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Executive Summary 
This report quantifes the uncertainty in output decisions from a Capacity Expansion Planning (CEP) model. The 
need to understand how uncertainties within CEP models and modeling assumptions affect Quantities of Interest 
(QoIs) such as expansion and operating costs, as well as expansion decisions remains an ongoing challenge in sci-
entifc research and industrial operations. This area of research is particularly important for models which seek 
to capture how large networks will evolve and operate under increased sources of variable generation, i.e., higher 
penetration of renewable technologies such as solar and wind generators. Uncertainty quantifcation (UQ) of CEP 
models which estimate expansion costs and decisions, and production cost models which estimate operating costs 
and dispatch decisions, is a key focus of research at NREL. The Regional Energy Deployment System (ReEDS) rep-
resents a state-of-the-art CEP model and considers a range of possible grid evolutions in an attempt to identify key 
drivers, ramifcations, and decisions which contribute to better informed investment and policy decisions. However, 
research to quantify how uncertainties and model assumptions, such as unit commitment (UC), within ReEDS may 
be affecting its outputs remains challenging due to to size and complexity of the model (Cohen et al. 2019; Murphy 
et al. 2019, Appendix A). 

The Scalable Power-System Economic Expansion Dispatch (SPEED) model is similar to ReEDS and is used in this 
work as a stochastic approach to study CEP and production cost modeling (PCM). Simulations yield expansion de-
cisions in the form of either natural gas or wind generators, of different sizes, at different locations, over a ten year 
period, using data for a hypothetical electric grid overlapping parts of California, Nevada, and Arizona. Relevant 
QoIs are identifed as 1) expansion cost, 2) operations cost, 3) maximum installed gas capacity, and 4) maximum 
installed wind capacity, resulting from any given SPEED simulation. The key uncertain model input parameters we 
study are capacity reserve margin for expansion, cost of loss of load, cost of excess load, natural gas price, wind 
installation cost, and transmission capacity. Simulations are performed utilizing the modifed Institute of Electrical 
and Electronics Engineers’ (IEEE) Reliability Test System (RTS) provided by the Grid Modernization Lab Con-
sortium (GMLC). The resulting data is post-processed, and two different approaches are considered to quantify the 
uncertainty in the model including sparse Polynomial Chaos Expansions (PCEs) and Active Subspace analysis. Five 
global sensitivity metrics, which explicitly quantify uncertainty by measuring an input parameter’s infuence on the 
variance of the QoIs and provide a measure of explainable uncertainty, are reported. PCE surrogate models were 
constructed and exploited to generate rich posterior distributions of the SPEED model output QoIs. To better under-
stand the uncertainty associated with associated UC, we conducted two independent numerical experiments holding 
all modeling conditions equal except for the integer modeling assumption regarding the dispatch decision variables, 
which has a signifcant impact on the model complexity. Our results support the following conclusions: 

• The global sensitivity metrics indicate that all four QoIs are relatively insensitive to the input parameters cost 
of loss of load, cost of excess load, and cost of natural gas, while they are sensitive to reserve capacity margin, 
cost of wind, and transmission capacity but in different ways. See Sections 4.1 and 4.2. 

• The global sensitivity metrics indicate that all four QoIs are infuenced by cost of loss of load, cost of excess 
load, and cost of natural gas only through their interactions with other terms, if at all. 

• Among the 6 uncertain inputs considered, expansion cost in this model is driven primarily by cost of wind and 
secondarily by reserve capacity margin. 

• Among the 6 uncertain inputs considered, operation cost in this model is driven primarily by cost of wind, 
secondarily by transmission availability, and slightly by reserve capacity margin. 

• Among the 6 uncertain inputs considered, maximum installed gas capacity in this model is driven primarily by 
reserve capacity margin, secondarily by cost of wind, and slightly by transmission availability. 

• Among the 6 uncertain inputs considered, maximum installed wind capacity in this model is driven primarily 
by the cost of wind and secondarily by reserve capacity margin. 

• When considering relaxed vs. binary UC, the posterior distributions of the expansions cost, operations cost, 
and maximum installed gas capacity predicted by the PC surrogates are similar, while the distribution of 
maximum installed wind capacity differs signifcantly. See Section 4.3. 
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• The mean values of each QoI, approximated by the PCE surrogates, are similar for both relaxed and binary 
UC. However, we report larger standard deviations in the distributions of expansion cost, operations cost, and 
max installed wind capacity for relaxed UC compared to the binary UC model assumption. In contrast, the 
standard deviation for max installed gas capacity was smaller for relaxed UC compared to binary. 

• The distribution of max installed wind for relaxed UC is bimodal and right-skewed, while the distribution for 
binary UC shows no apparent skew or multiple modes, potentially indicating that by relaxing the UC dispatch 
decision variables, CEP models could be signifcantly underestimating the amount of installed wind capacity 
required to satisfy design constraints, e.g., transmission guidelines or resource adequacy constraints such as 
reserve capacity margin. 

• Prior work has demonstrated that relaxing binary UC variables in PCMs alone does not necessarily reduce 
computational burden, contrary to expectations larger binary decision trees improved UC model resolution, 
and that results are likely solver dependent (Alemany, Kasprzyk, and Magnago 2018). Our results show 
signifcant reduction in the computational burden of the SPEED model by relaxing binary UC variables, see 
Section 4.3. 

The implementation of the SPEED model in this study was relatively narrow both in the geographic location of the 
RTMS-GMLC data set within the U.S., but also in the greater scheme of CEP research. This study did not consider 
modeling the expansion of battery storage technologies or other variable generating technologies such as solar PV 
and hydro due to the limited scope of analysis. In order to meet the growing demand for the UQ and prediction ca-
pabilities of CEP and PCM models we highlight the importance of continuing to study state-of-the-art methods in 
stochastic programming, data driven modeling, and UQ specifcally to improve or better inform both CEP and PCM 
frameworks. As we discuss in Section 5, a collaborative research effort between modelers, uncertainty analysts, 
and domain scientists is necessary to better understand the fundamental shift predicted in the future from traditional 
thermal generation to a more diverse U.S. electric grid that is more dependent on variable generation technologies 
and renewables (Cole et al. 2020; Murphy et al. 2019). This research effort is particularly important regarding ef-
forts to scale up existing modeling approaches to higher temporal or spatial fdelities, as identifying non-sensitive 
model parameters can greatly reduce model complexity and allow scientists and engineers to study other meaningful 
uncertainties or physical processes within a model. 
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1 Introduction 
Imagine that you are in charge of planning operations as an electrical service provider. You would like to expand 
your ability to meet electricity demand by building new types of generation technologies, but you are not sure what 
comprises the best portfolio of generators. Moreover, there is uncertainty in the market, for example in the form of 
the total amount of generating capacity required on the electric grid, regulatory considerations, or in the installation 
and operational costs of the available generating technologies. The problem you are faced with is referred to as 
a Capacity Expansion Planning (CEP) problem, and within the context of Uncertainty Quantifcation (UQ), it is 
classifed as decision making under uncertainty. 

CEP is a resource allocation problem in which decisions are made and represented as a binary variable. Generally 
speaking, there are two types of decision variables associated with expansion and dispatch decisions, and for each 
decision there are costs associated with installing new generating capacity and dispatching generators. Within energy 
studies, CEP often refers to the planning of expansion decisions, which represent different types, sizes, and locations 
of electricity generating sources to meet demand. Industry professionals, scientists, researchers, and engineers use 
CEP in order to make decisions regarding what technologies, e.g., wind, solar, natural gas, nuclear, etc., to build in 
order to meet demand and satisfy regulatory or reliability conditions. In contrast, Production Cost Modeling (PCM) 
involves simulating the operation of an electric grid and focuses on dispatch decisions. These types of problems are 
important for designing reliable and robust electric grids, and their use can have signifcant and lasting real world 
impacts. Often, computational models are formed of an electric grid and an optimization problem is solved which 
seeks to minimize the costs of expanding the system. 

In this work, we numerically study an electric grid whose expansions costs are on the order of hundreds of millions 
of dollars ($ U.S.D.) and operations costs are on the order of tens of millions of dollars. It is of interest to industry 
professionals, the National Renewable Energy Lab (NREL), and more broadly the Department of Energy (DoE), 
to understand how uncertainties in the inputs of a CEP model may affect the resulting overall build decisions. It is 
also of interest to understand how modeling assumptions within common CEP models may be affecting the resulting 
overall build decisions, in particular the expansion decisions associated with renewable energy technologies such 
as wind turbines and solar photovoltaic (PV) generators. Further complicating matters, CEP problems may become 
more diffcult in the future due to the fact that many renewable energy sources are variable generators which depend 
on environmental factors that impact wind and solar availability. The variable nature of these technologies has asso-
ciated uncertainty that is not present in thermal generating technologies, for example natural gas, coal, and nuclear. 
Given this variable uncertainty in generating technologies, a future shift from traditional thermal technologies to re-
newables may cause the overall uncertainty within CEP models to grow in the future. This observation motivates our 
work, and highlights that studying the uncertainty will remain necessary for building reliable and effcient electric 
grids. 

1.1 CEP with the Regional Energy Deployment System 
This work focuses signifcantly on electrical CEP and PCM and is closely related to NREL’s Regional Energy De-
ployment System (ReEDS) model. While the research in this report does not directly involve simulation with the 
ReEDS model, we mention it to serve as an introduction to state-of-the-art capacity expansion planning. ReEDs 
is NREL’s fagship model for long-term power sector analysis and enables research regarding clean energy policy, 
renewable energy integration, technology development, and issues related to future generation and transmission 
infrastructure. Specifcally, ReEDS models the contiguous United States electric power sector and relies on system-
wide cost optimization in order to estimate the types and locations of future generation and transmission capacity 
(Eurek et al. 2016). 
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Figure 1. An example output of the ReEDS model (Cohen et al. 2019). 

Qualitatively, ReEDS identifes a cost-optimal mix of technologies which satisfy the regional power demand, subject 
to grid reliability (or reserve) requirements, technology resource constraints, and policy constraints. A cost min-
imization problem is solved for 21 two-year periods from 2010 to 2050. The main outputs of the ReEDS model 
include the location of generator capacity and annual generation from each technology, storage capcity expansion, 
transmission capacity expansion, total electric sector costs, electricity price, fuel demand and prices, and carbon 
dioxide (CO2) emissions. A graphical result of the ReEDs model is shown in Figure 1, this image was generated 
using the ReEDS standard scenario viewer publicly available at https://openei.org/apps/reeds/. 

