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We start in section 1 with some “word problems”, intended to provide
some extrinsic motivation for the general field of this book. In section 2 we
talk about the broad conceptual themes of the book, partly illustrated by
the word problems, and then outline the actual contents and give advice to
readers.

1 Word problems

1.1 Random knight moves

Imagine a knight on a corner square of an otherwise empty chessboard.
Move the knight by choosing at random from the legal knight-moves. What
is the mean time until the knight first returns to the starting square?

At first sight this looks like a messy problem which will require numerical
calculations. But the knight is moving as random walk on a finite graph
(rather than just some more general Markov chain), and elementary theory
reduces the problem to counting the numer of edges of the graph, giving the
answer of 168 moves. See Chapter 3 yyy.

1.2 The white screen problem

Around 1980 I wrote a little Basic program that would display
a random walk on the screen of my home computer. First, a
pixel in the middle of the screen was lit up. Then one of the
four directions N,F,W.S was selected uniformly at random and
the walk proceeded one step in the chosen direction. That new
pixel was lit up on the screen, and the process was repeated



from the new point, etc. For a while, the walk is almost always
quickly visiting pixels it hasn’t visited before, so one sees an
irregular pattern that grows in the center of the screen. After
quite a long while, when the screen is perhaps 95% illuminated,
the growth process will have slowed down tremendously, and the
viewer can safely go read War and Peace without missing any
action. After a minor eternity every cell will have been visited.
Any mathematician will want to know how long, on the average,
it takes until each pixel has been visited. Edited from Wilf [16].

Taking the screen to be m X m pixels, we have a random walk on the
discrete two-dimensional torus Z%, and the problem asks for the mean cover
time, that is the time to visit every vertex of the graph. Such questions
have been studied for general graphs (see Chapter 6), though ironically this
particular case of the two-dimensional torus is the hardest special graph. It
is known that mean cover time is asymptotically at most 47~ 'm?log? m, and
conjectured this is asymptotically correct (see Chapter 7 yyy). For m = 512
this works out to be about 13 million. Of course, in accordance with Moore’s
Law what took a minor eternity in 1980 takes just a few seconds today.

1.3 Universal traversal sequences

Let S(n,d) be the set of all d-regular graphs G' with n vertices and with
the edges at each vertex labeled (1,2,...,d). A universal traversal sequence
1,09, .. .,14 € {1,...,d} is a sequence that satisfies

for each G' € S(n,d)and each initial vertex of GG the deterministic

9

walk “at step ¢ choose edge ;" visits every vertex.

What is the shortest length v = u(n,d) of such a sequence?

To get a partial answer, instead of trying to be clever about picking the
sequence, consider what happens if we just choose #,179,... uniformly at
random. Then the walk on a graph G is just simple random walk on G.
Using a result that the mean cover time on a regular graph is O(n?) one
can show (see Chapter 6 yyy) that most sequences of length O(dn®logn)
are universal traversal sequences.

Paradoxically, no explicit example of a universal traversal sequence this
short is known. The argument above fits a general theme that probabilistic
methods can be useful in combinatorics to establish the existence of objects
which are hard to exhibit constructively: numerous examples are in the
monograph by Alon and Spencer [1].



1.4 How long does it take to shuffle a deck of cards?

Repeated random shuffles of a d-card deck may be modeled as a Markov
chain on the space of all d! possible configurations of the deck. Different
physical methods of shuffling correspond to different chains. The model for
the most common method, riffle shuffle, is described carefully in Chapter
9 (xxx section to be written). A mathematically simpler method is top-
to-random, in which the top card is reinserted at one of the d possible
positions, chosen uniformly at random (Chapter 9 section yyy). Giving a
precise mathematical interpretation to the question

how many steps of the chain (corresponding to a specified phys-
ical shuffle) are needed until the distribution of the deck is ap-
proximately uniform (over all d! configurations)?

is quite subtle; we shall formalize different interpretations as different mizing
times, and relations between mixing times are discussed in Chapter 4 for
reversible chains and in Chapter 8 (xxx section to be written) for general
chains. Our favorite formalization is via the variation threshold time 1, and
it turns out that

1~ 3logyd (riffle shuffle) (1)
71~ dlogd (top-to-random shuffle) .

