separate steps. First, all November–February 
and all May–August data are fit separately to determine peak output times for the sensor 
under QA for the winter and summer periods. Summer and winter periods are evaluated 
separately to test for daylight savings shifts occurring in the timestamp as well as seasonal 
changes in shading. The determined summer and winter peak output times are then 
compared against clear-sky peak output times considering the sensor’s orientation, latitude, 
longitude, expected time zone, and reported daylight savings adherence. The sensor is 
rejected if the measured peak output time does not match the clear-sky expected value 
within 25 minutes, or if both winter and summer fits do not achieve suitable fit thresholds.  

Qualitative analysis across a large number of systems suggests that poor summer or winter 
fits are primarily due to the following reasons: sensor shading in one or both seasons, 
erroneous sensor outputs that do not correlate with time-of-day changes in irradiance, 
significant missing data, or generally noisy data. If the sensor passes the above checks for 
timestamp discrepancies, each day in the complete time series is evaluated to determine if 
the day can be considered a “sunny day” (depending on daily a goodness of fit test). Peak 
output times are then compared for each sunny day against expected times from clear sky 
irradiance. The time series signal of deviation between the sensor measurement times and 
the clear sky times are then processed using a changepoint detection algorithm. Any 
periods with timestamp shifts greater than 15 minutes are considered for rejection or 
manual adjustment, dependent on the magnitude and length of the shift. 
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Figure 6: Flow chart of QA check sequence for irradiance sensors 

The QA checks for power are slightly modified from those for irradiance. Prior to Step 2 
(fixed or tracking), an algorithm is run on the power data set to determine if inverter 
clipping occurs. Clipping alters the power profile over the course of a day and therefore 
this information is input into the “tracking or fixed” logic in the step 2 QA. Step 3 is applied 
to daily power totals as compared to irradiance totals. Thresholds for the upper and lower 
bounds on the daily power totals are based on first applying a sinusoidal fit to the measured 
daily power totals rather than using clear sky data. Step 4 is identical for both power and 
irradiance data. 

Temperature measurement QA 
Erroneous data is first identified for module and ambient temperature per Table 4. 
Erroneous data comprising greater than 15% of the entire time series results in sensor 
rejection. A module temperature sensor fails if its mean value is outside the range of 5°C 
– 40°C, and ambient temperature sensor fails if its mean is outside the range of −5°C – 
30°C. No additional checks are performed on ambient temperature, but a linear regression 
is performed between module temperature time series and a valid irradiance time series 
(meaning an irradiance sensor for the same PV system that has passed QA checks). If the 
correlation coefficient between the module temperature and a valid irradiance times series 
is less than 0.7, the module temperature sensor is rejected. If no valid irradiance sensor 
exists for the given PV system, the module temperature passes with no further checks. 

System QA 
While each individual sensor is subjected to the QA process described, a PV system must 
have at least one valid irradiance sensor, AC power measurement, and temperature 
measurement in order to be subjected to the RdTools ground sensor-based degradation 
analysis. To run the clear-sky-based degradation analysis, each system must have a valid 
AC power measurement and an available irradiance measurement. 

Appendix B provides flow diagrams for selecting the irradiance, power, and temperature 
sensors with the highest data quality in each system. Sensors with the highest quality for 

4) Timestamp checks
Fail time zone/daylight savings problems or 

poor fits
Sunny days for unexpected shifts in the 

timestamp

3) Compare daily irradiance totals to upper/lower thresholds based on clear sky totals

Fail if 33% of days exceed upper threshold Fail if 33% of days are less than lower 
threshold

2) Check if fixed or tracking
Fail if orientation mismatch from reported 

value Fail if orientation fits are poor

1) Erroneous data check

Data Remaining >= 25%
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each system are further subjected to the RdTools analysis. Each sensor must pass basic 
requirements for use in the analysis, including: 

• 2+ years of data availability 
• Pass initial QA checks outlined in Section 3.2 

See Appendix B for further logic on selecting the highest quality measurement per a system. 