Quantitatively, ReEDS is a recursive-dynamic model that for each scenario ( or year ) s ∈ S, solves a linear program 
of the form 

minimize c̃T x̃s subject to x̃s ∈ Qs, (1) 

where x̃s ∈ Rn is a decision vector, c ˜ ∈ Rn is a cost coeffcient vector, and the requirement x̃s ∈ Qs expresses the 
problem constrains ensuring x̃s is a feasible solution. A schematic of the model structure is shown in Figure 2. 
ReEDS solves 21 = |S| individual, but interacting, linear programming optimization problems. Each optimization 
problem minimizes both capital and operating costs for the U.S. electric grid subject to a number of constraints for a 
two-year period. These constraints fall into the following categories: load constraints, planning reserve constraints, 
operating reserve constraints, transmission constraints, resource constraints, emissions constraints, and policy con-
straints. 

For each year of the ReEDS model, 17 time-slices are used to represent the 8760 hours of the year. Each of the four 
seasons is modeled by a representative day of four time-slices: overnight, morning, afternoon, and evening. The 17th 
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Figure 2. A schematic of the ReEDS model structure (Cohen et al. 2019). 

time-slice represents a summer “superpeak" representing the top 40 hours of summer load (Eurek et al. 2016; Cohen 
et al. 2019). The modeled load is averaged over all hours represented by each time-slice. While this time schedule 
allows for seasonal and diurnal variations in demand, wind, and solar profles, it cannot address shorter timescale 
challenges associated with unit commitment (UC)1 and economic dispatch, particularly under circumstances with 
high penetration of variable generation (e.g. wind and solar). However, efforts have been made to inform the dis-
patch order associated with the 17 timeslices by building hourly modules that defne ReEDS parametric constraints, 
and the resulting decisions were post-processed with PLEXOS PCM to investigate unserved load and reserve viola-
tions, which are indicators of grid reliability and resource adequacy (Frew et al. 2019). 

Efforts have also been made to study uncertainty in the ReEDS model, but due to the complexity and scale of the 
model uncertainty analysis is typically performed through scenario analysis (Cole et al. 2018). The standard sce-
narios2 used to study the ReEDS model are a relatively small collection of forward-looking projections of the U.S. 
power section which are used to identify trends between inputs and expansion decisions (outputs). The standard 
scenarios consider input factors like electricity demand growth, fuel prices, fnancing assumptions, model foresight, 
expansion costs for generating technologies, resource and system contraints, and existing feet retirements (Cole et 
al. 2020). While scenario analysis provides some insights for such a complex model, efforts to quantify uncertainty 
globally by varying all factors of uncertainty simaltaneously have received comparably less attention. One approach 
that allows for more freedom in modeling uncertainty in these types of problems involves stochastic programming. 

1.2 Stochastic Programming for Capacity Expansion Planning 
The Scalable Power-System Economic Expansion Dispatch (SPEED) model is a similar model to ReEDS which 
may be used to study CEP and production cost modeling. This model has several advantages compared to ReEDS 
including a simple scheme for data storage and transfer, a streamlined approach for new scenario generation, a well-
suited parallel computing implementation compatible with the Eagle HPC at NREL, and signifcantly improved 

1Unit commitment (UC) refers to the scheduling of generating units such that total operating cost is minimized. 
2A standard ReEDs scenario should not to be confused with s. The scenario s represents a year’s worth of data, and it provides time-series 

data for input parameters such as wind availability, solar availability, and electricity demand as well as regulatory or reliability constraints 
associated with factors like emissions, transmission, and safety margins. These input parameters are used to make decisions by solving the linear 
program (1). The effect of changing from one standard scenario to the next can be interpreted as using different sets S. 
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fexibility of time series data sampling. The last advantage is of particular interest. Because the SPEED model 
enables a greater degree of fdelity in time compared to the ReEDS model, it enables the study of smaller time scales 
associated with UC and economic dispatch scenarios with high penetration of renewables. 

With perfect knowledge of the future a decision maker would simply make decisions according to x ˜∗ that is an s 
optimal solution to (1) for the scenario s which they knew would be realized. Realistically, decision makers must 
decide on capacity expansion plans without a priori knowledge which scenario will be ultimately realized. This fact 
motives the use of an optimization model which possess a mechanism for dealing with such uncertainty. 

Let P [s] denote the probability of the occurrence of each scenario s ∈ S. Such probabilities enable a model which 
takes into account prior knowledge of the distribution of individual scenarios, or in the case of CEP to weight the rel-
ative importance of particular scenarios based on problem specifc knowledge. Under this probabilistic framework, 
decisions can be made according to the stochastic optimization problem 

minimize c̃T x̃+ ∑ P [s] (fT ys) subject to (x̃,ys) ∈ Q ∀s ∈ S, (2) s 
s∈S 

where the decision vector x ˜ (with x̃s = x̃, ∀s ∈ S) does not allow decisions to depend on the scenario s through 
non-anticipativity constraints (Watson, Woodruff, and Strip 2008). In this problem, ys represents scenario-specifc 
decision associated with costs fs, which are determined by x ˜ and a particular scenario s ∈ S. Below is a complete 
defnition of the SPEED model parameters and stochastic optimization problem associated with CEP. 

Table 1. SPEED Model Parameters 

G Set of thermal generator types which exist Ecap Minimum capacity expansion required for 
on the system the system 

Gnew Set of thermal generator types which can therm,min n g Minimum expansion number of thermal

R 
be added to the system 
Set of renewable generator types renew,min n r 

generators of type g 
Minimum expansion number of renewable 
generators of type r 

Rnew Set of renewable generator types which therm,max n g Maximum expansion number of thermal 
can be added to the system generators of type g 

T Set of time steps renew,max n r Maximum expansion number of 
renewable generators of type r 

D Set of load buses min pg Min output of thermal generator type g 
S Set of dispatch scenarios pmax 

g Max output of thermal generator type g 
K Set of lines pmax 

r Max output of renewable generator type r 
G[q] Set of thermal generators at bus q γs 

r,t Percentage of renewable capacity avail-
able for renewable generator type r at time 
t in scenario s 

Gnew[q]
R[q]

Set of new thermal generators at bus q 
Set of renewable generators at bus q 

Rup 
g 

Rdown 
g 

Max ramp up for thermal generator type g 
Max ramp down for thermal generator 
type g 

Rnew[q] Set of new renewable generators at bus q ds 
q,t Load q at time t in scenario s 

ng Expansion decision for the number of Rcap Capacity reserve factor 
thermal generators of type g 

nr Expansion decision for the number of Rmin 
g Minimum reserve amount that must be 

renewable generators of type r provided for thermal generator type g if 
providing reserves 

ps 
g,t Dispatch decision for thermal generator Rsys 

g Minimum operating reserve amount for 
type g at time t under scenario s the system 

ps 
r,t Dispatch decision for renewable generator Ig Binary indicator parameter which de-

type r at time t under scenario s termines if a generator type g provides 
operating reserves 
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Idis vs Voltage value for bus q at time t under q,t g 
scenario s 

Ng
s 
,t Number of expanded generators being A 

utilized of type g at time t generating in 
scenario s 

SUg
s 
,t Number of generators started up of type g B 

at time t generating in scenario s 
SDs Number of generators shut down of type g g,t vq,t 

at time t generating in scenario s 
ys Amount of reserves generator type g at F.S. vars g,t 

time t providing in scenario s 
Lq

s 
,t Amount of load lost at bus q at time t in S.S. vars 

scenario s 

OLq
s 
,t Amount of excess load at bus q at time t λs 

in scenario s 
loss cexce c Cost of loss of load 

cg Cost of expansion for thermal generator cr 
type g 

dis dis cg Cost of dispatch for thermal generator cr 
type g 

csu sd 
g Cost of start up for thermal generator type cg 

g 
old old ng Existing number of thermal generators of nr 

type g 

The stochastic optimization problem is defned as follows. 

Parameter which determines the percent 
of maxgen a generator type g provides to 
the system capacity 
Incidence matrix for the network 
(Buses×Lines) 

Susceptance matrix 

voltage at bus q 

ng for g ∈ G∩ Gnew and nr for r ∈ 
R∩ Rnew 
ps

g,t ,Ng
s 
,t ,yg,ts ,SDs

g,t for g ∈ G ∩ Gnew 
pr,ts for r ∈ R ∩ Rnew 
Ls

q,t ,OLs
q,t for q ∈ D 

Weight of scenario s 

Cost of excess load 
Cost of expansion for renewable generator 
type r 
Cost of dispatch for renewable generator 
type r 
Cost of shut down for thermal generator 
type g 
Existing number of renewable generators 
of type r 

∑ cg pmax 
g ng + ∑ cr pmax minimize nr + . . . r 

g∈Gnew r∈Rnew � � 
dis s su sd 

g,t + c∑ λs ∑ ∑ SUg
s 
,t + c SDs 

g,t c p + . . . g g g 
s∈S t∈T g∈G∪Gnew 

dis 
∑ λs ∑ ∑ s 

r,t + . . . c pr 
s∈S t∈T r∈R∪Rnew � � 
∑ λs ∑ exceOLs c t + clossLs 

t 
s∈S t∈T 

(continued) 
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(1+ Rcap)Ecap ≤ ∑ max old Idis maxngIdis m old Idis maxnrIdis subject to pg ng g + ∑ pg g + ∑ pr axnr r + ∑ pr r 
g∈G g∈Gnew r∈R r∈Rnew 

therm,min therm,max ng ≤ ng ≤ ng ∀g ∈ Gnew 

renew,min renew,max n ≤ nr ≤ n ∀r ∈ Rnew r r 
old 0≤ Ns 

g,t ≤ ng ∀s, t,g ∈ Gnew�G 

0≤ Ng
s 
,t ≤ ng ∀s, t,g ∈ G�Gnew 

old 0≤ Ng
s 
,t ≤ ng + ng ∀s, t,g ∈ G∩ Gnew 

min s Ns pg g,t ≤ pg,t ∀s, t,g 
s s max pg,t + yg,t ≤ pg Ng

s 
,t ∀s, t,g 

Rmin s � max min � 
g Ng

s 
,t(Ig) ≤ yg,t ≤ pg − pg Ng

s 
,t(Ig) ∀s, t,g 

Ng
s 
,t−1− Ng

s 
,t + SUg

s 
,t − SDg

s 
,t = 0 given Ng

s 
,0 ∀s, t,g 

Rsys ≤ s 
∑ yg,t ∀s, t 

g∈G∪Gnew 

s max old 0≤ pr,t ≤ γr
s 
,t pr nr ∀s, t,r ∈ R�Rnew�G 

s max 0≤ pr,t ≤ γr
s 
,t p nr ∀s, t,r ∈ Rnew�R r � � 

s max old 0≤ pr,t ≤ γr
s 
,t pr nr + nr ∀s, t,r ∈ R∩ Rnew 

Rdown s s
g,t−1 ≤ Rup s 

g ≤ pg,t − p g given pg,0 ∀s, t,g 

f max 
l,t ≤ f max 

l ≤ f s 
l ∀s, t, l 

min s max vq,t ≤ vq,t ≤ vq,t ∀s, t,q � � 
s s fl,t = Bq,q0 vq,t − vq0 ,t (l := line from q to q0) ∀s, t, l 

s s 
∑ pg,t + ∑ pr,t + ∑ Aq,l fl

s 
,t = dq

s 
,t + OLq

s 
,t − Lq

s 
,t ∀s, t,q 

g∈G[q]∪Gnew[q] r∈R[q]∪Rnew[q] l∈K 

Ng
s 
,t ,SUg

s 
,t , SDs

g,t ∈ N ∀s, t,g 

Generally, UC involves solving optimization problems where dispatch decisions represent which generators are 
switched on to meet the electricity demand. In the SPEED model, UC is determined by the dispatch decision vari-
ables ps

g,t and ps
r,t which are typically modeled as integers. However, it is of interest to see how relaxing this integer 

assumption to a continuous variable would impact the expansion and operating costs as well as the expansion deci-
sions. 