For the usual deck with d = 52 these suggest 8 and 205 shuffles respectively.

1.5 Sampling from high-dimensional distributions: Markov
chain Monte Carlo

Suppose you have a function f : R? — [0,00) with & := [pa f(z) dz < o,
where f is given by some explicit but maybe complicated formula. How can
you devise a scheme to sample a random point in R? with the normalized
probability density f(z)/k?

For d = 1 the elementary “inverse distribution function” trick is avail-
able, and for small d simple acceptance/rejection methods are often prac-
tical. For large d the most popular method is some form of Markov chain
Monte Carlo (MCMC) method, and this specific d-dimensional sampling
problem is a prototype problem for MCMC methods. The scheme is to de-
sign a chain to have stationary distribution f(z)/k. A simple such chain is
as follows. From a point z, the next point X is chosen by a two-step pro-
cedure. First choose Y from some reference distribution (e.g. multivariate



Normal with specified variance, or uniform of a sphere of specified radius)
on R%; then set X; = z + Y with probability min(1, f(z+Y)/f(z)) and set
X1 = z with the remaining probability.

Routine theory says that the stationary density is indeed f(z)/x and
that as t — oo the distribution of the chain after ¢ steps converges to this
stationary distribution. So a heuristic algorithm for the sampling problem
is

Choose a starting point, a reference distribution and a number
t of steps, simulate the chain for ¢ steps, and output the state of
the chain after ¢ steps.

To make a rigorous algorithm one needs to know how many steps are needed
to guarantee closeness to stationarity; this is a mizing time question. The
conceptual issues here are discussed in Chapter 11. Despite a huge litera-
ture on methodology and applications of MCMC in many different settings,
rigorous results are rather scarce. A notable exception is in the sampling set-
ting above where log f is a concave function, where there exist complicated
results (outlined in Chapter 11 xxx to be written) proving that a polynomial
(in d) number of steps suffice.

1.6 Approximate counting of self-avoiding walks

A self-avoiding walk (SAW) of length [ in the lattice Z¢ is a walk 0 =
v, V1, V2, . . ., v; for which the (v;) are distinct and successive pairs (v;, v;41)
are adjacent. Understanding the [ — oo asymptotics of the cardinality |9
of the set S; of SAWs of length [ (dimension d = 3 is the most interesting
case) is a famous open problem. A conceptual insight is that, for large [,
the problem

find an algorithm which counts |.9;| approximately
can be reduced to the problem

find an algorithm which gives an approximately uniform random
sample from 5.

To explain, note that each walk in S747 is a one-step extension of some walk
in S7. So the ratio |S;41]/]51| equals the mean number of extensions of a
uniform random SAW from 5, which of course can be estimated from the
empirical average of the number of extensions of a large sample of SAWs
from 9.



Similar schemes work for various other families (5;) of combinatorial sets
of increasing size, provided one has some explicit connection between .57 and
Si4+1. As in the previous word problem, one can get an approximately uni-
form random sample by MCMC, i.e. by designing a chain whose stationary
distribution is uniform, and simulating a sufficiently large number of steps
of the chain: in making a rigorous algorithm, the issue again reduces to
bounding the mixing time of the chain. The case of SAWs is outlined in
Chapter 11 section yyy.

1.7 Simulating a uniform random spanning tree

The last two word problems hinted at large classes of algorithmic problems;
here is a different, more specific problem. A finite connected graph G has a
finite number of spanning trees, and so it makes sense to consider a uniform
random spanning tree of G. How can one simulate this random tree?

It turns out there is an exact method, which involves running random
walk on GG until every vertex v has been visited; then for each v (other than
the initial vertex) let the tree include the edge by which the walk first visited
v. This gives some kind of random spanning tree; it seems non-obvious that
the distribution is uniform, but that is indeed true. See Chapter 8 section

yyy-

1.8 Voter model on a finite graph

Consider a graph where each vertex is colored, initially with different colors.
Each vertex from time to time (precisely, at times of independent Poisson
processes of rate 1) picks an adjacent vertex at random and changes its color
to the color of the picked neighbor. Eventually, on a finite graph, all vertices
will have the same color: how long does this take?

