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1 Continuous state space

We have said several times that the theory in this book is fundamentally
a theory of inequalities. “Universal” or “a priori” inequalities for reversible
chains on finite state space, such as those in Chapter 4, should extend un-
changed to the continuous space setting. Giving proofs of this, or giving
the rigorous setup for continuous-space chains, is outside the scope of our
intermediate-level treatment. Instead we just mention a few specific pro-
cesses which parallel or give insight into topics treated earlier.



1.1 One-dimensional Brownian motion and variants

Let (B,0 <t < 00) be one-dimensional standard Brownian motion (BM).
Mentally picture a particle moving along an erratic continuous random tra-
jectory. Briefly, for s < t the increment B; — B, has Normal(0, ¢ — s) distri-
bution, and for non-overlapping intervals (s;,#;) the increments By, — B;, are
independent. See Norris [46] section 4.4, Karlin and Taylor [31] Chapter 7, or
Durrett [20] Chapter 7 for successively more detailed introductions. One can
do explicit calculations, directly in the continuous setting, of distributions
of many random quantities associated with BM. A particular calculation we
need ([20] equation 7.8.12) is

Gt) == P ( sup |By| < 1) _ % 3 U pc@m+ )28 (1)

0<s<t o 2m+1

where

G7'(1/e) = 1.006. (2)

One can also regard BM as a limit of rescaled random walk, a result which
generalizes the classical central limit theorem. If (X,,,m = 0,1,2,...) is
simple symmetric random walk on Z, then the central limit theorem implies

m-1?2X,, —d> By and the generalized result is
(m™Y2X g, 0 < < 00) B (B, 0< t < 00) (3)

where the convergence here is weak convergence of processes (see e.g. Ethier
and Kurtz [22] for detailed treatment). For more general random flights
on 7, that is X, = 3771, §; with £,&s,. .. independent and K¢ = 0 and
var £ = 0% < 0o, we have Donsker’s theorem ([20] Theorem 7.6.6)

(m™Y2X g, 0 < < 00) B (0B,,0 <1 < o0). (4)

Many asymptotic results for random walk on the integers or on the n-cycle

or on the nm-path, and their d-dimensional counterparts, can be explained

in terms of Brownian motion or its variants. The variants of interest to us

take values in compact sets and have uniform stationary distributions.
Brownian motion on the circle can be defined by

By := By mod 1



and then random walk (vaf), m=0,1,2,...) on the n-cycle {0,1,2,...,n—
1} satisfies, by (3),

nH (X[, 0 <t <o0) B (BP0 <t < 00) asn— o0, (5)
The process B° has eigenvalues {27252, 0 < j < oo} with eigenfunction
= 1 for j = 0 and two eigenfunctions cos(27jz) and sin(27jz) for 7 > 1. In
particular the relaxation time is

The result for random walk on the n-cycle (Chapter 5 Example 7)
Tg ~ % as n — 0o

can therefore be viewed as a consequence of the n? time-rescaling in (5)
which takes random walk on the n-cycle to Brownian motion on the circle.
This argument is a prototype for the weak convergence paradigm: proving
size-asymptotic results for discrete structures in terms of some limiting con-
tinuous structure.

Variation distance can be studied via coupling. Construct two Brownian
motions on R started from 0 and z > 0 as follows. Let B() be standard
Brownian motion, and let

Typ = inf{t: Bt(l) =z/2}.
Then T/, < 00 a.s. and we can define B(®) by

BY = +-BY, 0<t<T,),
= B§1)7 Tx/2§t<oo

That is, the segment of B® over 0 < t < T,/ is the image of the corre-
sponding segment of B(") under the reflection which takes 0 to z. It is easy
to see that B(®) is indeed Brownian motion started at z. This is the re-
flection coupling for Brownian motion. We shall study analogous couplings
for variant processes. Given Brownian motion on the circle B°! started at
0, we can construct another Brownian motion on the circle B°? started at
0<z<1/2via

B? = - B mod 1, ogth{
= Bl?lv T{

z xz 1
2’2+2



where

T{a: z

1y =
ata)

inf{t: B! =ZorZ+ 1}

Again, the segment of B°% over 0 < t < T(a 241y is the image of the
272 2
corresponding segment of B°! under the reflection of the circle which takes
0 to z, so we call it the reflection coupling for Brownian motion on the
circle. Because sample paths cannot cross without meeting, it is easy to see
that the general coupling inequality (Chapter 4-3 section 1.1) becomes an
equality:
o o —
1Po(By € ) = Bo(B] € )| = P(T(z 241y > 1).