The mathematical signifcance of this relaxation, is that it changes the dispatch problem from solving a mixed-
integer linear program (MILP) to a linear program (LP) which can greatly reduce the complexity of the problem and 
allow other physically meaningful aspects of CEP to be modeled. However, it should be mentioned prior work has 
demonstrated that relaxing binary UC variables in PCMs alone does not necessarily reduce computational burden, 
contrary to expectations larger binary decision trees improved UC model resolution, and results are likely solver 
dependent (Alemany, Kasprzyk, and Magnago 2018). If the MILP can be relaxed to an LP, then it might be possible 
to include a reactive (or alternating current) optimal power fow model in SPEED, as opposed to the simpler but 
less accurate direct current optimal power fow. Relaxing the UC problem is possible with the SPEED model. In 
this work, we study this relaxation by conducting two similar experiments produced both with and without this UC 
integer relaxation. The goal of this experiment is to see if this model assumption signifcantly impacts the quantities 
of interest, and to investigate possible changes in computational burden due to differing model complexities. 
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1.3 Contributions of this research 
The need to understand how uncertainties within CEP models and modeling assumptions affect quantities of interest 
such as expansion and operating costs, as well as expansion decisions is substantial. This area of research is particu-
larly important for models which seek to capture how large networks will evolve and operate under increased sources 
of variable generation, i.e., higher penetration of renewable technologies such as solar and wind power. Uncertainty 
quantifcation of CEP models which estimate expansion costs and decisions and production cost models which esti-
mate operating costs and dispatch decisions is a key focus of research at NREL. ReEDS considers a range of possible 
grid evolutions in an attempt to identify key drivers, ramifcations, and decisions which contribute to better informed 
investment and policy decisions. However, research to quantify how uncertainties and model assumptions, such as 
UC, within ReEDS may be affecting its outputs globally remains challenging due to to size and complexity of the 
model (Murphy et al. 2019, Appendix A). 

This report focuses specifcally on uncertainty quantifcation of the SPEED model. Mathematically, the SPEED 
model is a generalization of the ReEDS linear optimization problem (1). It allows for higher fdelity time-series data 
to simulate CEP and production cost modeling compared to ReEDS. This ability to sample at a higher fdelity in time 
enables us to study the smaller time scale features of the model associated with UC, where ReEDS is limited. 

To quantify the uncertainty we build low-dimensional representations of specifc quantities of interest which enable 
global sensitivity analysis. Specifcally, we use sparse polynomial expansions to build surrogate models of specifc 
Quantities of Interest (QoIs) using simulations of the SPEED model run on the Eagle HPC, surrogate models are 
validated to ensure their accuracy and avoid over-ftting potentially noisy or corrupted data. These two approaches 
are chosen because they may be used to compute global sensitivity metrics of the SPEED model. 

Our results in Sections 4 show that by relaxing the binary UC dispatch decision variables, CEP models could be 
signifcantly underestimating the amount of installed wind capacity required to satisfy design constraints, e.g., trans-
mission guidelines or safety constraints such as reserve capacity margin. While prior work has demonstrated that 
relaxing binary UC variables in PCMs alone does not necessarily reduce computational burden, contrary to expec-
tations larger binary decision trees improved UC model resolution, and overall results are likely solver dependent 
(Alemany, Kasprzyk, and Magnago 2018). Our results show signifcant reduction in the computational burden of 
the SPEED model with relative increases in uncertainty (varability in QoI estimates) by relaxing binary UC decision 
variables in QoI estimates. See Section 4.3. 

2 The RTS-GMLC Data Set 
The SPEED model uses two stage stochastic optimization to make generation capacity expansion decisions for a 
power grid. For this work, the SPEED model parameters in Table 1 are defned according to a modifed version of 
the Reliability Test System by the Grid Modernization Laboratory Consortium (RTS-GMLC). The RTS-GMLC 
is based upon the 1979 and 1996 Institute of Electrical and Electronics Engineers (IEEE) Reliability Test Systems 
(RTS-96) (Grigg et al. 1999). The RTS-GMLC features several key changes from the RTS-96, for more information 
on this system see https://github.com/GridMod/RTS-GMLC/. Overall, RTS-GMLC is a data set used 
for production cost modeling of a hypothetical electric grid operating over the geographic region overlapping Los 
Angles, Las Vegas, and Western Arizona. 

For this work the SPEED model was confgured to compute an optimal capacity expansion plan for the modifed 
RTS-GMLC 10 years in the future. An annual load growth of 3% a year was assumed and a typical pattern of retire-
ment for generators was used, which was informed from the U.S. Energy Information Administration (EIA) report 
(Jell and Bowman 2018). Additionally, all hydro-electric and photovoltaic (PV) generation were removed from the 
system. This decision was made due to the limited scope if this project. The generator expansions were restricted to 
be typical sized wind power plants, combined cycle (CC) gas generators, and combustion turbine (CT) gas genera-
tors at specifed buses. In summary the model aimed to build out the optimal combination of wind and gas generation 
for the projected load on the system in 10 years. 

Part of the aim of this research is to identify key input parameters and QoIs (or outpus) that are relevant for capacity 
expansion decisions. For the scope of this work, we assume the uncertain model inputs include 1) the capacity 
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Parameter ξi Description Units Range 

Rcap Capacity Reserve Margin % [10,20] 
loss c Loss of load cost $/MWh [4000,15000] 

cexce System excess load cost $/MWh [100,1000] 
cng Natural gas price $/MMBTU [1,10] 
wind c Wind Install Cost % [70,105] 
tcap Transmission Capacity % [50,150] 

Table 2. SPEED Model Uncertain Input Parameters 

QoIs u j Description Units 

cexp System Expansion Cost $ 
coper System Operation Cost $/year 

maxwind Installed Wind Capacity MW 
maxgas Installed Gas Capacity MW 

Table 3. SPEED Model Quantities of Interest 

reserve factor Rcap, 2) the cost of loss of load closs, 3) the cost of excess load cexce, 4) the price of natural gas3 cng, 5) 
loss the cost of wind installation cwind , and 6) the transmission capacity tcap. See Table 2. The cost of loss of load c

represents the dollar amount which is lost due to a generator falling short of its available capacity, a nominal value 
of this cost is $10,000/ MWh (Megawatt-hour). The capacity reserve factor Rcap is a percentage of the required 
capacity which is added to the total expansion requirement to prevent a supply shortage, typically this is modeled 
as 15% of the required expansion capacity following the North American Electric Reliability Corporation (NERC) 
recommendation (Reimers, Cole, and Frew 2019). The cost of system overload cexce is typically modeled as an order 
of magnitude smaller than closs and represents the dollar amount associated with a system overload, there is not a 
well establish nominal value for this parameter making it an important uncertainty of the model. Such overloads 
can damage existing infrastructure and might occur when variable generation peaks, for example when both high-
wind and solar availability occur at the same time. The natural gas price cng is informed by the Henry Hub Natural 
Gas Spot Price history provided by the EIA. The cost of wind installation cwind is informed by the 2018 land-based 
wind annual technology baseline levelized cost of energy (LCOE) projections (Vimmerstedt et al. 2018), and the 
2017 Wind Technologies Market Report (Wiser and Bolinger 2017). The transmission capacity tcap is an artifcial 
parameter, not listed in Table 1, which we introduce for the purpose of uncertainty quantifcation. Transmission 
capacity is modeled by considering a percentage tcap of the transmission capacity defned by the RTS-GMLC data 
set. For example, tcap = 100% represents the exact total amount of transmission capacity for RTS-GMLC data set, 
while a value of tcap = 50% represents a grid which has 50% the transmission capacity between all nodes, compared 
to RTS-GMLC. Traditionally, the term transmission capacity may refer to the amount of power in watts which can 
be sent over a transmission line within acceptable line loss limits, our defnition of tcap is a percentage which scales 
this value for every line in the RTS-GMLC data set. 

The QoIs for this study are aggregate outputs of the SPEED model. We defne the QoIs as 1) system expansion 
cost cexp, 2) system operation cost coper, 3) installed gas capacity maxgas, 4) and installed wind capacity maxwind . 
See Table 3. Mathematically, the expansion and operations costs are associated with the frst and second terms of 
c̃T x̃+ ∑s∈SP [s] (fT ys), the objection function of the stochastic optimization problem (2). s 

dis 3This quantity is modeled through the speed model parameter cg . 
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3 Methods for Uncertainty Quantifcation 
In this section we briefy summarize two distinct approaches for uncertainty quantifcation that are used to study 
the SPEED model. These methods are chosen specifcally because they admit the calculation of global sensitivity 
metrics, which explicitly quantify uncertainty in the model’s variance. Global sensitivity metrics are often used for 
sensitivity analysis to quantify each uncertain input parameter’s infuence or importance on a specifed QoI. The term 
global means that the metrics access the importance of each variable over a range of parameters compared to local 
which often refers to measuring the model’s response to small perturbations around a nominal parameter value. 

