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1. INTRODUCTION

The NOAA/NWS/NCEP Storm Prediction Center (SPC)
produces a 40-km hourly surface objective
mesoanalysis, first described by Bothwell et al. (2002).
This hourly mesoanalysis uses Rapid Refresh (RAP;
formerly RUC) 1-hour forecasts as a first guess, and
then performs a 2-pass Barnes analysis (Barnes 1964)
with available surface observations. This surface
objective analysis is then merged with the RAP
upper-air fields, and post processing of derived
convective and sounding-based indices is performed by
NSHARP (Hart and Korotky 1991). These hourly
mesoanalysis fields are meant to be as low-latency as
possible, typically available at 15-minutes past the top of
the hour, and then made available on the SPC website:
https://www.spc.noaa.gov/exper/mesoanalysis

The SPC Mesoanalysis (aka surface objective analysis
or SFCOA) is the foundation of many operational tools
at SPC, and has been a core dataset in many SPC
publications. The output of SFCOA is used in real-time
operations for Mesoscale Convective Discussion (MCD)
issuance and public-facing graphics, as well as
providing environmental information for issuing Severe
Thunderstorm and Tornado Watches. The SPC
Mesoanalysis has also provided near-storm
environment data for deriving real-time tornado intensity
estimates (Smith et al. 2020) and studies of convective
mode (Thompson et al. 2012), among many other
projects.

With the RAP and High Resolution Rapid Refresh
(HRRR) forecast models slated for retirement, SPC has
begun investigating how to upgrade and replace the
legacy 40km analysis system, as well as expansion into
territories outside of the continental US (OCONUS;
Hawaii and Alaska). While both the RAP and HRRR will
be retired, the HRRR will be replaced with another

regional Convection-Allowing Model (CAM), but there is
no mesoscale model equivalent replacement for the
RAP. The 3D Realtime Mesoscale Analysis (3D-RTMA)
produced experimentally by the NCEP Environmental
Modelling Center (EMC) has been evaluated in the
Hazardous Weather Testbed (HWT) for a number of
years as a potential replacement. However, due to the
computational cost of full 3D data assimilation, analyses
are often not available until nearly the next analysis
hour, negatively impacting forecast operations at SPC.
Therefore, the HRRR serves as the basis for the current
upgrade path for an updated SFCOA, which will be
replaced eventually by the Rapid Refresh Forecast
System Version 2 (RRFSV2) implementation.

An initial implementation of SFCOA-HRRR was built for
the 2024 HWT Spring Forecasting Experiment (SFE),
with hourly analyses being generated between 27 April
2024 and 07 June 2024. Implementation details and
preliminary results are discussed in the following
sections.

2. PRELIMINARY SFCOA-HRRR IMPLEMENTATION

The initial overall structure of the new SFCOA
implementation is very similar to the original
implementation from Bothwell et al. (2002):

1. The HRRR 1-hour forecast is used as a
first-guess analysis for surface fields, and held
static for upper-air fields.

2. A 2-pass Barnes analysis is performed on
available surface observations. Many more
surface observations are now included from
state mesonets, RAWS, transportation
networks, river authorities, etc., facilitated
through the SynopticData API.

3. Rather than using 25-mb pressure level data
for upper-air fields, SFCOA-HRRR is
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performed on the full, native vertical level data
from the HRRR.

4. Post-processing of derived and
sounding-based indices is done using
SHARPlib, SPC’s unified sounding
post-processing library that is optimized for
high-fidelity data. SHARPlib is available on
GitHub:
https://github.com/keltonhalbert/SHARPlib

5. When the HRRR 0-hour analysis becomes
available, the mesoanalysis is recomputed
using the analysis rather than the 1-hour
forecast.

Through efficient use of parallel-friendly data structures
and algorithms, the new SFCOA-HRRR is available as
early as 5-10 minutes past the top of the hour, making it
slightly faster than its predecessor despite being a
higher-resolution analysis.

2.1 Defining an Appropriate “Radius of Influence”
for Observations

Eq. 1: A formulation of the interpolation weights used in
Barnes 1964.

