A case history addressing marsh surface subsidence

Craig E. Cornu

PROJECT SUMMARY:

To test active methods for adjusting marsh surface subsidence, four 0.7
hectare research "cells" were constructed in a subsided marsh in South
Slough National Estuarine Research Reserve (South Slough NERR). The
cells were filled with on-site dike material to high, middle, and low inter-
tidal elevations. Filling and grading to a high-marsh elevation resulted in
rapid colonization of emergent marsh vegetation but sacrificed the devel-
opment of tidal channels. Manipulating the marsh surface to a low-marsh
elevation resulted in slower colonization of emergent vegetation but
allowed tidal channel development and provided more habitat for fish in
the earliest stages of marsh recovery. Filling and grading to a middle-
marsh elevation created conditions favorable for relatively rapid coloniza-
tion of emergent marsh vegetation while allowing tidal channel develop-
ment over time. Invertebrate communities developed most abundantly in
the middle- and low-elevation research cells. Fill material consolidated as
expected and did not become redistributed off-site. Reserve staff deter-
mined that manipulating marsh surface elevation is a viable method for
accelerating the recovery of structure and functions in subsided salt
marsh wetlands.
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KUNZ MARSH

Kunz Marsh is located on the inside of a broad bend of
the tidal portion of Winchester Creek (see Figures 2 and 3).
Originally, the five-hectare site was a mature high marsh, but
in the early 1900s, it was converted to cropland and pasture.
A 1.5-m-tall dike was built to exclude tidal flooding.
Meandering tidal channels were replaced by linear
ditches that redirected fresh water from creeks and
springs efficiently away from the marsh, especially
during rainy winter months. A tide-gated culvert in
the dike allowed fresh water from ditches to drain
into Winchester Creek and prevented tide water
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SUBSIDENCE OF
DIKED WETLANDS

Marsh surface subsidence has occurred in
many estuarine wetlands that were diked and
converted to agricultural uses in the early twenti-
eth century. Because dikes excluded the natural
process of tidal flooding from many marshes, they
prevented the influx of sediment that had normal-
ly maintained salt marsh surface elevations.

When marshes behind the dikes dried out,
their peat soils began to oxidize, decompose, and
consolidate. Furthermore, the vigorous wetland
vegetation that had once added organic material
each year was replaced by pasture vegetation
that was continuously removed by grazing and
haying activities. Heavy livestock and farm
machinery further compacted soils (Roman et al.
1984; Frenkel and Morlan 1991; Anisfeld et al.
1999; Weinstein and Weishar 2002). Qver the
course of many years, it is likely that all these
factors contributed to marsh surface subsidence

at Kunz Marsh.

from flowing inte the marsh. Over many years, the
Kunz Marsh surface had subsided to a level as much as
80 cm lower than an adjacent undiked marsh (Cornu
and Sadro 2002) (see Figure 4).

RESTORATION PLANNING
AND METHODS

With the help of the WIRP Advisory Group,
Reserve staff designed an experiment to test active
adjustment of marsh surface elevations in the subsided
marsh. Results from active salt marsh restoration in San
Francisco Bay had shown that emergent vegetation
could be re-established at subsided sites by using
dredge material to restore surface levels to mature high
marsh elevations, equivalent to the mean higher high
water (MHHW) tidal elevation (Williams and
Florsheim 1994; Williams and Faber 2001; Williams et
al. 2002). However, such filling precluded the natural
formation of tidal channels, key structural elements in
natural salt marshes.

To determine the most effective approach to acceler-
ate development of both emergent plant communities
and tidal channels by natural processes, Reserve staff
designed an experiment to establish and monitor high,
middle, and low intertidal marsh elevations in four 0.7-
hectare research cells at the Kunz Marsh site.



During planning for restoration at Kunz Marsh, two near-
by, relatively undisturbed mature high marshes at Tom’
Creek and Danger Point were used as reference sites to iden-
tify specific marsh surface elevations, or design elevations, to
be used in the various research cells at Kunz Marsh.

In 1995, the failing tide gate at the Kunz Marsh site was
repaired to permit soils behind the dike to dry sufficiently to
support earth-moving equipment. The following summer,
construction began when an excavation contractor removed
the top 15 to 30 cm of existing topsoil and vegetation from
the marsh surface and stockpiled it in the corner of the site.
This topsoil with its valuable organic matter was saved [or
later redistribution over the elevated marsh surface in each
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cell. Approximately 10,000 cubic meters (13,000 cubic
yards) of earth from the Kunz Marsh dike were

then excavated and used to fill the marsh surface  Figure 5. Kunz
Marsh in 1997,
one year after
project con-

to desired design elevations in each research cell.
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Each research cell was open to tidal flooding ~ indicated.

erosion of the Danger Point Marsh just to the

from Winchester Creek, but 1.8-m-tall geotextile

fences built between them were intended to encourage inde-
pendent hydrological development in each cell (see Figure
5). At the outset, the surface elevation of the subsided marsh
was 1.4 m MLLW at its lowest point (all elevations refer to
elevation above mean lower low water (MLIW)). Each cell
was then filled and graded to a surface elevation within the
local intertidal elevation range needed to support emergent