3.1 Polynomial Chaos Expansions 
One common approach for UQ of problems with random inputs involves expanding a QoI, with fnite variance, in 
a multivariate polynomial basis using so-called Polynomial Chaos (PC) expansions. Consider our uncertain model 
inputs 

T 
ξξξ = [ξ1, . . . ,ξd ] , (3) 

and an orthogonal polynomial basis {ψ1, . . . ,ψP} such that Z 
E [ψi(ξξξ )ψ j(ξξξ )] = ψi(ξξξ )ψ j(ξξξ ) f (ξξξ )dξξξ = hψi(ξξξ ),ψ j(ξξξ )i = δi jγi (4) 

Ω 

where Ω ⊆ � Rd � is the input parameter space, f (ξξξ ) is the product of densities corresponding to each uncertain input, 
and γi = E ψ2 is a product of univariate normalization constants. For a random process u(t,x, ξξξ ) : [0,T ] × D × Ω → i 
R a PC expansion can be written as 

∞ 

u(ΞΞΞ) = ∑ ckψk(ΞΞΞ). (5) 
k=0 

We truncate the expansion in (5) for computation, i.e., 

P P 
u(ΞΞΞ) = ∑ ckψk(ΞΞΞ)+ ε(ΞΞΞ) ≈ ∑ ckψk(ΞΞΞ), (6) 

k=1 k=1 

(p+d)! where P = is the the number of basis functions, p is the highest polynomial order allowed, sometimes referred p!d! 
to as total order, d is the number of uncertain inputs, sometimes referred to as the stochastic dimension, and c = 
[c1, . . . ,cP]

T is a vector of coeffcients. In words, the expansion in (6) is the projection of u onto the space Pp(ξξξ ) 
which is the space of all polynomials of ξξξ ∈ Rd of up to degree p. Note as we explain in Section 2 the random 
processes or QoI’s of the SPEED model are aggregated and defned over a specifed spatial region for a specifc point 
in time, for these reasons we suppress the explicit dependence of u on x and t for the remainder of this work. It has 
been observed for a variety of physics based science and engineering problems that often, many of the coeffcients ck 
are negligible and thus u(ΞΞΞ) admits a sparse representation of the form 

u(ξξξ ) ≈ ∑ ckψk(ξξξ ), (7) 
k∈C 

where the index set C has few elements, say s = |C| � P, and we say that our QoI is approximately sparse in the 
polynomial basis. Sparse PCEs have been used within the context of UQ for a variety of problems (Doostan and 
Owhadi 2011; Blatman and Sudret 2011; Mathelin and Gallivan 2012; Jones, Parrish, and Doostan 2015; Sargsyan 
et al. 2014; Yan, Guo, and Xiu 2012; Yang and Karniadakis 2013; Peng, Hampton, and Doostan 2014; Schiavazzi, 
Doostan, and Iaccarino 2014; West IV and Hosder 2014; Diaz, Doostan, and Hampton 2018; Jakeman, Eldred, and 
Sargsyan 2015; Hampton and Doostan 2015; Bouchot et al. 2015; Peng, Hampton, and Doostan 2016; Chkifa et 
al. 2016; Winokur et al. 2016; Yang et al. 2016; Adcock 2017; Jakeman, Narayan, and Zhou 2017). 

The multivariate polynomial basis functions ψk(ξξξ ) are the result of a tensor product where each basis function can 
be expressed as a product of 1-dimensional polynomials of order n, ϕn(ξi) for i = 1, . . . ,d. To better illustrate this we 
highlight that (6) can be written using multi-indices, which are tuples of integers k0 ∈ Nd , where the components of 
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k0 indicate the order of the 1-dimensional polynomials which when multiplied together make up a single multivariate 
basis function. We can re-write (6) as 

p P 
uP(ξξξ ) = ∑ ck0 ψk0 (ξξξ ) = ∑ ckψk(ξξξ ), (8) 

|k0|=0 k=1 

which is a useful representation to describe the global sensitivity metrics PC expansions provide. Table 4 shows the 
single index, multi-index, and tensored polynomials for a PC expansion with (d, p) = (3,2), we encourage those who 
are interested to read Smith 2013, Section 10.1 for more foundational information on PCEs. There are many types 

k order |k0| Multi-index Polynomial ψk(ξξξ ) 
1 0 (0,0,0) ϕ0 = 1 
2 
3 
4 

1 (1,0,0) 
(0,1,0) 
(0,0,1) 

ϕ1(ξ1)ϕ0(ξ2)ϕ0(ξ3) 
ϕ0(ξ1)ϕ1(ξ2)ϕ0(ξ3) 
ϕ0(ξ1)ϕ0(ξ2)ϕ1(ξ3) 

5 
6 
7 
8 
9 

P = 10 

p = 2 (2,0,0) 
(1,1,0) 
(1,0,1) 
(0,2,0) 
(0,1,1) 
(0,0,2) 

ϕ2(ξ1)ϕ0(ξ2)ϕ0(ξ3) 
ϕ1(ξ1)ϕ1(ξ2)ϕ0(ξ3) 
ϕ1(ξ1)ϕ0(ξ2)ϕ1(ξ3) 
ϕ0(ξ1)ϕ2(ξ2)ϕ0(ξ3) 
ϕ0(ξ1)ϕ1(ξ2)ϕ1(ξ3) 
ϕ0(ξ1)ϕ0(ξ2)ϕ2(ξ3) 

Table 4. Single index, multi-index, and tensored polynomials for (d, p) = (3,2). 

of orthogonal polynomials, some standard distributions and their corresponding orthogonal polynomials referred to 
as the Wiener-Askey Polynomial Scheme are shown in Table 5, in this work we use Legendre polynomials (Xiu and 
Karniadakis 2002). As a practical note, if a scientist or engineer is working with data ξξξ which follows an unknown 
distribution f (ξξξ ), numerical methods exist, typically based on Gram-Shmidt Orthonormalization, to construct an 
appropriate basis. 

f (ξi) Polynomial Type Support 
Gaussian Hermite (−∞,∞) 
Uniform Legendre [a,b] 

Beta Jacobi [a,b] 
Gamma Laguerre (0,∞) 

Table 5. Four standard types of orthogonal polynomials according to the Wiener-Askey Polynomial Scheme. 

To construct a polynomial expansion for a given QoI we perform two main steps. For the frst main step, we draw 
i = 1, . . . ,N independent samples from f (ξξξ ), which we denote ξξξ i, then evaluate the computational model which 
yields corresponding values of the QoI u(ξξξ i). The polynomial coeffcients c are approximated using the experimental 

N N design consisting of samples {ξξξ i}i=1 and their corresponding QoIs {u(ξξξ i)}i=1, which are related by the linear 
system u≈ ΨΨΨc, where 

T 
ΨΨΨ(i, j) := ψ j(ξξξ i) and u := [u(ξξξ 1), · · · ,u(ξξξ N)] , (9) 

so that our QoI is expanded into a polynomial basis ΨΨΨ. 
N In some studies, it may be of interest to investigate how best to construct the experimental design {ξξξ i}i=1 with 

the intent of building a surrogate model prior to computing or sampling an expensive QoI, this type of research is 
commonly referred to as Optimal Design of Experiments (Pukelsheim 2006). Generally speaking, in the context 
of PCE-based surrogate modeling this type deterministic sampling, and even adaptive sampling schemes, have 
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been shown to greatly beneft problems of high polynomial order p and relatively low stochastic dimension d, i.e., 
problems such that p > d (Fajraoui, Marelli, and Sudret 2017; Diaz, Doostan, and Hampton 2018). In this work, 
(d, p) = (6, 6) and constructing our sparse PCE surrogates can be considered a relatively high-dimensional problem, 
therefore, as the prior research suggests, deviating from traditional Monte Carlo sampling would be expected to have 
limit benefts and was deemed out of the scope of this particular study. 

Our motivation for choosing a Legendre polynomial dictionary is rooted in the fact that the Legendre polynomial 
basis is orthogonal with respect to the uniform probability density function over [−1,1]d . The orthogonality of a 
given basis is intimately tied the mutual coherence of ΨΨΨ, given by h i |hΨΨΨ(:,k), ΨΨΨ(:, l)i| 

µ(ΨΨΨ) = max = max | GGG̃(i, j)| ∈ µ(ΨΨΨ),1 (10) 
k<l kΨΨΨ(:,k)k2kΨΨΨ(:, l)k2 6 j i= 

where GGG̃ = ΨΨΨ̃
T 

ΨΨΨ ˜ is called the Gram matrix of ΨΨΨ ˜ = ΨΨΨSSS and SSS is a diagonal scaling matrix ensuring each column of q 
˜ P−N 

ΨΨΨ has unit length, and the value µ(ΨΨΨ) = defnes the Welch bound (Hong and Zhu 2018). N(P−1) 

The mutual coherence is closely related to the maximum pairwise correlation between any two basis functions of a 
given basis, i.e, the worst-case coherence between any two columns. In terms of compressed sensing, it is generally 
advantageous to have an incoherent basis which is a basis with small mutual coherence. If a solution of interest has 
an exact representation in an appropriate polynomial basis and the QoI values are exact, then any K-sparse solution 
can be exactly recovered by compressed sensing algorithms provided that � 

1 
K < 1+ 

1 
� 

, (11) 
2 µ(ΨΨΨ) 

where K is the number of non-zero entries in the solution vector c (Hong and Zhu 2018; Elad 2010). Moreover, if a 
vector c ∈ RP has K non-zero entries then we defne the ` 0 pseudo-norm as kξξξ k0 = K. Intuitively, if two columns 
of ΨΨΨ are closely correlated it is diffcult to distinguish whether the nonlinear model features expressed by the data 
may be attributed to one basis function or the other (Candes et al. 2011). If the data ξi are uniformly distributed 
over [−1,1] then the Legendre polynomial dictionary has precisely the incoherence properties which provide opti-
mal compressed sensing results, and certain reconstruction guarantees exist (Schaeffer, Tran, and Ward 2018). For 
analysis, it is often useful to deal with Legendre polynomials because they are bounded over [−1,1]. From (11), we 
highlight that the convergence of our PCE surrogates depends explicitly on K and µ(ΨΨΨ), and implicitly on N and 
P. Employing compressed sensing can allow for stable and convergent solutions when the number of samples in the 
experimental design is limited, i.e., N < P, due to the high computational cost of simulating or collecting values of 
the QoI. However, because the exact coeffcients c and therefore K is not known a priori, is it not possible to know 
precisely the number of samples N required for a specifc QoI surrogate model, which highlights the importance of 
validation. This validation process is part of the second step for constructing a PCE surrogate model. 

The second main step involves evaluating the polynomial basis to build the matrix ΨΨΨ, then solving a sparse regres-
sion problem. Two such problems are detailed in this section. 