This question turns out to be related (via a certain notion of duality) to
the following question. Imagine particles, initially one at each vertex, which
perform continuous-time random walk on the graph, but which coalesce
when they meet. Eventually they will all coalesce into one particle: how
long does this take? On the complete graph on n vertices, the mean time in
each question is ~ n. See Chapter 10 section yyy.

1.9 Are you related to your ancestors?

You have two parents, four grandparents and eight great-grandparents. In
other words, for small g > 1



you have exactly 29 g’th-generation ancestors, and you are re-
lated to each of them.

But what about larger g? Clearly you didn’t have 2'2° ~ 10'? distinct
120’th-generation ancestors! Even taking g = 10, one can argue it’s unlikely
you had 1,024 different 10th-generation ancestors, though the number is
likely only a bit smaller — say 1,000, in round numbers. Whether you are ac-
tually related to these people is a subtle question. At the level of grade-school
genetics, you have 46 chromosomes, each a copy of one parental chromosome,
and hence each a copy of some 10th-generation ancestor’s chromosome. So
you’'re genetically related to at most 46 of your 10th-generation ancestors.
Taking account of crossover during chromosome duplication leads to a more
interesting model, in which the issue is to estimate hitting probabilities in
a certain continuous-time reversible Markov chain. It turns out (Chapter
13 yyy) that the number of 10th-generation ancestors who are genetically
related to you is about 340. So you’re unlikely to be related to a particu-
lar 10th-generation ancestor, a fact which presents a curious sidebar to the
principle of hereditary monarchy.

2 So what’s in the book?

2.1 Conceptual themes

Classical mathematical probability focuses on time-asymptotics, describing
what happens if some random process runs for ever. In contrast, the word
problems each ask “how long until a chain does something?”, and the focus of
this book is on finite-time behavior. More precisely, the word problems ask
about hitting times, the time until a state or a set of states is first visited, or
until each state in a set is visited; or ask about mizing times, the number of
steps until the distribution is approximately the stationary distribution. The
card-shuffling problems (section 1.4) provide a very intuitive setting for such
questions; how many shuffles are needed, as a function of the size of the deck,
until the deck is well shuffled? Such size-asymptotic results, of which (1) is
perhaps the best-known, are one of the themes of this book. Thus in one
sense our work is in the spirit of the birthday and coupon-collector’s problems
in undergraduate probability; in another sense our goals are reminiscent of
those of computational complezity (P L NP and all that), which seeks to
relate the time required to solve an algorithmic problem to the size of the
problem.



2.2 Prerequisites

The reader who has taken a first-year graduate course in mathematical prob-
ability will have no difficulty with the mathematical content of this book.
Though if the phrase “randomized algorithm” means nothing to you, then
it would be helpful to look at Motwani - Raghavan [13] to get some feeling
for the algorithmic viewpoint.

We have tried to keep much of the book accessible to readers whose math-
ematical background emphasizes discrete math and algorithms rather than
analysis and probability. The minimal background required is an undergrad-
uate course in probability including classical limit theory for finite Markov
chains. Graduate-level mathematical probability is usually presented within
the framework of measure theory, which (with some justification) is often
regarded as irrelevant “general abstract nonsense” by those interested in
concrete mathematics. We will point out as we go the pieces of graduate-
level probability that we use (e.g. martingale techniques, Wald’s identity,
weak convergence). Advice: if your research involves probability then you
should at some time see what’s taught in a good first-year-graduate course,
and we strongly recommend Durrett [6] for this purpose.