SALT MARSH AND TIDAL
CHANNEL FORMATION AND
FUNCTION

Salt marshes are naturally formed when
tidal flats in relatively protected areas accu-
mulate sediments through daily tidal flooding
and gradually build to elevations that support
the colonization of salt-tolerant vegetation.
Sediments from upland and ocean sources and
organic matter from decaying wetland vegeta-
tion continually build the marsh surface
upward in a process known as vertical accre-
tion (Kearney et al. 1994; Cahoon et al. 1995;
Cornu and Sadro 2002). At the same time,
deep tidal channels with vertical walls form as
the salt marsh builds up around them and sta-
bilizes channel banks.

Tidal channels connected to freshwater
creeks and blind tidal channels (tidal channels
with no connection to an in-flowing freshwater
source) serve as important pathways for the
import and export of organic and inorganic
material to and from estuarine wetlands.
These materials, including nutrients, detritus,
seeds and other propagules, help sustain wet-
land plant and animal communities and con-
tribute to the estuarine food web. Tidal chan-
nels also help build the marsh through vertical
accretion and provide habitat structure and
foraging access for benthic invertebrates and
fish, including juvenile salmonids (Williams et
al. 2002). The channels that are gradually
forming in the Kunz Marsh research cells are
blind tidal channels.



marsh vegetation as follows: the Kunz High cell was graded
to a mature high marsh elevation (2.4 m MLLW); the Kunz
Low 1 cell was graded to an elevation at the lower limit of
emergent marsh vegetation (1.7 m MLIW); and the Kunz
Mid cell was graded to a middle marsh elevation in between
the others (2.0 m MLIW). The Kunz Low 2 cell was left
ungraded at its existing low-marsh elevation as control site.
A remaining two-hectare portion of the marsh was too wet to
support heavy equipment needed to manipulate the marsh
surface and was left as an example of passive restoration.

To address the anticipated compaction of the underlying
marsh soils and the consolidation of the fill material, a soil
engineer recommended filling the high and middle marsh
cells 15 cm higher than the design elevations. Each cell,
except for Kunz Low 2, was graded to a 200:1 slope—from
the upland edge of the site down to the Winchester Creek
channel edge—to replicate the average gradient of local salt
marsh reference sites.

After the cells were filled and graded to design specifica-
tions, the topsoil removed from the original marsh surface
was redistributed over each cell to add organic material and
to provide a more-hospitable substrate for vegetation to cola-
nize. Reserve staff planted no vegetation anticipating that
nearby marshes would contribute sufficient plant propagules
to initiate colonization.

Before excavating the dike, Reserve staff worked with the
contractor to calculate the minimum dike height needed to
prevent site flooding at the highest tide during the three-
week project-construction period. Just enough dike material
was left in place to exclude tidal flows until the filling and
grading work was complete. However, they were concerned
that the low-tide period would not be long enough to allow
the contractor to remove the final portion of dike. The con-
tractor solved the problem by finishing site filling with mate-
rial dug from rectangular 6 x 9 x 4-m trenches excavated just
behind the dike in each cell (see Figure 6). On the last day,
the contractor was able to quickly dispose of the final por-
tion of dike by filling these trenches. Working with the
ebbing tide from the high-marsh cell to the lowest cells, the
contractor removed the remaining dike material during a sin-
gle morning low-tide cycle. Full tidal flooding was restored
to Kunz Marsh in late August 1996.

MONITORING AND RESULTS

In the years following project construction, Reserve staff,

contractors, collaborating agencies, and volunteers collected
data at Kunz Marsh to monitor changes in marsh surface eleva-
tion, vegetation community development, tidal channel forma-
tion, relative abundance of invertebrates, and fish use. Data was
also collected at reference sites.

Marsh Surface Elevation

To determine change in marsh surface elevation in the
research cells, Reserve staffl measured vertical accretion, fill-
material consolidation, and compression of the original marsh
soils. By removing the dike, Reserve staff intended to restore
the process of vertical accretion that would gradually raise the
marsh’s surface elevation. However, they also anticipated that
fill-material consolidation and compression of underlying soils
would have a temporary counteracting effect of lowering the
Kunz Marsh surface elevation.

After three years (1996 to 1999), there was little natural
build-up of the marsh surface, and vertical accretion rates
remained very low in all Kunz cells (average rate of 0.19 cm/yr)
compared to reference sites (0.70 cm/yr over five years of data
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no longer active processes in the high and mid cells by early
2001. However, the rate of subsoil compression measured in
these cells averaged -0.54 cm/yr from 1996 to 2004. One
possible explanation is that the settlement monuments used
to measure subsoil compression may be settling into the sub-
soil, causing erroneous measurements. Reserve staff are inves-
tigating this and other possible explanations.

At the time of construction, Reserve staff had concerns
that the relatively loose fill material spread on the subsided
marsh surface could become re-suspended by tidal action,
move off-site, and smother eelgrass beds located on intertidal
mudflats of Winchester Creek. In the years following project
construction, they found that fill material did not become
redistributed off-site.