In the study of compressed sensing, a sparse approximation of c can be obtained by solving the optimization problem 

c ˆ = argmin kck0 subject to ku− ΨΨΨck2 ≤ δ , (12) 
c 

where kck0 = {the number of indices k such that ck = 6 0} indicates the sparsity c. In (12), δ is a tolerance of solu-
tion inaccuracy due to the truncation of the expansion. While, the problem (12) is NP-hard to solve, approximate 
solutions may be obtained in polynomial time using a variety of greedy algorithms including orthogonal match-
ing pursuit (OMP) (Tropp and Gilbert 2005; Tropp and Gilbert 2007; Needell and Vershynin 2010; Davenport and 
Wakin 2010), compressive sampling matching pursuit (CoSaMP) (Needell and Tropp 2009; Pal and Mengshoel 
2016), and subspace pursuit (SP) (Dai and Milenkovic 2009). A convex relaxation of (12) can also be solved via 
` 1-minimization (Candès and Wakin 2008; Donoho 2006). Specifcally, 

c ˆ = argmin kck1 subject to ku− ΨΨΨck2 ≤ δ , (13) 
c 

12 
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Figure 3. A stereotypical L-curve for the ` 0 optimization problem (12). 

is referred to as Basis Pursuit Denoising (BPDN). The key advantage of an approximation via compressed sensing 
is that, if the QoI is approximately sparse, stable and convergent approximations of c can be obtained using N < P 
random samples of u(ΞΞΞ), as long as ΨΨΨ satisfes certain conditions (Candès and Wakin 2008; Donoho 2006; Doostan 
and Owhadi 2011; Rauhut and Ward 2012; Hampton and Doostan 2015; Adcock 2017). To solve the BPDN problem 
we use the SPGL1 Matlab package (Berg and Friedlander 2007). 

We solve the basis pursuit denoising problem (13) via the SPGL1 Matlab package (Berg and Friedlander 2007) 
with Robust Projection Matrix Optimization to improve the accuracy following (Hong and Zhu 2018). L-curve 
optimization is used to validate an optimal value of δ which balances the residual ft ku− ΨΨΨck2 with the sparsity (or 
model complexity) kck1 so that the PC model is not overft. 

Nδ L-curve optimization generally speaking involves solving (13) for a variety of tolerance parameters {δk}k=1 and 
approximating the optimal value according to the L-curve criterion. Because kck1 and kck0 are typically decreasing 
functions of δ and ||u− ΨΨΨĉ||22 is a strictly increasing function of δ , when plotted on a log-log scale the curve of 
optimal values of ||u− ΨΨΨĉ||22 vs. kck1 or kck0 often take on a stereotypical “L” shape in linear problems called an 
L-curve (Aster, Borchers, and Thurber 2018; Hansen 1992). The L-curve criterion is a way to pick δ according 
to the solution closest to the corner of the L-curve which balances the trade off between the residual ft and the 
sparsity of the PC model which is a measure of the surrogate complexity. Another common approach for selecting 
a tolerance parameter δ is cross-validation (Diaz, Doostan, and Hampton 2018; Doostan and Owhadi 2011). The L-
curve method is preferable to other approaches because it does not involve further partitioning of small data sets into 
training and test data, like for example, cross-validation. Figure 3 depicts a stereotypical L-curve and was generated 
using the python PCE tutorial available at https://github.nrel.gov/aces/CEP_UQ. Each point on the 
L-curve corresponds to a different value of δ and the optimal solution depicted in Figure 3 was such that kĉk0 = 36. 

PC expansions offer explicit formulas for valuable statistical Information. The mean and variance of the QoI are 
given by 

P 
2 

µu = c1, and Var [u] = σu 
2 = ∑ ck . (14) 

k=2 

Recall that estimating the mean and variance via (14) exploits compressed sensing, because we are solving the 
BPDN optimzation problem defned by (13). PCEs via compressed sensing have been shown to produce more 
accurate estimates of the true QoI mean and variance than traditional Monte Carlo estimators, e.g., sample mean 
and standard deviations of the data, for high-dimensional parametric operator equations (Rauhut and Schwab 2017). 

13 
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More generally stochastic spectral methods which PCEs belong to, are able to exploit smoothness and converge at √ 
rates signifcantly faster than the well known 1/ N convergence rate associated with Monte Carlo methods, for 
moderate parameter dimensions (Smith 2013, Section 10). 

Global sensitivity metrics, which explicity quantify uncertainty, are often computed from total Sobol’ indices defned 
by 

1 E [Var [u|ξξξ ∼i]] 2 
τi = ∑ ck0 = , (15) 

Var [u] Var [u] 
k0∈ S+ 

i � 
where S+ 

i := k0 ∈ Nd k0 6: 0≤ |k0| ≤ d, = 0 , and ξξξ ∼i = [ξ1, . . . ,ξi−1,ξi+1, . . . , ξd ]. Moreover, we can also com-o i 
pute frst order Sobol’ indices defned by 

1 E [Var [u|ξi]] 2 
τ1,i = ∑ ck0 = , (16) 

Var [u] Var [u] 
k0∈ S+ 

1,i n o 
where S+ 

1,i := k0 ∈ Nd
o : 0≤ |k0| ≤ d, ki 

0 = 6 0 and k0 j 6=i = 0 . In words, the total Sobol’ index is the expectation 
of the conditional variance of the QoI given the values of all but the ith input, normalized by the total variance. 
And the frst order Sobol’ index is the expectation of the conditional variance of the QoI given the value of the ith 
input, normalized by the total variance. When τi = τ1,i, this means that globally the ith parameter does not interact 
with other uncertainty inputs to affect the variance of the QoI. When τ1,i = 0 and τi = 6 0, the ith parameter globally 
affects the variance of the QoI only through interactions with other parameters. And when τi ≈ τ1,i = 0, the ith input 
parameter globally doesn’t affect the variance either independently or through interactions, and we say the the QoI is 
globally insensitive to that parameter. 

3.2 Active Subspaces 
Active subspaces describe important directions within a mathematical model’s input parameter space/domain. They 
provide a powerful data-driven approach which may be exploited to a number of ends including uncertainty quan-
tifcation, data-visualization, optimization, approximation/surrogate modeling, and parameter space dimension 
reduction. Recall that, u(t, x, ξξξ ) : [0, T ] × D × Ω → R. Let’s assume that our QoI is for a fxed values of t and x and 
drop the explicit dependence. Further, we assume that: 

• u is differentiable (not necessary in practice); 

∂ u • u, 
∂ξi 
∈ L2(Ω), i.e., the QoI and its partial derivatives are square integrable over the input parameter space Ω; 

• ξξξ ∈ Ω = [−1,1]d , the input parameters have been shifted and scaled to be within a d-dimensional hypercube; 

• and f (ξξξ ) = 2−d for ξξξ ∈ [−1,1]d , and zero elsewhere, i.e., each of our d parameters obey a uniform probability 
density. 

Under these assumptions the statistics, the mathematical expected value of the QoI and its variance are defned by R R 
E [u] = u f dξξξ and Var [u] = (u− E [u])2 f dξξξ . We may describe a special symmetric positive semidefnite d× d 
matrix Z 

CCC = ∇u∇uT f dξξξ = WWWΛΛΛWWW T , (17) 

which admits an eigen-decomposition, where WWW = [w1, . . . ,wd ] is an orthogonal matrix of eigenvectors and ΛΛΛ = 
diag(λ1, . . . ,λd) is a diagonal matrix of eigenvalues such that λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. One reason the matrix CCC is 
special is that the formula which defnes its diagonal components Z � �2 

∂ u 
νi = f dξξξ (18) 

∂ξi 

14 
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is exactly the derivative-based global sensitvity metric (DGSM) originally described by (Kucherenko et al. 2009). 
Because f (ξξξ ) represents a probability density function, ∇u(ξξξ ) is a random vector, and CCC represents its uncentered 
covariance matrix. 

In order to explicity quantify uncertainty via active subspace-based global sensitivity metrics we need to focus on the 
right hand side of (17). Generally speaking, the eigenvectors of a matrix identify important directions in the column 
span of that matrix. Moreover, the eigenpairs of the matrix CCC satisfy Z 

T
λi = (∇u wi)

2 f dξξξ . (19) 

In words, the ith eigenvalue is the averaged, squared, inner-product of the QoI’s gradient and the ith eigenvector. The 
expression (19) provides insight as to why this method may be used for global sensitivity analysis and parameter 
space dimension reduction. Consider if λi = 0, then u is constant along the direction wi, i.e., then the ith parameter 
doesn’t affect the QoI globally which is to say when averaged over the entire input parameter space Ω. 

Suppose there is a gap, often an order of magnitude is suffcient, between eigenvalues λn > λn+1 for n < d, then we 
partition the eigenpairs into two sets � � 

ΛΛΛ1 � � 
ΛΛΛ = , and WWW = WWW 1 WWW 2 , (20) 

ΛΛΛ2 

where ΛΛΛ1 = ΛΛΛ(:,1 : n) := the frst n columns of ΛΛΛ, ΛΛΛ2 = ΛΛΛ(:,n+ 1 : d), WWW 1 = WWW (:,1 : n), and WWW 2 = WWW (:, n+ 1 : d). 
The eigenvectors WWW describe a rotation of Rd and consequently the domain of the QoI Ω ⊂ Rd . The subspace 
span(WWW 1) ⊂ Rd defnes an n-dimensional active subspace of u. On average, perturbing the inputs in the frst set 
of coordinates affects the QoI more than in the second set of coordinates. Because of this relationship we defne the 
following 

y = WWW T 
1 ξξξ ∈ Rn , and z = WWW T 

2 ξξξ ∈ Rd−n , (21) 

where y are referred to the active variables and z the inactive variables. Opposed to the active subspace, the 
span(WWW 2) is referred to as the inactive subspace. Both the active and inactive variables are a linear combinations 
of the uncertain model inputs, i.e., a weighted sum of the components of ξξξ . For example, y1 = wT 

1 ξξξ = ∑d
i=1 w1,iξi. 

Moreover because |y|, |z| < d, the matrices WWW 1 and WWW 2 defne rotations of Rd ⊃ Ω which map to a lower-dimension. 
Because WWW 1 maps the input parameters to a dimension lower than d by rotating Rd such that the most important 
features of the model are expressed, active subspaces make it possible to easily visualize the high-dimension model 
response surface of the QoI as a function of the active variables y, provided n ≤ 3. 

We can check a model for active subspaces by frst approximating the gradients, assuming most models do not 
provide gradient calculations. In this work, we approximate gradients via local linear gradients as in (Hristache et 
al. 2001).4 The following Monte Carlo method for estimating CCC was proposed and analyzed in (Constantine and 
Gleich 2014). For i = 1, . . . ,N, draw ξξξ i according to f (ξξξ ). Compute ∇ui = ∇u(ξξξ i). Then estimate 

N 
T CCC ≈ CCĈ = 

1 
∑ ∇ui∇ui = WWW ˆ ΛΛΛ ˆ WWŴ

T 
. (22) 

N i=1 

The active subspace error is defned as 

T T 
eas = kWWW 1WWW T 

1 − WWŴ 1 WWŴ 1 k = kWWW 1 WWŴ 1 k, (23) 

which measures error between the approximated active subspace and the true active subspace of the QoI. Mathemati-
cally, eas has an upper bound which is proportional to the ratio λ1/(λn − λn+1), and there are estimates which inform 

4python 2.0 codes for active subspace analysis which implement local linear gradient approximation are available at https:// 
github.com/paulcon/active_subspaces (Constantine et al. 2016), python 3.0 codes are available at https://github.com/ 
mathematicalmichael/active_subspaces. 
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how many samples are required to achieve specifc probabilistic guarantees on eas Constantine 2015, Lemma 3.9. 
Practically speaking, the bound means that if the gap between eigenvalues is large then the active subspace error will 
be small, provided we have enough samples. In this work we bootstrap to estimate the subspace error by resampling 
with 10,000 replicates as in Constantine 2015, Algorithm 3.2. 