After applying the logic described in Appendix B to each system, each system is further 
categorized into data quality tiers, which are used to determine which RdTools analysis to 
run: 

1. Tier 1 System: System has at least one valid temperature, AC power, and irradiance 
measurement. The highest data quality measurements in each category are used to 
run a RdTools ground sensor-based analysis and clear-sky analysis. 

2. Tier 2 System: System does not meet Tier 1 requirements but has at least one valid 
AC power measurement. Additionally, the system has an irradiance measurement 
lasting more than two years (can pass or fail QA checks). An RdTools clear-sky 
analysis is run on Tier 2- classified data. 

3.3 Degradation Rate Assessment 
The performance loss rate for each system in the fleet is estimated using the year-on-year 
approach as implemented in RdTools (version 2.0.0-alpha.0). The year-on-year approach 
compares the daily yield values normalized to a model (termed normalized daily yield), 
separated by exactly one year. The median of all these slopes is taken as an estimate of the 
underlying performance loss rate, and the uncertainty in the median is reported as a 
confidence interval. The reported confidence intervals do not account for sensor or 
measurement uncertainty. Performance loss rate is analyzed based on individual AC 
inverter power and energy meter data streams. We also perform the analysis on the 
aggregated power from each site’s inverters and meters. 

Two different analyses are considered for each power time series (inverter, meter, and the 
sums). The first is a sensor-based approach in which measurements made on site are used 
to model expected PV performance. The second is a clear-sky-based approach in which 
POA and module temperature are modeled based on expected weather assuming clear sky 
conditions [Jordan, 2017]. The sensor-based approach generally yields tighter confidence 
intervals in the analysis, but these confidence intervals do not capture possible bias from 
drifting sensors. The clear sky approach is more robust against drifting irradiance and 
temperature sensors, but it is susceptible to bias due to year-to-year atmospheric condition 
variations, especially on shorter data sets. 

The systems are classified into two tiers of systems, as described in Section 3.2, for which 
we perform degradation analysis. For Tier 1 systems, both the sensor-based and clear-sky-
based analyses are performed. For Tier 2 systems, only the clear-sky analysis is performed. 

The RdTools analysis requires time series of plane-of-array (POA) irradiance, module 
temperature, and power. Time series data is first regularized by interpolating onto a regular 
time index with a period determined by the median period of the data set. If no QA-passing 
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POA irradiance measurements are available for a given system, POA is modeled based on 
measured global horizontal irradiance (GHI) according to the Erbs diffuse radiation model 
[Erbs 1982] and the isotropic sky model [Hottel 1942]. If no QA-passing module 
temperature measurement is available, it is modeled from ambient temperature 
measurement according to the thermal model of the Sandia Array Performance Model 
[King 2004]. However, due to low data availability and the relative insignificance of wind 
speed to thermal modeling, wind speed was set to zero in the thermal model for all systems. 
After the temperature and irradiance input types are determined based on this logic, the 
sensors with the highest QA score for each type are used as input into the Tier 1 RdTools 
analysis. The median measured or modeled (from GHI) value of POA at each time step is 
used to detect clear-sky conditions for the tier 2 analysis. 

The first step in the RdTools workflow is to normalize the energy associated with each 
time step in the data set to modeled energy based on a simple temperature and irradiance 
model for power: 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑙𝑙 = 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃
1000 𝑊𝑊𝑚𝑚−2 𝑃𝑃0(1 + 𝛾𝛾(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 25℃)) 

Where Pmodel is the modeled power, 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃  is POA irradiance, 𝑃𝑃0  is the system’s DC 
nameplate capacity, 𝛾𝛾 is the temperature coefficient of power and Tmod is the module 
temperature. The temperature coefficient 𝛾𝛾 was determined by examining a system’s 
module metadata. If the module metadata indicated thin-film modules, the value was set to 
the First Solar Series 3 value of −0.25%/C, and otherwise set to −0.47%/C to match the 
“standard” module value in NREL’s PVWatts model [Dobos 2014]. If multiple 
temperature coefficients are inferred from a system’s module metadata, the median of the 
values is used. The next step is to filter the high-time resolution normalized data using 
built-in RdTools filtering. Data are filtered to remove: 