2.3 Contents and alternate reading

Amongst the numerous introductory accounts of Markov chains, Norris [14]
is closest to our style. That book, like the more concise treatment in Dur-
rett [6] Chapter 5, emphasizes probabilistic methods designed to work in the
countable-state setting. Matrix-based methods designed for the finite-state
setting are emphasised by Kemeny - Snell [10] and by Hunter [7]. We start
in Chapter 2 by briskly reviewing standard asymptotic theory of finite-state
chains, and go on to a range of small topics less often emphasised: obtaining
general identities from the reward-renewal theorem, and useful metrics on
distributions, for instance. Chapter 3 starts our systematic treatment of
reversible chains: their identification as random walks on weighted graphs,
the analogy with electrical networks, the spectral representation and its con-
sequences for the structure of hitting time distributions, the Dirichlet for-
malism, extremal characterization of eigenvalues and various mean hitting
times. This material has not been brought together before. Chen [2] gives a
somewhat more advanced treatment of some of the analytic techniques and
their applications to infinite particle systems (also overlapping partly with
our Chapters 10 and 11), but without our finite-time emphasis. Kelly [9]



emphasizes stationary distributions of reversible stochastic networks, Keil-
son [8] emphasizes structural properties such as complete monotonicity, and
Doyle - Snell [5] give a delightful elementary treatment of the electrical net-
work connection. Chapter 4 is the centerpiece of our attempt to create
coherent intermediate-level theory. We give a detailed analysis of different
mixing times: the relaxation time (1/spectral gap), the variation thresh-
old (where variation distance becomes small, uniformly in initial state) and
the Cheeger time constant (related to weighted connectivity). We discuss
relations between these times and their surprising connection with mean
hitting times; the distinguished paths method for bounding relaxation time,
Cheeger-type inequalities, and how these parameters behave under opera-
tions on chains (watching only on a subset, taking product chains). Little
of this exists in textbooks, though Chung [3] gives a more graph-theoretic
treatment of Cheeger inequalities and of the advanced analytic techniques
in Chapter 12.

The rather technical Chapter 4 may seem tough going, but the payoff is
that subsequent chapters tend to “branch out” without developing further
theoretical edifices. Chapter 5 gives bare-hands treatments of numerous
examples of random walks on special graphs, and of two classes of chains
with special structure: birth-and-death chains, and random walks on trees.
Chapter 6 treats cover times (times to visit every vertex), which feature in
several of our word problems, and for which a fairly complete theory exists.
Chapter 7 discusses a hierarchy of symmetry conditions for random walks on
graphs and groups, emphasising structural properties. A conspicuous gap is
that we do not discuss how analytic techniques (e.g. group representation
theory, orthogonal polynomials) can be systematically used to derive exact
formulas for ¢t-step transition probabilities or hitting time distributions in the
presence of enough symmetry. Diaconis [4] has material on this topic, but
an updated account would be valuable. Chapter 8 returns to not-necessarily
reversible chains, treating topics such as certain optimal stopping times, the
Markov chain tree theorem, and coupling from the past. Chapter 9 xxx.
Chapter 10 describes the coupling method of bounding the variation thresh-
old mixing time, and then discusses several interacting particle systems on
finite graphs related to random walks. As background, Liggett [11] is the
standard reference for interacting particle systems on infinite lattices. Chap-
ter 11 xxx. Chapter 12 recounts work of work of Diaconis and Saloff-Coste,
who bring the techniques of Nash inequalities, log-Sobolev inequalities and
local Poincaré inequalities to bear to obtain sharper estimates for reversible
Markov chains. These techniques were originally developed by analysts in



the study of heat kernels, cf. the sophisticated treatment in Varopoulos
et al [15]. Chapter 13 xxx and mentions topics not treated in detail be-
cause of mathematical depth or requirements for extraneous mathematical
techniques or the authors’ exhaustion.

As previously mentioned, our purpose is to provide systematic intermediate-
level discussion of reversible Markov chains and random walks on graphs,
built around the central theme of mixing times and hitting times developed
in Chapter 4. Various topics could be tackled in a more bare-hands way; an
opposite approach by Lovasz [12] (N.B. second edition) is to lead the reader
through half a chapter of problems concerning random walk on graphs. Our
approach is to treat random walk on an unweighted graph as a specialization
of reversible chain, which makes it clear where non-trivial graph theory is
being used (basically, not until Chapter 6).

We have not included exercises, though filling in omitted details will
provide ample exercise for a conscientious reader. Of the open problems,
some seem genuinely difficult while others have just not been thought about
before.
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