The active subspace provides two different global sensitivity metrics. The frst is given by the frst eigenvector of the 
matrix (22), specifcally 

w1 (24) 

identifes the most important direction the input parameter space if λ1 > λ2. The relative importance of w2 is mea-
sured by the gap in λ1 and λ2. The components of w1 may be used as global sensitivity metrics. The relative impor-
tance of each parameter is indicated by the magnitude of the components of w1. Each eigenvector wi is unique up to 
sign, consider that the span defned by wi is also defned by −wi. The sign of components of w1 can be identifed by 
physical reasoning about the model or by computing the regression coeffcients of a linear model, see Constantine 
and Diaz 2017, Section 2.3. The sign indicates whether, on average, small perturbations of a parameter positively or 
negatively affect the QoI. The second metric is the activity score which is defned as 

n 
2 

αi = αi(n) = ∑ λ jwi, j. (25) 
j=1 

The activity score and the total Sobol’ index are related according to the inequality 

1 
τi ≤ (αi(n)+ λn+1), (26) 

4π2 Var [u] 

and it has been demonstrated that the global sensitivity metrics τi, νi, w1,i, and αi(n) can provide consistent results 
for high-dimensional, physics-based models (Constantine and Diaz 2017). Additionally, the activity score and the 
DGSM are related by 

αi(n) ≤ νi, and αi(n = d) = νi,as in (18). (27) 

In words, the activity score is a truncation of the DGSM. This relationship means that when αi(n) ≈ νi and n < d 
so that the model admits an active subspace, the contributions to the QoI’s derivatives, associated with the inactive 
variables, are globally negligible. Mathematically, this scenario occurs when the non-zero entries of ΛΛΛ2 are suff-
ciently small relative to ΛΛΛ1. Generally speaking, these sensitivity metrics are expected to provide similar rankings 
of importance for model parameters, although it is possible to produce a model where they differ, e.g., a model that 
does not admit an active subspace. 

4 Results and Interpretation 
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Figure 4. Histograms of the four SPEED model QoIs with relaxed (top) and binary UC (bot-
tom). The reported values for the mean and standard deviation are estimates of the true pos-
terior distribution of the QoI computed from the PC coeffcients according to (14) and are con-
siderably more accurate estimates compared to the sample average and standard deviation. 

In this Section, we provide the results obtained from simulating the SPEED model for hundreds of randomly sam-
pled uncertain input parameter values both with and without binary UC. The stochastic optimzation problem (2) is 
solved using the Gurobi optimizer (Optimization 2014) to within a mixed-integer programming gap of 0.5%. The 
model is built in the scalable Pyomo PySP framework which enables the model to be solved using the progressive 
hedging algorithm across multiple nodes and cores on an HPC system (Watson, Woodruff, and Hart 2012; Hart et 
al. 2017).5 Figure 4 shows histograms of the four SPEED model QoIs with relaxed and binary UC along with values 
for the mean and standard deviation that are estimates of the true posterior distribution of the QoI computed from the 
PC coeffcients according to (14). For each QoI we report: 

• the fve global sensitivity metrics6 τi,τ1,i,νi,αi(n), and w1,i; 

• eigenvalues of the matrix CCC with 95% confdence intervals via bootstrap estimates; 
N • 1 and 2D suffcient summary plots showing the data {ξξξ i}i=1 as a function of the active variables y; 

• the active subspace error eas with 95% confdence intervals via bootstrap estimates; 

• and the results of the L-curve optimization, i.e., the two measures of surrogate complexity kĉk0 and kĉk1, and 
the validated point-wise relative residual ft error of the PC surrogate model given by 

ku− ΨΨΨĉk2 epc = . (28) 
kuk2 

Samples ξξξ i were drawn randomly according to f (ξξξ ) which defnes a uniform probability density function over the 
hyper cube [−1,1]d , parameters are shifted and scaled to be within the ranges defned in Table 2. Sample sizes for 

5The SPEED model is available at https://github.nrel.gov/aces/SPEED and a python PCE tutorial with codes for post 
processing the data is available at https://github.nrel.gov/aces/CEP_UQ. The SPEED model input and output data and Matlab 
code used for the post processing and generation of these results is publicly available at https://github.com/PaulMDiaz/. 

6The reported values of the activity score and DGSM are obtained by normalizing the metrics ααα and ννν by dividing their true value by kαααk2 
and kνννk2, respectively. This normalization is not necessary for the remaining metrics which are defned to be in the interval [0,1]. 
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QoI u cexp coper maxgas wind max
ePC 0.0202 0.0230 0.0085 0.0273 
kĉk0 116 48 373 124 
kĉk1 1.2051 × 109 6.1586 × 107 9765.8 1.0819 × 104 

µu 9.14× 108 5.14× 107 797 7.28× 103 

σu 6.89× 107 4.94× 106 519 1.09× 103 

Table 6. The validated point-wise relative residual ft, measures of com-
plexity, and QoI statistics of the PCE surrogate models for relaxed UC. 

QoI u cexp coper maxgas wind max
ePC 0.0299 0.0242 0.0509 0.0420 
kĉk0 17 29 271 21 
kĉk1 1.0287 × 109 6.0367 × 107 5720.4 8.5495 × 103 

µu 9.16× 108 5.14× 107 766 7.28× 103 

σu 5.34× 107 3.63× 106 542 818 
Table 7. The validated point-wise relative residual ft, measures of com-
plexity, and QoI statistics of the PCE surrogate models for binary UC. 

each model assumption are N = 349 for relaxed UC and N = 329 for binary UC. PC surrogates are constructed 
using Legendre polynomials up to 6th order where (d, p) = (6,6) for a total of P = 924 total basis functions. This 
experimental confguration results in matrices ΨΨΨ which are wide and correspond to under-determined linear systems 
with noise7, which occurs because we have limited samples of the SPEED model, we are considering 6 uncertain � � 
input parameters, and we are using polynomials of up to order 6; recall that P = p+

p
d . Without reducing the total 

order p of the PCE surrogates, which would reduce the overall accuracy, or by generating more QoI samples by 
running SPEED simulations, we are forced to consider an under-determined system of the form u ≈ ΨΨΨc. Therefore, 
to construct PCE surrogates we exploit compressed sensing to solve (12) or (13). Tables 6 and 7 show the validated 
point-wise relative residual ft, measures of complexity, and QoI statistics for the PCE surrogate models for binary 
and relaxed UC. 

4.1 Relaxed UC Global Sensitivity Analysis 
Figure 5 shows the global sensitivity and active subspace analysis for the expansion cost cexp with relaxed UC. The 
fve global sensitivity metrics indicate consistent rankings of global sensitivities. The expansion cost is globally 
sensitive to reserve capacity margin and the cost of wind. In comparison, the expansion cost is globally insensitive 
to cost of loss of load, cost of excess load, cost of natural gas, and transmission capacity but may be locally sensi-
tive to these inputs. The Sobol’ indices indicate that cost of loss of load , cost of excess load, cost of natural gas, 
and transmission capacity globally affect the expansion cost only through interactions with other inputs, and that 
reserve capacity margin and cost of wind affect expansion cost through both interactions with other inputs and inde-
pendently. The relative gap between the frst (n = 1) and second eigenvalue indicates the model admits a 1D active 

1 ξξξ ≈ 0.51Rcap subspace where the frst active variable y1 = wT + 0.86cwind . The 1D suffcient summary depicts a 
strong linear correlation between the QoI and y1, and is supported by the active subspace error eas which increases as 
a function of n. 

Figure 6 shows the global sensitivity and active subspace analysis for the operation cost coper with relaxed UC. The 
fve global sensitivity metrics indicate consistent rankings of global sensitivities. The operation cost is globally 
sensitive to reserve capacity margin, cost of wind, and transmission availability. In comparison, the operation cost is 

7Although the SPEED model is deterministic in the sense the same inputs always yield the same outputs, the mixed-integer programming gap 
acts as a tolerance of solution accuracy meaning that the SPEED model solutions differ from the true optimal solution slightly. This affect can be 
interpreted as noise in the simulated QoI values. 
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Figure 5. Sensitivity and active subspace analysis for the SPEED model expansion 
cost cexp with relaxed UC. The top row depicts global sensitivity metrics (left), active 
subspace eigenvectors (middle), and eigenvalues (right). The bottom row depicts 1D 
(left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 

globally insensitive to cost of loss of load, cost of excess load, and cost of natural gas but may be locally sensitive to 
these inputs. The Sobol’ indices indicate that cost of loss of load, cost of excess load, and cost of natural gas globally 
affect the operation cost only through interactions with other inputs, and that reserve capacity margin, cost of wind, 
and transmission availability affect operation cost both through interactions with other inputs and independently. 
The relative gap between the frst (n = 1) and second eigenvalue indicates the model admits a 1D active subspace 

1 ξξξ ≈ 0.26Rcap − 0.81cwind where the frst active variable y1 = wT + 0.53tcap. The 1D suffcient summary depicts a 
strong linear correlation between the operation cost and y1, and is supported by the active subspace error eas which 
increases as a function of n, however the confdence intervals suggest the model might admit a 2D subspace. 