• Normalized energy less than or equal to 5% 
• POA outside the range of 200 to 1,200 W/m2 
• Module temperature outside the range of −50 to 110°C 
• Points affected by clipping and power values below 0.01 W. 
• For the clear sky analysis only: points that occur in non-clear-sky conditions 

The third step is to use an irradiance-weighted mean to aggregate the remaining normalized 
energy values to daily frequency. Finally, the year-on-year analysis is performed to 
estimate the energy yield degradation rate and the associated confidence interval. 

4 Results 
4.1 Statement of Uncertainty 
The calculation of Rd in an automated fashion makes sense only when data shifts and 
system outages are corrected. While we have conducted a limited data quality screening, 
the fleet distributions described below are affected by outliers at both ends of the 
distribution. This will influence distribution statistics, particularly P90 values, which are 
not reported here. Systems displaying large magnitude Rd values may be due to temporary 
changes in system configuration or inverter outage rather than unrecoverable module 
degradation. 
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Other sources of uncertainty for individual system analysis includes lack of a detailed 
model for system performance. Our PVWatts performance model is necessarily limited due 
to the nature of the production data and metadata available to us. This may influence the 
overall accuracy of Rd calculation for a single system, although this effect is mostly 
covered by the reported confidence interval (CI) in the detailed system-level Appendix A. 

4.2 Partner Fleet Level Results 
Fleet-level Rd results are collected for the combined fleet. We have analyzed hundreds of 
QA Tier 1 inverter-level subsystems, which met all data quality checks for irradiance, 
temperature, and AC inverter power, and provided their degradation distributions in Figure 
7. This sensor-based analysis uses site-measured temperature and irradiance data, as 
described in Section 3.3. The median degradation rate for this group of systems is 
preliminary and subject to change with updated methods and fleet composition. We have 
also analyzed thousands of QA Tiers 1 and 2 inverter-level data streams using our clear-
sky degradation methodology based on modeled (not site-measured) temperature and 
irradiance. Agreement with the sensor-based analysis is good, providing an important 
cross-validation of the degradation methodology. 

  
Figure 7: Example of renormalized energy plot from RdTools (left) and fleet-level Rd 

distributions for all systems using AC inverter data (right); QA-compliant Tier 1 systems 
analyzed with site-measured irradiance and temperature 

In general, there appears to be good agreement between the clear-sky analysis distribution 
and sensor-based analysis. The small difference gives good confidence in the adequate 
calibration and cleaning status of pyranometers and reference cells for these systems. 
Parenthetically, for those systems where high quality pyranometers were deployed, we 
found better agreement with clear-sky values, although this may just be a factor of O&M 
budget at larger sites.  

In addition, the median degradation value for the fleet is in-line with previously published 
median system degradation rates of –0.6% to –0.9% /yr (Jordan, 2016). While some 
systems appear in the tails of the above distribution, detailed analysis in Section 4.4 will 
show that many of these entries arise from data quality issues or system configuration 
changes not corrected by our automatic data assessment routines. Some large negative Rd 
values may indeed be cause for action on individual systems; this would be highlighted by 
detailed analysis of associated inverters and meters. 
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4.3 Detailed Fleet Distribution Statistics, Based on Inverter Data 
System Capacity 
Figure 8 depicts a scatterplot of system degradation (%) versus overall system capacity, 
given on a logarithmic scale. The data is color-coded based on analysis type with three 
categories: Tier 1 sensor analysis, Tier 1 clear-sky analysis, and Tier 2 clear-sky analysis. 
Overall system capacity for all analysis types is heavily concentrated between 100 kW and 
1 MW. Degradation Rd percentage is heavily concentrated between 0% and −2.5% across 
all analysis types. Specific trends of degradation versus system size are currently under 
investigation. 