An unanticipated off-site result was the presence of col-
iform bacteria detected in the estuary after dike removal at
the Kunz Marsh. Elevated coliform bacteria counts were like-
ly due to high tidal flows inundating the marsh, which had
been heavily grazed by elk for decades. It was not possible to
determine whether the bacteria were from animal or decay-
ing-vegetation sources.

Vegetation

After project construction in 1996, there was no vegeta-
tion cover in the Kunz Marsh research cells, and no vegeta-
tion was planted. Reserve staff anticipated that natural
recruitment of plant propagules from adjacent marshes
would establish plant communities (see Figure 8). To deter-
mine how marsh surface elevation influenced vegetation col-
onization, Reserve staff annually collected plant abundance
data along three permanent transects in each
cell during late summer (July to September).

In the first three years following project con-
struction (1996 to 1999), salt marsh plant com-
munities developed faster in the high and mid
cells than in the low cells (see Figure 9). In all
cells, early salt-marsh colonizers dominated

during this period. (Early salt-marsh colonizers are native and
non-native species that quickly colonize bare soils, such as
brass buttons (Cotula coronopifolia), toadrush (Juncus bufo-
nius), orache (Atriplex patula), dwarf spikerush (Eleocharis
parvula), and salt marsh sand-spurry (Spergularia marina)). In
the high cell, residual pasture grasses, such as velvet grass
(Holcus lanatus), initially grew with the early colonizers. By
1999, however, permanent salt marsh species were 66% more
abundant in Kunz High than early colonizers or residual pas-
ture grasses (Cornu and Sadro 2002). By 2004, they were
80% more abundant in Kunz High. (Permanent salt marsh
species are native plants expected to persist in the salt marsh
plant community over the long term, such as Lynghy’s sedge
(Carex lyngbyei), tufted hairgrass (Deschampsia caespitosa),
bentgrass (Agrostis spp.), saltgrass (Distichlis spicata), and
arrow-grass (Triglochin maritimum)).

In the mid and low cells, permanent species took longer
to become established, and early colonizers continued to per-
sist, still averaging 59% of total abundance in 1999 (Cornu
and Sadro 2002). By 2004, however, permanent species were
an average of 80% more abundant than early colonizers in
these cells, and residual pasture grasses were virtually absent
in all cells.

Patterns of emergent vegetation abundance were positive-
ly correlated with differences in marsh surface elevation
through 1999 (Cornu and Sadro 2002). In all cells, salt-toler-
ant, early colonizing species appeared to facilitate the estab-
lishment of permanent salt marsh species (Bertness 1991) by
varying degrees depending on marsh surface elevations and
their associated tidal inundation periods. From 2000 to 2004,
however, those patterns changed as plant communities in all
cells, particularly the mid and low cells, became increasingly
similar. Vegetation abundance patterns at the reference sites
were strikingly different from those at the Kunz Marsh
research cells, reflecting the relative stability of the mature

plant communities (see Figure 10).
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98.3% of the total catch for all cells (see Figure 12).

As anticipated, there were greater numbers of fish (83%)
and a greater diversity of species (7 out of 8) in the low-eleva-
tion cells because fish simply had greater access to these cells,
which were inundated longer with greater volumes of water at
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GLOSSARY

cold-blooded animals without backbones that live in
and on sediments associated with bodies of water (estuaries, oceans, lakes,
streams, etc.), including amphipods (Corophium spp.), isopods
(Gnorimosphaeroma spp.), segmented worms (Nereis spp.), insect larvae and

pupae, and others

tidal channels not associated with an inflowing freshwa-

ter stream

rooted plants that can tolerate some inundation by
water and that extend photosynthetic parts above the water surface for at
least part of the year; they are intolerant of complete inundation over pro-

longed periods

the average height of the lower low tides
observed over a specilic time interval; used as a standard elevation bench-

mark in estuarine research

a wetland ecosystem characterized by twice-daily inundation of
high tides and by salt-tolerant emergent vegetation

the lowering of marsh surlace elevation over time
due to soil oxidation and consolidation, physical compaction, and the absence

of tide-borne sediment deposition in diked wetlands

a wetland ecosystem influenced by a marsh surface eleva-
tion at approximately MHHW that is inundated by only the most extreme
high tides and characterized by salt-tolerant emergent vegetation

The average height of the higher high
tides observed over a specific time interval; used as a standard reference to
gauge extent of tidal influence

a wetland ecosystem characterized by inundation by the
higher range of tides and by salt-tolerant vegetation

a dispersal stage ol a plant or animal such as fertilized eggs, lar-

vae, seeds, or thizomes. that propagates a new organism

an undisturbed or minimally disturbed landscape that exhibits
the structure and functions characteristic of a natural ecosystem and serves as

a model for planning a restoration project

a measure of the amount of curvature in a stream channel, cal-
culated by dividing the meandering distance a stream travels by the straight

line distance it covers

increase in marsh surface elevation caused by addition

of sediments and organic materials
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