Figure 7 shows the global sensitivity and active subspace analysis for the maximum installed gas capacity maxgas 

with relaxed UC. Four of the fve global sensitivity metrics indicate consistent rankings of global sensitivities with 
the total Sobol’ index showing small differences. Max installed gas is globally sensitive to reserve capacitiy margin, 
cost of wind, and transmission capacity. In comparison, the maximum installed gas is globally insensitive to cost of 
loss of load, cost of excess load, and the cost of natural gas but may be locally sensitive to these inputs. The Sobol’ 
indices indicate that cost of loss of load, cost of excess load, and cost of natural gas globally affect max installed 
wind only through interactions with other inputs, and reserve capacitiy margin, cost of wind, and transmission capac-
ity affect maximum installed gas through both interactions with other inputs and independently. Notice that τi is the 
only metric which ranks cost of loss of load, cost of excess load, and cost of natural gas as globally sensitive, this is 
a known fault of the total Sobol’ indices which may give inaccurate estimates for small sensitivities particularly if 
the QoI is non-smooth or discontinuous (Myshetskaya et al. 2008; Constantine and Diaz 2017; Diaz 2016). Approx-
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Figure 6. Sensitivity and active subspace analysis for the SPEED model operations 
cost coper with relaxed UC. The top row depicts global sensitivity metrics (left), active 
subspace eigenvectors (middle), and eigenvalues (right). The bottom row depicts 1D 
(left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 
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Figure 7. Sensitivity and active subspace analysis for for the SPEED model maximum in-
stalled gas capacity maxgas with relaxed UC. The top row depicts global sensitivity metrics 
(left), active subspace eigenvectors (middle), and eigenvalues (right). The bottom row de-

picts 1D (left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 
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Figure 8. Sensitivity and active subspace analysis for the SPEED model maximum installed 
wind capacity maxwind with relaxed UC. The top row depicts global sensitivity metrics (left), 

active subspace eigenvectors (middle), and eigenvalues (right). The bottom row depicts 
1D (left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 

imating non-smooth or discontinuous functions is a known disadvantage to polynomial approximation (Crestaux, Le 
Maıtre, and Martinez 2009, Section 5.3). The relative gap between the frst (n = 1) and second eigenvalue suggests 

1 ξξξ ≈ 0.73Rcap wind − 0.13tcapthe model admits a 1D active subspace where the frst active variable y1 = wT + 0.67c , 
however the gap between the second and third eigenvalue is comparable. The 1D suffcient summary depicts a linear 
correlation between the maximum installed gas capacity and y1 and is supported by the active subspace error eas 
which increases as a function of n, however the confdence intervals suggest the model might admit a 2D subspace. 

Figure 8 shows the global sensitivity and active subspace analysis for the maximum installed wind capacity maxwind 

with relaxed UC. The fve global sensitivity metrics indicate consistent rankings of global sensitivities. Max installed 
wind is globally sensitive to cost of wind and reserve capacity margin. In comparison, the QoI is globally insensitive 
to cost of loss of load, cost of excess load, cost of natural gas, and transmission capacity but may be locally sensitive 
to these inputs. The Sobol’ indices indicate that cost of loss of load, cost of excess load, cost of natural gas, and 
transmission capacity globally affect max installed wind only through interactions with other inputs, and cost of 
wind and reserve capacity margin affect maximum installed wind through both interactions with other inputs and 
independently. The relative gap between the frst (n = 1) and second eigenvalue indicates the model admits a 1D 

= wT 
1 ξξξ ≈ 0.13Rcap − 0.99cactive subspace where the frst active variable y1 

wind . The 1D suffcient summary 
depicts a strong linear correlation between the QoI and y1. The 1D active subspace is further supported by the active 
subspace error eas which increases as a function of n. 

Overall, the global sensitivity metrics indicate that all four QoIs are relatively insensitive to the input parameters 
cost of loss of load, cost of excess load, and cost of natural gas, while they are sensitive to reserve capacity margin, 
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cost of wind, and transmission availability but in different ways. Specifcally: expansion cost is driven largely by 
cost of wind and reserve capacity margin; operation cost is driven by cost of wind, transmission availability, and 
reserve capacity margin; maximum installed gas capacity is driven by reserve capacity margin, cost of wind, and 
transmission availability; and maximum installed wind capacity is driven by cost of wind and reserve capacity 
margin. 

4.2 Binary UC Global Sensitivity Analysis 

Figure 9. Sensitivity and active subspace analysis for the SPEED model expansion 
cost cexp with binary UC. The top row depicts global sensitivity metrics (left), active 

subspace eigenvectors (middle), and eigenvalues (right). The bottom row depicts 1D 
(left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 

Figure 9 shows the global sensitivity and active subspace analysis for the expansion cost cexp with binary UC. The 
fve global sensitivity metrics indicate consistent rankings of global sensitivities, and the relative ranking among 
sensitivities is similar to the relaxed UC results shown in Figure 5. The expansion cost is globally sensitive to reserve 
capacity margin and the cost of wind. In comparison, the expansion cost is globally insensitive to cost of loss of load, 
cost of excess load, cost of natural gas, and transmission capacity but may be locally sensitive to these inputs. The 
Sobol’ indices indicate that cost of loss of load, cost of excess load, cost of natural gas, and transmission capacity 
globally affect the expansion cost only through interactions with other inputs, and that reserve capacity margin and 
cost of wind affect expansion cost through both interactions with other inputs and independently. The relative gap 
between the frst (n = 1) and second eigenvalue indicates the model admits a 1D active subspace where the frst 

1 ξξξ ≈ 0.56Rcap active variable y1 = wT + 0.82cwind . The 1D suffcient summary depicts a strong linear correlation 
between the QoI and y1, and is supported by the active subspace error eas which increases as a function of n. 

Figure 10 shows the global sensitivity and active subspace analysis for the operation cost coper with binary UC. The 
fve global sensitivity metrics indicate consistent rankings of global sensitivities, and the relative ranking among 
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Figure 10. Sensitivity and active subspace analysis for the SPEED model operations 
cost coper with binary UC. The top row depicts global sensitivity metrics (left), active 
subspace eigenvectors (middle), and eigenvalues (right). The bottom row depicts 1D 
(left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 

sensitivities is similar to the relaxed UC results shown in Figure 6. The operation cost is globally sensitive to reserve 
capacity margin, cost of wind, and transmission availability. In comparison, the operation cost is globally insensitive 
to cost of loss of load, cost of excess load, and cost of natural gas but may be locally sensitive to these inputs. The 
Sobol’ indices indicate that cost of loss of load, cost of excess load, and cost of natural gas globally affect the opera-
tion cost only through interactions with other inputs, and that reserve capacity margin, cost of wind, and transmission 
availability affect operation cost both through interactions with other inputs and independently. The relative gap be-
tween the frst (n = 1) and second eigenvalue indicates the model admits a 1D active subspace where the frst active 

1 ξξξ ≈ 0.25Rcap − 0.87cwind variable y1 = wT + 0.43tcap. The 1D suffcient summary depicts a strong linear correlation 
between the operation cost and y1, and is supported by the active subspace error eas which increases as a function of 
n, however the confdence intervals suggest the model might admit a 2D subspace. 

Figure 11 shows the global sensitivity and active subspace analysis for the maximum installed gas capacity maxgas 

with binary UC. Four of the fve global sensitivity metrics indicate consistent rankings of global sensitivities with 
the total Sobol’ index showing small differences. The relative ranking among sensitivities is similar to the relaxed 
UC results shown in Figure 7. Max installed gas is globally sensitive to reserve capacitiy margin, cost of wind, and 
transmission capacity. In comparison, the maximum installed gas is globally insensitive to cost of loss of load, cost 
of excess load, and the cost of natural gas but may be locally sensitive to these inputs. The Sobol’ indices indicate 
that cost of loss of load, cost of excess load, and cost of natural gas globally affect max installed wind only through 
interactions with other inputs, and reserve capacitiy margin, cost of wind, and transmission capacity affect maximum 
installed gas through both interactions with other inputs and independently. As in Figure 7, τi is the only metric 
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Figure 11. Sensitivity and active subspace analysis for for the SPEED model maximum in-
stalled gas capacity maxgas with binary UC. The top row depicts global sensitivity metrics 
(left), active subspace eigenvectors (middle), and eigenvalues (right). The bottom row de-

picts 1D (left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 

which ranks cost of loss of load, cost of excess load, and cost of natural gas as globally sensitive, this is a known 
fault of the total Sobol’ indices which may give inaccurate estimates for small sensitivities particularly if the QoI 
is non-smooth or discontinuous (Myshetskaya et al. 2008; Constantine and Diaz 2017; Diaz 2016). Similar to the 
results shown in Section 4.1, the PC error, shown in Table 6, is large for this QoI because the response surface is 
discontinuous and not smooth. The relative gap between the frst (n = 1) and second eigenvalue suggests the model 

1 ξξξ ≈ 0.73Rcap admits a 1D active subspace where the frst active variable y1 = wT + 0.66cwind − 0.15tcap, however the 
gap between the second and third eigenvalue is comparable. The 1D suffcient summary depicts a linear correlation 
between the maximum installed gas capacity and y1 and is supported by the active subspace error eas which increases 
as a function of n, however the confdence intervals suggest the model might admit a 2D subspace. 

Figure 12 shows the global sensitivity and active subspace analysis for the maximum installed wind capacity maxwind 

with binary UC. The fve global sensitivity metrics indicate consistent rankings of global sensitivities, and the rela-
tive ranking among sensitivities are similar to the relaxed UC results shown in Figure 8. Max installed wind is glob-
ally sensitive to cost of wind and reserve capacity margin. In comparison, the QoI is globally insensitive to cost of 
loss of load, cost of excess load, cost of natural gas, and transmission capacity but may be locally sensitive to these 
inputs. The Sobol’ indices indicate that cost of loss of load, cost of excess load, cost of natural gas, and transmission 
capacity globally affect max installed wind only through interactions with other inputs, and cost of wind and reserve 
capacity margin affect maximum installed wind through both interactions with other inputs and independently.The 
relative gap between the frst (n = 1) and second eigenvalue indicates the model admits a 1D active subspace where 

1 ξξξ ≈ 0.11Rcap − 1cthe frst active variable y1 = wT wind . The 1D suffcient summary depicts a strong linear correlation 

25 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications 



 

             

   

 

          

            

               

                 

 

  

      

                 

                   

                   

                     

                  

                  

                 

                

        

     

                    

                      

                   

              

 

           

             

 

         

 

 

 

  

 

                   

 

              

Figure 12. Sensitivity and active subspace analysis for the SPEED model maximum in-
stalled wind capacity maxwind with binary UC. The top row depicts global sensitivity metrics 
(left), active subspace eigenvectors (middle), and eigenvalues (right). The bottom row de-

picts 1D (left) and 2D (middle) suffcient summary plots, and the active subspace error (right). 

between the QoI and y1. The 1D active subspace is further supported by the active subspace error eas which increases 
as a function of n. 

In summary, these results are remarkably similar to those considering the relaxed UC assumption shown in Section 
4.1. This result was not necessarily expected as it was unclear what, if any, affect the UC modeling assumption 
would have on the model sensitivities. As in Section 4.1, the global sensitivity metrics indicate that all four QoIs 
are relatively insensitive to the input parameters cost of loss of load, cost of excess load, and cost of natural gas, 
while they are sensitive to reserve capacity margin, cost of wind, and transmission availability but in different ways. 
Specifcally: expansion cost is driven largely by cost of wind and reserve capacity margin; operation cost is driven 
by cost of wind, transmission availability, and reserve capacity margin; maximum installed gas capacity is driven by 
reserve capacity margin, cost of wind, and transmission availability; and maximum installed wind capacity is driven 
by cost of wind and reserve capacity margin. 