 
Figure 8: Scatterplot of Rd degradation vs. system capacity, where data points are color-
coded on analysis type (Tier 1 sensor analysis, Tier 1 clear-sky analysis, and Tier 2 clear-

sky analysis). Outliers are omitted. 

System Size and Age 
Figure 9 below depicts a series of histograms displaying system degradation by system size 
and age, with three size categories: >1 MW, 0.3-1 MW, and <0.3 MW; and three age 
categories: 2 – 3 years, 3 – 5 years, and > 5 years. Median degradation for all age categories 
is between −0.6 to −0.7% / year for sensor-based analysis. Median degradation for all size 
categories is between −0.5 to −0.8% / year for sensor-based analysis. 

  

Figure 9: Rd histograms for sensor-based analysis, with outliers omitted. Data is binned in 
three system size categories (left) and three age categories (right). PRELIMINARY 

RESULTS SUBJECT TO CHANGE 



 

12 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

 

Figure 10: Scatterplot of Rd degradation vs. system age, where data points are color-
coded by analysis type (Tier 1 sensor analysis, Tier 1 clear-sky analysis, and Tier 2 clear-

sky analysis). Outliers omitted. 

A scatterplot of system degradation rate vs. system age is depicted in Figure 10. The data 
is binned by analysis type, with three categories: Tier 1 sensor analysis, Tier 1 clear-sky 
analysis, and Tier 2 clear-sky analysis. System age is heavily concentrated between 2.5 and 
7 years; degradation rate is heavily concentrated between 0 and -2.5% for all three analysis 
categories. 

A slight trend is apparent, suggesting older systems (> 5 years) are correlated with a more 
modest degradation rate. There may be several explanations for this, including primarily 
that our RdTools confidence intervals are better when systems have more data. Other 
possible contributors may also include initial system start-up issues or nonlinear 
degradation (e.g. LID, LeTID), although the results are not conclusive at this point. 

Meter-based Rd Analysis 
Rd analysis based on system revenue-grade meters was also conducted and compared with 
the inverter-based analysis above. The meter-based analysis shows more modest 
degradation values compared to what we found in the inverter analysis above. The causes 
of this discrepancy may be related to inverter outages, which are properly detected and 
removed in the inverter-level analysis, but may erroneously influence the meter-level 
analysis. This is because inverter outages occur more frequently early in system life, 
therefore artificially depressing initial performance and resulting in positive degradation 
rate slopes (Figure 11). 

Identification of inverter outages for the meter-based assessment may improve the 
agreement between these two analysis approaches. 
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Figure 11: Inverter outage detected by periods of zero production vs normalized system 
age. Artificially depressed initial production leads to erroneous degradation rate if not 

properly detected. 

4.4 Individual Case Study Results 
Here we provide details on specific individual systems for illustrative purposes. The first 
case, shown in Figure 12, is a well-behaved example from a 400kW inverter at a California 
site. This inverter shows no evidence of downtime or data issues and gives results in the 
middle of the overall distribution with a median performance loss rate of −0.81%/yr. 

 
Figure 12: RdTools degradation summary plots. The left plot shows inverter production 
normalized against expected production over time, with no major deviations from the 

trend from downtime, soiling, or other sources of production loss. The right plot shows 
the distribution of year-over-year degradation rates extracted from the normalized 

production data. The black dashed lines reflect the median degradation rate. 

The second example (shown in Figure 13) is of a system with results biased from soiling 
accumulation on the panels. These are the results for a 200kW inverter in the Los Angeles 
area. The severe loss feature (likely soiling) in 2018 caused the analysis to calculate rapid 
year-over-year degradation from 2017 to 2018. However, the analysis data set extended 
only partially through 2019, excluding the presumed performance recovery after removal 
of soiling from the performance loss rate distribution. This significantly biased the 
calculation for a performance loss rate estimate of −10.3%/yr. 
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Figure 13: An example of a system with significant soiling. The normalized production 

signal drops significantly as soiling accumulates on the array, skewing the distribution of 
degradation rates. 