The worst starting point is 2 = 1/2, and the hitting time in question can be
written as the hitting time T)_; 4 /4y for standard Brownian motion, so

by Brownian scaling, that is the property
(Bpy,0< t <o0) £ (eB(t),0<t< o0). (7)

See the Notes for an alternative formula. Thus for Brownian motion on the
circle

T = G711 /e) = 0.063. (8)

If simple random walk is replaced by aperiodic random flight with step
variance o then the asymptotic values of 7 and 7, are replaced by 75/0?
and 71/0%; this may be deduced using the local central limit theorem ([20]
Theorem 2.5.2).

Reflecting Brownian motion B on the interval [0, 1] is very similar. Intu-
itively, imagine that upon hitting an endpoint 0 or 1 the particle is instan-
taneously inserted an infinitesimal distance into the interval. Formally one
can construct B; as By := ¢(By) for the concertina map

o(2j4z) =2z, ¢Q2j+1+z)=1-2; 0<z<1,j=...-2,-1,0,1,2,....
The process B has eigenvalues {72j2/2, 0 < j < oo} with eigenfunctions
cos(mjz). In particular the relaxation time is

_ 2
T2—7_r_2.

The result for random walk on the n-path (Chapter 5 Example 8)
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is another instance of the weak convergence paradigm, a consequence of
the n? time-rescaling which takes random walk on the n-path to reflecting
Brownian motion on the interval. The variation distance function d(t) for
B can be expressed in terms of the corresponding quantity (write as d°(t))
for B°. Briefly, it is easy to check

(B,0<t<oo) £ (2min(Bf,, 1~ Bf,),0 <t < o)
and then to deduce d(t) = d°(t/4). Then using (8)

n = 1G71(1/e) = 0.252. (9)

1.2 d-dimensional Brownian motion

Standard d-dimensional Brownian motion can be written as
B: = (Bzgl)7 EERE) Bzgd))

where the component processes (B;Z),i = 1,...,d) are independent one-
dimensional standard Brownian motions. A useful property of B is isotropy:
its distribution is invariant under rotations of R?. In approximating simple
random walk (X,,,m = 0,1,2,...) on Z% one needs to be a little careful
with scaling constants. The analog of (3) is

(m_l/QXl_mtJ70 <t< OO) _d> (d_l/QBh 0 <t< OO) (10)

where the factor d=!/2 arises because the components of the random walk
have variance 1/d — see (4). Analogous to (5), random walk (ng),m =
0,1,2,...) on the discrete torus Z% converges to Brownian motion B® on the
continuous torus [0, 1)%:

n_l(XEthJ,O <t < o0) 4 (d7Y?B2,0 <t < 00) as n — oo, (11)

1.3 Brownilan motion in a convex set

Fix a convex polyhedron K C R?. One can define reflecting Brownian
motion in K; heuristically, when the particle hits a face it is replaced an
infinitesimal distance inside K, orthogonal to the face. As in the previous
examples, the stationary distribution is uniform on K. We will outline a
proof of



Proposition 1 For Brownian motion B in a convex polyhedron K which
is a subset of the ball of radius r,

(i) 1 < G7Y(1/e) r?