4.3 Exploiting the PC surrogates 
So far we have only used the PC surrogate models to compute the Sobol’ global sensitivity metrics according to (15) 
and (16), this is a good use for PC expansions but they provide more information. A PC surrogate model is made up 
of essentially two main components. The frst, the polynomial basis, was known a priori, it is asymptotically orthog-
onal with respect to the distribution of our uncertain input parameters f (ξξξ ). The second, the vector of coeffcients ĉ, 

N was unknown and had to be approximated by randomly sampling f (ξξξ ) to produce an experimental design {ξξξ i}i=1, 
then feeding said design through the SPEED model to generate random values of the QoI. The coeffcient vector c ˆ
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is expensive to compute initially, not because (12) or (13) is computationally expensive to solve, but because ob-
N taining random values of the QoIs {u(ξξξ i)}i=1 requires running the SPEED model N times. When modeling relaxed 

UC running SPEED many times is feasible, on the NREL Eagle HPC, N = 349 samples took ∼ 24 hours to com-
plete. However, when modeling binary UC running SPEED many times is infeasible, e.g., on the NREL Eagle HPC, 
N = 323 samples took ∼ 103 hours to complete. Fortunately, having computed approximate values of ĉ, and knowing 
the appropriate polynomial basis and probability density function f (ξξξ ) provides a computationally expeditious way 
to approximate values of the QoI without running the SPEED model. This method is computationally advantageous 
because estimating any single value of the QoI can be accomplished via the inner product of two P-dimensional 
vectors (6). Additionally, knowing the validated relative residual ft error ePC informs us as to how much, on aver-
age, point-wise estimates of the QoI may differ from their true value. This surrogate modeling framework allows us 
to predict values of the QoI which are within our specifed input parameter domain Ω, without the computational 
expense required to run the SPEED model. 

We demonstrate how PC surrogates can be exploited to generate rich posterior8 distributions of the QoI, an addi-
tional beneft beyond providing global sensitivity analysis. To accomplish this we frst draw a large experimental 

10000 design {ξξξ i} according to f (ξξξ ), then for each design point we compute an approximate value of the QoI via (6). i=1 
This process can be repeated for any set of design points which defne a subset of Ω, however the practitioner should 
be warned that samples which take on extreme values of sensitive model parameters are expected to have higher vari-
ance and assumed to be less accurate estimates, i.e., the further away the distribution of experimental design samples 
is from f (ξξξ ) the larger the prediction error. Figure 13 show histograms of the four SPEED model QoIs approximated 
by the PC surrogate models with relaxed and binary UC. 
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Figure 13. Histograms of the four SPEED model QoIs approximated by 
the PC surrogate models with relaxed (top) and binary UC (bottom). 

Qualitatively, the distributions of expansion cost, operation cost, and maximum installed gas capacity appear sim-
ilar, while the distribution of max installed wind capacity differs signifcantly. Specifcally, the distribution of max 
installed wind for relaxed UC appears bimodal and right-skewed, while the distribution for binary UC shows no ap-
parent skew or multiple modes. Quantitatively, the means of each distribution are similar for both relaxed and binary 

8We use the term posterior loosely in the sense that, assuming independent identically distributed, unbiased, normal errors, maximum 
likelihood estimation is the same as ordinary least squares estimation. Moreover, the maximum a posteriori estimate is equivalent to the maximum 
likelihood estimate given a uniform prior distribution of the inputs (Smith 2013). 
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UC, however, we see noticeably larger standard deviations in both the distribution of expansion cost and max in-
stalled wind for relaxed UC compared to binary UC. Figures 8 and 12 clearly show that the UC modeling assumption 
does not change the global sensitivities of max installed wind capacity. However, only by exploiting the PC surrogate 
model to visualize rich posterior distributions can we see the signifcant difference in the overall distributions of the 
QoI, when considering relaxed vs. binary UC. It is also important to highlight that both PC surrogates for max in-
stalled wind capacity have validated errors on the order of 10−2, which gives us measure of the degree of confdence 
we have in comparing these results. The relative point-wise validation errors of each PCE surrogate are reported in 
Tables 6 and 7. 

5 Conclusions and Future Work 
The aim of this work was to quantify the uncertainty within the SPEED model, and to provide insights into CEP 
at large. The relevant model output QoIs considered were expansion cost, operations cost, maximum installed gas 
capacity, and maximum installed wind capacity, however other aggregate outputs of a CEP model could also be con-
sidered. The uncertain model input parameters considered were the capacity reserve margin for expansion, cost of 
loss of load, cost of excess load, natural gas price, wind installation cost, and transmission capacity. Simulations are 
performed on the RTS-GMLC data set and solved with the SPEED model, a stochastic programming framework. 
The resulting data was post-processed, and sparse PC expansions, and active subspace analysis were employed to 
quantify the uncertainty. Five global sensitivity metrics, which quantify uncertainty by measuring an input param-
eter’s infuence on the variance of the QoIs are reported. PCE surrogate models were constructed and exploited to 
generate rich posterior distributions of the SPEED model output QoIs. To better understand the uncertainty asso-
ciated with associated UC we conducted two independent numerical experiments holding all modeling conditions 
equal except for the integer modeling assumption regarding the dispatch decision variables, which has a signifcant 
impact on the model complexity. Our results support the following conclusions: 

• The global sensitivity metrics indicate that all four QoIs are relatively insensitive to the input parameters cost 
of loss of load, cost of excess load, and cost of natural gas, while they are sensitive to reserve capacity margin, 
cost of wind, and transmission capacity but in different ways, see Sections 4.1 and 4.2. 

• The global sensitivity metrics indicate that all four QoIs are infuenced by cost of loss of load, cost of excess 
load, and cost of natural gas only through their interactions with other terms, if at all. 

• Among the 6 uncertain inputs considered, expansion cost in this model is driven primarily by cost of wind and 
secondarily by reserve capacity margin. 

• Among the 6 uncertain inputs considered, operation cost in this model is driven by primarily cost of wind, 
secondarily by transmission availability, and slightly by reserve capacity margin. 

• Among the 6 uncertain inputs considered, maximum installed gas capacity in this model is driven primarily by 
reserve capacity margin, secondarily by cost of wind, and slightly by transmission availability. 

• Among the 6 uncertain inputs considered, maximum installed wind capacity in this model is driven primarily 
by the cost of wind and secondarily by reserve capacity margin. 

• When considering relaxed vs. binary UC, the posterior distributions of the expansions cost, operations cost, 
and maximum installed gas capacity predicted by the PC surrogates are similar, while the distribution of 
maximum installed wind capacity differs signifcantly. 

• The mean value of each QoI’s distribution are similar for both relaxed and binary UC, however we report 
larger standard deviations in the distributions of expansion cost, operations cost, and max installed wind 
capacity for relaxed UC compared to the binary UC model assumption. In contrast, the standard deviation for 
max installed gas capacity was smaller for relaxed UC compared to binary. 

• The distribution of max installed wind for relaxed UC is bimodal and right-skewed, while the distribution 
for binary UC shows no apparent skew or multiple modes, potentially indicating that by relaxing the UC 
dispatch decision variables, CEP models could be signifcantly underestimating the amount of installed wind 
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capacity required to satisfy design constraints, e.g., transmission guidelines or safety constraints such as 
reserve capacity margin. 

• Prior work has demonstrated that relaxing binary UC variables in PCMs alone does not necessarily reduce 
computational burden, contrary to expectations larger binary decision trees improved UC model resolution, 
and that results are likely solver dependent (Alemany, Kasprzyk, and Magnago 2018). Our results show 
signifcant reduction in the computational burden of the SPEED model by relaxing binary UC variables, see 
Section 4.3. 

A natural question to ask given these results is, why are the driving sources of uncertainty considered in the SPEED 
model the reserve capacity margin, cost of wind installation, and transmission capacity? One possible explanation 
is that these uncertainties are associated either exclusively with expansion decisions in the case of reserve capacity 
margin and cost of wind installation, or partially in the case of transmission capacity, whereas the other relatively in-
sensitive inputs are associated with dispatch decisions. This explanation would suggest that uncertainties associated 
with the frst term in (2) are more signifcant on build decisions than uncertainties associated with the second term. A 
second possible explanation might follow the argument that the expansion decisions were more sensitive to the cost 
of wind installation than they were to the cost of natural gas, for instance, because wind generation is variable, and 
that uncertainties associated with variable generation will have greater signifcance. The reality is that the results of 
this work do not provide enough information to answer this question and a follow up study is warranted. Beyond this 
question, the implementation of the SPEED model in this study was relatively narrow both in the geographic location 
of the RTMS-GMLC data set, but also in the greater scheme of CEP and PCM research. Specifcally, this study did 
not consider modeling the expansion of battery storage technologies or other variable generating technologies such 
as solar PV and hydro which are considered in the ReEDS model. In order to meet the growing demand for the UQ 
and prediction capabilities of CEP and PCM models we highlight the importance of continuing to study state-of-
the-art methods in stochastic programming, data driven modeling, and UQ specifcally to improve or better inform 
both the SPEED and ReEDS modeling framework, e.g. perhaps the ReEDS standard scenarios. This collaborative 
research effort is necessary to better understand the fundamental shift predicted in the future from traditional ther-
mal generation to a more diverse electric grid in the U.S, and is particularly important regarding efforts to scale up 
existing modeling approaches to higher temporal or spatial fdelities. 

In the future, we hope to further our efforts to quantify uncertainty within the SPEED model by investigating mul-
tiple time fdelities. As was previously mentioned, the SPEED model has the capability to substantially increase 
the fdelity of time-series data, or scenarios, compared to ReEDS. For example, the SPEED model is able to utilize 
data for all 365 days of a year, whereas ReEDS uses 17 scenarios (4 representative days) to model an entire year. 
Of particular interest, is whether or not increasing levels of fdelity signifcantly impact the model sensitivities or 
expansion decisions. Following this study we propose investigating this issue by comparing different surrogate mod-
els corresponding to different time-series sampling fdelities, similar to the comparison in this work between binary 
vs. relaxed UC. We also seek to allow the SPEED model to build different types of generating technologies such as 
solar PV or battery storage technologies, such additions or modifcations to the model would prompt future global 
sensitivity analysis and model validation studies. 

We highlight the need for future work to explore other potential surrogate modeling methods so that practitioners 
have a variety to choose from when presented with data that is disagreeable to one particular method or another. For 
other data-sets or models, problems using sparse PCEs can arise when the input samples obey potentially unknown, 
discrete, or correlated distributions. One potential solution to this problem might be changing from a continuous 
polynomial basis to a multiwavlet basis through the use of Piece-Wise Polynomial Chaos Expansions which provide 
an inherent multi-resolution modeling framework. Multiwavlet basis expansions have been used to study hyperbolic 
partial differential equations which can exhibit discontinuous shock-wave phenomenon (Pettersson, Iaccarino, and 
Nordstrom 2015). 
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