The third example (shown in Figure 14) is from a nearby LA system. The array feeding 
this inverter had reduced performance in the first year of its data set, potentially due to 
downed strings. The increase in production capacity between years 1 and 2 causes an 
apparent increase in performance, resulting in a calculated positive performance loss rate 
of 28.8%/yr. 

 
Figure 14: An example of a system with reduced array performance. The reduced 

performance causes apparent regeneration between years 1 and 2, resulting in a bimodal 
degradation rate distribution and an apparent positive degradation rate. 

Capacity change is a source of many of the outlier performance loss rates. Because capacity 
reduction manifests at the inverter level, it can also often lead to spread in performance 
loss rate estimates for a single system. Table 6 shows a selection of the outlier results in 
the Fleet data set and associated root causes: 

5 Loss Factor Analysis (Under Development) 
In addition to degradation rate over time, different temporary or seasonal loss factors can 
be investigated that tend to be excluded from the RdTools analysis. These include inverter 
outage, clipping, soiling, and temperature-corrected Performance Ratio (PR). Best 
practices for these analysis methods are currently in development. 
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5.1 Inverter Availability 
To detect specific inverter outages, we incorporate a comparison with system meter data 
to distinguish true inverter outages from communications outages. This method is the 
subject of an upcoming PVSC publication. In addition to identifying periods of 
unavailability, the method can estimate the energy loss associated with the downtime. 

 
Figure 15: An example inverter availability analysis showing robust loss estimates despite 

inverter-level communications outages 

5.2 Soiling 
RdTools includes a soiling loss factor module, which identifies periodic loss and recovery 
trends which may be attributable to seasonal soiling. The method is still in development 
and has requirements for high quality irradiance and power sensor data. The method is 
described in Deceglie et al. “Quantifying soiling loss directly from PV yield” JPV, 2018 
[Deceglie 2018]. 

 
Figure 16: Example hybrid soiling and degradation analysis showing how 

underperformance can be partitioned between soiling and degradation by the algorithm. 
These results are for simulated PV data. 
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Appendix A. Logic for Selecting the Best Sensors 
for Each System 
Logic for Acquiring Highest Data Quality Temperature Sensor in a System

 

Logic for Acquiring Highest Data Quality Irradiance Sensor in a System: 
 
 

 
 
 
 

Sensor has:
- 2+ years of available data

- Passes initial QA check (see Section 3 
for reference)

- More than 95% high quality data 
availability

Take sensor with highest 
data availability

No passing temperature 
sensor for system

Sensor has:
- 2+ years 

of available 
data

- Passes 
initial QA 

check (see 
Section 3 for 

reference)
- Data's time 

zone 
matches the 
calculated 
time zone

POA 
sensor 

that 
passes 
initial 
sensor 
check?

Default to 
passing 

GHI 
sensors

Use GHI 
Sensor with 
Highest R-
squared fit 

value 

Use GHI sensor 
with lowest 

maximum time 
shift magnitude

Use 
passing 

POA 
sensors

Use POA 
Sensor 

with 
Highest R-
squared fit 

value

Use POA sensor 
with lowest 

maximum time 
shift magnitude

No 
passing 

irradiance 
sensor for 

system

Yes 

No 

No 

Yes 

Yes 

No 

If tie between 
multiple 
sensors 

If tie between 
multiple sensors 

R-squared value is derived 
from the irradiance vs. 
minute envelope fit, where 
the minute axis ranges 
between 0 and 1440 (0 to 24 
hours) 



 

17 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

Logic for Acquiring Highest Data Quality AC Power Sensor(s) in a System 

 

Sensor has:
- 2+ years of available data

- Passes initial QA check (see 
Section 3 for reference)

Take all sensors that pass 

No passing AC power inverter 
or meter for systemNo 

Yes 
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