(ii) T < 8w~ 22,

Proof. By the d-dimensional version of Brownian scaling (7) we can reduce
to the case r = 1. The essential fact is

Lemma 2 Let B; be reflecting Brownian motion on [0, 1] started at 1, and
let Ty be its hitting time on 0. Versions B(), B of Brownian motion in
K started from arbitrary points of K can be constructed jointly with B such
that

B — B < 2Buinezy), 0 <t < oo (12)

Granted this fact, d(t) for Brownian motion on K satisfies

d(t) - startrirrllg]?)(OintsP(Bgl) 7£ BgZ)) S P(TO > t) - G(t)
where the final equality holds because Ty has the same distribution as the
time for Brownian motion stared at 1 to exit the interval (0,2). This estab-
lishes (i) for » = 1. Then from the ¢ — oo asymptotics of G(t) in (1) we have
d(t) = O(exp(—n%t/8)), implying 7 < 8/7? by Lemma ?? and establishing
(ii).

Sketch proof of Lemma. Details require familiarity with stochastic cal-
culus, but this outline provides the idea. For two Brownian motions in R?
started from (0,0,...,0) and from (z,0,...,0), one can define the reflection
coupling by making the first coordinates evolve as the one-dimensional re-
flection coupling, and making the other coordinate processes be identical in
the two motions. Use isotropy to entend the definition of reflection coupling
to arbitrary starting points. Note that the distance between the processes
evolves as 2 times one-dimensional Brownian motion, until they meet. The
desired joint distribution of ((Bgl), B§2)), 0 <t < o0) is obtained by spec-
ifying that while both processes are in the interior of K, they evolve as the
reflection coupling (and each process reflects orthogonally at faces). As the
figure illustrates, the effect of reflection can only be to decrease distance
between the two Brownian particles.



For a motion hitting the boundary at a, if the unreflected process is at
b or ¢ an infinitesimal time later then the reflected process is at b’ or ¢’
By convexity, for any # € K we have |b' — x| < |b — |; so reflection can
only decrease distance between coupled particles. To argue the inequality
carefully, let o be the vector normal to the face. The projection P, satisfies
|Pa(b' — z)| < |Pa(b — z)|. Further, b — 4" L «, implying P,. (' — z) =
P,.(b— z). Therefore by Pythagoras |’ — x| < |b — z|.

We can therefore write, in stochastic calculus notation,
dBY - BY| = 42B,) - dA,

where B; is a one-dimensional Brownian motion and A; is an increasing
process (representing the contribution from reflections off faces) which in-
creases only when one process is at a face. But we can construct reflecting
Brownian motion B in terms of the same underlying B; by

d(2B;) = d(2B;) — dC

where C} (representing the contribution from reflections off the endpoint 1)
is increasing until 7. At time 0 we have (because r = 1)

B{" - BY| < 2= 2B,.
We have shown
d(BY - B® |~ 2B,) = —dA, + dC,.

If the desired inequality (12 fails then it fails at some first time ¢, which can
only be a time when dC is increasing, that is when B; = 1, at which times
the inequality holds a priori. m.

Proposition 1 suggests an approach to the algorithmic question of sim-
ulating a uniform random point in a convex set K C R? where d is large,



discussed in Chapter 9 section 5.1. If we could simulate the discrete-time
chain defined as reflecting Brownian motion B on K examined at time in-
tervals of h?/d for some small h (so that the length of a typical step is
of order \/(h%/d) x d = h), then Proposition 1 implies that O(d/h?) steps
are enough to approach the stationary distribution. Since the convex set is
available only via an oracle, one can attempt to do the simulation via accep-
tance/rejection. That is, from x we propose a move to x' = x4+ \/h?/d Z
where Z has standard d-variate Normal distribution, and accept the move
iff x’ € K. While this leads to a plausible heuristic argument, the rigorous
difficulty is that it is not clear how close an acceptance/rejection step is to
the true step of reflecting Brownian motion. No rigorous argument based
directly on Brownian motion has yet been found, though the work of Bub-
ley et al [12] on coupling of random walks has elements in common with
reflection coupling.