The Barnes analysis technique assumes that data and
grid spacing are approximately equal. Of particular
importance with this assumption is the “Radius of
Influence” (RoI) used when computing the observation
weights within the Barnes analysis. This RoI term (K in
Eq. 1) is effectively a weight falloff parameter, with
observations outside of that radius receiving
increasingly smaller weights. Regrettably, surface
observing networks in the US are not at a near-constant
3-km spacing to match the HRRR native resolution. A
naive remedy to this is to use a gridpoint-dependent RoI
based on the surface observing network density local to
that gridpoint. For more dense observing networks, the
RoI will be smaller and distant observations will have
less impact, while in data sparse areas, observations at
greater distances are included. The initial
implementation of the variable RoI used for the HWT
SFE was the median distance from the gridpoint to the
nearest 10 observing sites, computed dynamically for
each analysis hour and for each analysis variable. This
allows for the Barnes weights to reflect network density
changes dynamically from missing observations,
observations thrown out by QC, or network outages. An
example of the variable RoI is displayed in Figure 1.

3. PRELIMINARY SUBJECTIVE VERIFICATION

During the 2024 HWT SFE, three high-resolution
mesoanalysis versions were subjectively evaluated by
participants and forecasters: SFCOA-HRRR, 3D-RTMA
HRRR, and 3D-RTMA RRFS. Additional comparisons
were conducted by upscaling these analyses to a 40-km
grid to match the original SFCOA-RAP at SPC. During
daily evaluations, HWT participants were asked to
compare the quality of SFCOA-HRRR analyses to
3D-RTMA HRRR, and for the upscaled analyses,
participants were asked to rank analyses from best to
worst. A ranking of 1 was considered the “best”, while a
ranking of 4 was considered the “worst”. The evaluation
results between SFCOA-HRRR and 3D-RTMA HRRR
are displayed in Figure 2, while the results from the
evaluations of upscaled analyses are summarized in
Table 1.

3.1 Subjective Evaluations of SFCOA-HRRR and
3D-RTMA HRRR

The most common subjective rating given for
SFCOA-HRRR when compared to 3D-RTMA HRRR
was that they were “about the same”, selected by 58%
of SFE participants. Participants selected “slightly
better” 16% of the time, and “slightly worse” 23% of the
time, with only 2% of respondents saying
SFCOA-HRRR was “much worse” than 3D-RTMA
HRRR. These results suggest that, while there is room
for improvement with the initial implementation of
SFCOA-HRRR, the simpler, low-latency approach to the
objective mesoanalysis is producing qualitatively
comparable results to a full 3D data assimilation system
when used in real-time forecasting environments.

3.2 Upscaled Mesoanalysis Subjective Evaluations

When the high-resolution mesoscale analyses were
upscaled to a 40-km grid, SFCOA-HRRR and 3D-RTMA
HRRR were effectively tied for first, with average
rankings of 1.93 and 1.94 for the respective analysis
systems. The current SPC Mesoanalysis, SFCOA-RAP,
was ranked 3rd with an average ranking of 2.86, and in
last place was 3D-RTMA RRFS with an average ranking
of 3.27. This result is consistent with the evaluations of
the high-resolution systems, but also shows that the
new SFCOA-HRRR is adding additional value over the
current SFCOA-RAP system.
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4. SFCOA-HRRR PRELIMINARY OBJECTIVE
VERIFICATION

Preliminary objective verification statistics were
computed for the hourly 2-meter temperature and
dewpoint analyses generated during the HWT SFE
period, separating out analyses generated using 1-hour
HRRR forecasts and 0-hour HRRR analyses.
ASOS/AWOS observations across the CONUS that
passed QC were used for the truth observations, and
displayed/aggregated two ways: 1) temporally, with
hourly distributions of error for all sites across the
CONUS, and 2) spatially at each observing site, taking
the median error across all hourly analyses during the
SFE. The objective was to highlight any systematic
geographic and diurnal errors in SFCOA-HRRR.
Summary RMSE and bias statistics for all sites and all
hourly analyses are displayed in Table 2, separated by
field and which first-guess analysis is used.

4.1 SFCOA-HRRR Temporal Verification

After computing analysis errors at each ASOS/AWOS
site across the CONUS, those errors were binned by
UTC hour for analyses generated using the 1-hour and
0-hour HRRR surface fields as a first guess. The
hourly-binned errors for temperature and dewpoint using
both first guesses are displayed in Figures 3 and 4.

For 2-m air temperature analyses using the HRRR
1-hour forecast as a first-guess, errors appear normally
distributed and, for the most part, symmetric around the
zero-error line. The interquartile range for the
temperature errors are largely within +/- 1 ºF (+/- 0.56
ºC), and a very slight diurnal signal is present in the
median errors. Median errors are minimized between
03-10 UTC, and again between 21-23 UTC. There
appears to be a slight cold bias in the analyses from
11-20 UTC, and a slight warm bias between 00-02 UTC.
The interquartile range is narrowest between 11-14
UTC, and largest from 18-04 UTC. When looking at
mesoanalysis fields using the HRRR 0-hour analysis at
the same valid time, the primary result is that the
interquartile range and tails of the error distributions
shrink, with some slight reductions in the bias of median
errors. The warm bias from 00-02 UTC, as well as the
cool bias from 11-16 UTC, are slightly reduced and
closer to the zero-error line.