1.4 Discrete-time chains: an example on the simplex

Discrete-time, continuous-space chains arise in many settings, in particular
(Chapter MCMC) in Markov Chain Monte Carlo sampling from a target
distribution on R?. As discussed in that chapter, estimating mixing times
for such chains with general target distributions is extremely difficult. The
techniques in this book are more directly applicable to chains with (roughly)
uniform stationary distribution. The next example is intended to give the
flavor of how techniques might be adapted to the continuous setting: we will
work through the details of a coupling argument.

Example 3 A random walk on the simplex.

Fix d and consider the simplex A = {x = (z1,...,z4} 1 2; > 0,Y ; 2, = 1}.
Consider the discrete-time Markov chain (X(¢),t = 0,1,2,...) on A with
steps:

from state x, pick 2 distinct coordinates {7, j} uniformly at random, and
replace the 2 entries {z;,z;} by {U,z; + z; — U} where U is uniform on
(0, T; + ;rj) .

The stationary distribution 7 is the uniform distribution on A. We will
show that the mixing time 7 satisfies

71 = O(d*logd) as d — oo. (13)

The process is somewhat reminiscent of card shuffling by random transposi-
tions (Chapter 7 Example 18), so by analogy with that example we expect



that in fact 7y = ©(dlogd). What we show here is that the coupling analysis
of that example (Chapter 4-3 section 1.7) extends fairly easily to the present
example.

As a preliminary, let us specify two distinct couplings (A, B) of the
uniform (0, @) and the uniform(0, b) distributions. In the scaling coupling we
take (A, B) = (aU,bU) for U with uniform(0, 1) distribution. In the greedy
coupling we make P(A = B) haveits maximal value, which is min(a, b)/ max(a, b),
and we say the coupling works if A = B.

Fix x(0) € A. We now specify a coupling (X(¢), Y(¢)) of the chains
started with X(0) = x(0) and with Y (0) having the uniform distribution.
(This is an atypical couplig argument, in that it matters that one version is
the stationary version).

From state (x,y), choose the same random pair {7, j} for each
process, and link the new values z! and y! (which are uniform
on different intervals) via the scaling coupling for the first ¢; =
3d%log d steps, then via the greedy coupling for the next t; = C'd?
steps.

We shall show that, for any fixed constant C' > 0,
P(X(tl + tz) = Y(tl + tz)) Z 1- C_l — 0(1) as d — oo (14)

establishing (13).
Consider the effect on [ distance ||x —y|| := 3", |zi — y;| of a step of the
scaling coupling using coordinates {i,j}. The change is

(U @ita;) =U(yity) [+ (A=U) (wit2;) = (1=U) (gt y;) | =z —yil = |2 —y;]
= (wi +25) = (i +yi)l = |z = wil = |2j — wjl
_ )0 if sgn (z; — y;) =sgn (z; — y;)
—2min(|z; — yi|,|z; —y;|) if not .
Thus
Exyy (1X(1) = Y(D)[| =[x = yl])

_9 ‘
= d(d — 1) szln(|$2 - yi|7 |$j - yjl)l(sgn (zi—vyi)#sgn (z;—y;))
. i
_4 ‘
= PTCE) >3 min(cy, dj)

1€AjEB



(where ¢; :=2; —y;on A :={i:2; > y}; dj :==y; —z;on B:={j:y; >

i})
= ( Z Z

zeA j€EB max(cz,d])
S C Ry PP DR ey
_ _72|| I
= dd-1)™*TY

because ) ;c4 ¢ =3 ;epd; = ||x —yl|/2. So

B IX() = Y ()] < (1= 7255 ) I =1L

Because ||X(0) — Y(0)|| < 2, it follows that after ¢ steps using the scaling

coupling,
2 t
EIXt) =Y <2(1—-——] .
1) - Yl <2 (1 - 77
So by taking t; ~ 3d?logd, after ¢; steps we have
P(||X(t1) = Y(t1)|| < d77) = 1 = o(1). (15)