It is unknown whether these biases are from the HRRR
itself, perhaps evidenced by the fact the analysis time
step has a narrower interquartile range of errors, or with
how observations themselves are being assimilated.
Additional impacts, such as complex terrain and

thunderstorm outflow could contribute to these errors,
and further investigation is required. It should be noted,
however, that these biases are on the order of tenths of
a degree Fahrenheit, and of more importance is the
interquartile range and tails of the error distributions.
Even in the case of the 1-hour HRRR first guess, these
errors being within +/- 1 ºF (+/- 0.56 ºC) is encouraging
for a preliminary implementation of SFCOA-HRRR.

Looking at the 2-m dewpoint temperature errors binned
by hour, the interquartile range of error is generally
larger than the 2-m temperature analyses, and with a
stronger bias present. The minimum in both bias and
interquartile range errors lies between 9-12 UTC, and a
general moist bias is observed at all other times. The
errors within the interquartile range are mostly within +/-
1 ºF (+/- 0.56 ºC), though slightly exceeds + 1 ºF (+ 0.56
ºC) between 18-23 UTC. There is less variability
between the 0-hour and 1-hour HRRR based analyses,
suggesting that perhaps there is room for improvement
on how moisture variables are being assimilated and
objectively analyzed, rather than the errors being from
the forecast-based data.

As a quality-control check, there was a restriction on the
magnitude of the mixing ratio analysis increment,
potentially contributing to the moist bias observed by not
allowing for observations to fully modify the first guess.
This hypothesis is further supported by the spatial
distribution of these errors analyzed in the following
section. Moisture analyses are generally known within
the field to be challenging to create accurately, so while
it is unsurprising that the errors are larger than the air
temperature field, it is still encouraging that these
moisture errors are relatively well contained within +/- 1
ºF (+/- 0.56 ºC) range, with potential for future
improvement.

4.2 SFCOA-HRRR Spatial Verification

For preliminary spatial verification statistics, the
temperature and dewpoint error for all hourly analyses
were grouped by the station identifier, with the median
error across all hourly analyses chosen as the
evaluation metric. The spatial distribution of errors
between the objective analyses using the 0-hour and
1-hour HRRR data as a first guess did not vary
substantially, with the 1-hour HRRR first guess having
slightly larger error magnitudes, reflecting the results of
the temporal evaluation. For simplicity, only the errors
for the 1-hour HRRR first-guess analyses are displayed
in Figure 5.



The distribution of median 2-meter temperature errors
across the CONUS appear largely correlated with areas
of complex terrain, such as the Intermountain West and
the Appalachian Mountains. Specifically, SFCOA-HRRR
appears to be too warm in the presence of complex
terrain, though there are some regions where the
analyses are too cold. This is likely in part, if not entirely
because, the Barnes technique does not traditionally
account for varying terrain heights between
observations. Observations within valleys, or on sloped
terrain, are likely unduly influencing the gridpoints
around them due to the isotropic nature of Barnes
interpolation. Temperature data are assimilated by
computing Dry Static Energy, which is analogous in its
properties to Potential Temperature, but is height
dependent instead of pressure dependent. The terrain
height is used within the Dry Static Energy computation
before performing the analysis, and then is reduced
back to the terrain height, but this does not completely
eliminate the issues posed by complex terrain.

The spatial distribution of dewpoint errors largely
displays the same signal, where the bulk of the errors
are concentrated in the presence of complex terrain,
and particularly in the Western US. These dewpoint
errors in the West reflect that the analyses generated by
SFCOA-HRRR are too moist, which is possibly due to a
restriction on the magnitude of the mixing ratio analysis
increment allowed, as discussed in the temporal
verification section. This was initially implemented as a
quality-control check, but it may be preventing the
surface observations from appropriately correcting the
first-guess analysis. Additionally, the 1-hour first-guess
is potentially too close to the model initialization time to
have accurately mixed and representative boundary
layers, though further work is needed to confirm this
hypothesis. Portions of the Central Plains exhibit a fairly
notable dry bias, which is consistent with a known
afternoon dry bias in HRRR forecasts during the warm
season for this region. The way mesonet observations
are being assimilated could also be a contributing factor,
and warrants further investigation.

5. DISCUSSION AND FUTURE WORK

The initial implementation of a 3-km scale surface
objective mesoanalysis using the HRRR as a foundation
showed promise as a viable replacement for the current
RAP-based SPC Mesoanalysis. In subjective
evaluations, SFCOA-HRRR showed improvement over
the current SFCOA-RAP system, and was considered
comparable to 3D-RTMA HRRR by HWT SFE
participants. This is a particularly notable result since
SFCOA-HRRR is a simpler and lower-latency system

than the full 3D data assimilation used by 3D-RTMA.
Objective verification of 2-meter temperature and
dewpoint analyses at ASOS/AWOS sites highlight some
areas for improvement, particularly in the presence of
complex terrain and with the moisture analyses.
Additional work to further develop, tune, and improve
SFCOA-HRRR are expected to continue in future HWT
experiments, eventually replacing SFCOA-RAP before
the retirement of the RAP model.

In addition to improving the performance of
SFCOA-HRRR, additional work is needed to better
understand how changing from a 40km-based system
using 25-mb pressure level data in the vertical, to a
3km-based system using native model level data,
impacts distributions of sensitive integrated quantities
such as Storm Relative Helicity (SRH) or computed
storm-motion vectors. Using native vertical level data
substantially improves the number of samples in the
lowest levels of profiles, which in turn results in more
integrated area on the hodograph and Skew-T. In order
to address these questions, historical mesoanalyses for
both SFCOA-HRRR and SFCOA-RAP will need to be
compared to determine if certain parameters, such as
the Significant Tornado Parameter, need recalibration
when moving to higher spatial resolutions. In future
work, archived native-level HRRR data and archived
surface observations will be used to generate historical
mesoanalysis data for comparison with SFCOA-RAP.

Re-processing historical mesoanalysis data also
provides an opportunity to quality-control and share both
historical SFCOA-RAP and SFCOA-HRRR hourly
mesonanalysis data with the wider meteorological
community. Ongoing efforts are actively seeking to
eventually make this data publicly available through
public dataset cloud providers. These efforts would
include producing new variables and fields based on
recent and current research in order to facilitate
transitioning new products into operations, as well as
providing a long-term dataset for other research topics.
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7. TABLES AND FIGURES

Upscaled Analysis Average Rankings

Analysis System Ranking (1-4)

SFCOA-HRRR 1.93

3D-RTMA HRRR 1.94

SFCOA-RAP 2.86

3D-RTMA RRFS 3.27

Table 1: The average rankings of the mesoanalysis systems evaluated in the 2024 HWT SFE when upscaled to
40km. A ranking of 1 was considered the best, and a ranking of 4 was considered the worst.

Summary Statistics for 2-m Temperature and Dewpoint Analyses

F00
2-m Temperature

F01 2-m
Temperature

F00
2-m Dewpoint

F01
2-m Dewpoint

RMSE 1.10 ºF (0.61 ºC) 1.25 ºF (0.69 ºC) 1.44 ºF (0.8 ºC) 1.52 ºF (0.84 ºC)

Bias -0.03 ºF (-0.017 ºC) -0.02 ºF (-0.011 ºC) 0.19 ºF (0.11 ºC) 0.18 ºF (0.1 ºC)

Table 2: Summary RMSE and bias statistics using all ASOS/AWOS sites for all generated hourly analyses, broken up
by whether the analysis was created using the HRRR analysis or 1-hour forecast as a first guess.



Gridded Variable Radius of Influence for Barnes Interpolation Weights

Figure 1. An example of a variable Radius of Influence used for 2-meter air temperature Barnes interpolation
weights, using the median distance from each analysis gridpoint to the nearest 10 observation sites.



SFCOA-HRRR vs. 3D-RTMA HRRR Subjective Comparisons

Figure 2. 2024 HWT SFE Participant Evaluations of SFCOA-HRRR when compared to 3D-RTMA HRRR.



SFCOA-HRRR Temperature Errors Binned by UTC HOUR

Figure 3. SFCOA-HRRR temperature errors (left axis: ºF, right axis: ºC) across the CONUS binned by UTC hour
during the HWT SFE, using analysis generated from a HRRR 0-hour analysis time first-guess (a; upper) and a
1-hour forecast first guess (b; lower). Violin hues correspond to the value of the median error for the distribution.



SFCOA-HRRR Dewpoint Errors Binned by UTC Hour

Figure 4. Same as Fig. 2, except for 2-m dewpoint errors.



SFCOA-HRRR Median Temperature and Dewpoint Errors at ASOS/AWOS

Figure 5. Median 2-m temperature (a; upper) and 2-m dewpoint (b; lower) errors at ASOS/AWOS sites during the
HWT SFE.