Now consider the greedy coupling. If a step works, the [y distance
||X(t) = Y (t)|| cannot increase. The chance that a step from (x,y) involving
coordinates {i,j} works is

min(z; + z;, y; + y;) yi +yi — |Ix—yll
max(z; + zj,yi +y;) —  max(z; +z;, 4 + y;)
yi+y —[Ix—yl|

vV

>
vi +yi +[x -yl
S yi +y; —2llx -yl
- Yi + y;
> 1o |!X—Y||'
min (s, y;)

So unconditionally

||x —yl|
ming yg

Pix,y)(greedy coupling works on first step) > 1 — (16)

10



Now the uniform distribution (Yl(d), .. .,Yd(d)) on the simplex has the prop-
erty (use [20] Exercise 2.6.10 and the fact that the uniform distribution on
the simplex is the joint distribution of spacings between d — 1 uniform(0, 1)
variables and the endpoint 1)

if constants ag > 0 satisfy dag — 0 then P(Yl(d) < ag) ~ dag.

Since (Y (t)) is the stationary chain and YZ»(d) Yl(d),

P(lglkiild Yi(t) < d™*® for some t; <t <t; +t3) < thP(Yl(d) < d™*9)

and since 5 = O(d?) this bound is o(1). In other words

P(lr<nki£1d Yi(t) > d *Pforallt) <t <t;+t3)=1—o0(1) as d — oo.

Combining this with (15,16) and the non-increase of [; distance, we deduce
P(greedy coupling works for allt; <t <t;+t3) =1—o(1). (17)

Now consider the number M () of unmatched coordinates i at time ¢ > 1,
that is, the number of ¢ with X;(¢) # Yi(¢). Provided the greedy coupling
works, this number M () cannot increase, and decreases by at least 1 each
time two unmatched coordinates are chosen. So we can compare (M (t; +
t),t > 0) with the chain (NV(¢),t > 0) with N(0) = d and

m(m — 1)

P(N(t4+1) = m—1|N(t) = m) = qd=1)

= 1-P(N(t+1) = m|N(t) = m).

As in the analysis of the shuffling example, the time 7" = min{t : N(¢) = 1}

has ET = Y4 _, % < d?. When the number M (t) goes strictly below

2 it must become 0, and so

P(greedy coupling works for all t; <t <ty 4 t2, X(t1 +t2) # Y (t1 +12))
= P(greedy coupling works for all t; <t <1 +t3, M(t; +t2) > 1)
< P(T > t3) <1/Cs.

This and (17) establish (14).

11



1.5 Compact groups

Parallel to random flights on finite groups one can discuss discrete-time ran-
dom flights on classical (continuous) compact groups such as the orthogonal
group O(d) of d x d real orthogonal matrices. For instance, specify a reflec-
tion to be an automorphism which fixes the points in some hyperplane, so
that a reflection matrix can be written as

A=1—-2z27

where I is the d x d identity matrix and z is a unit-length vector in R,
Assigning to z the Haar measure on the (d — 1)-sphere creates a uniform
random reflection, and a sequence of uniform random reflections define a
random flight on O(d). Porod [50] shows that the variation threshold satisfies

T~ %dlogd

and that the cut-off phenomenon occurs. The result, and its proof via
group representation theory, are reminiscent of card-shuffling via random
transpositions (Chapter 7 Example 18).

1.6 Brownlan motion on a fractal set

Constructions and properties of analogs of Brownian motion taking values
in fractal subsets of R? have been studied in great detail over the last 15
years. Since these processes are most easily viewed as limits of random
walks on graphs, we shall say a little about the simplest example. The
figure illustrates the first two stages of the construction of the well-known
Sierpinski gasket.

ai ai
bl b3 bl b.?)
0 - a OW\/\QQ
Graph Gy Graph Gy
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In the topology setting one may regard G4 as a closed subset of R?, that is
as a set of line-segments, and then the closure of Uj2,Gy is the Sierpinski
gasket GG (this is equivalent to the usual construction by “cutting out middle
triangles”). In the graph setting, regard G4 as a graph and write (Xt(d),t =
0,1,2,...) for discrete-time random walk on G4 started at point 0. Let My
be the number of steps of X (9 until first hitting point a; or ay. Using
symmetry properties of the graphs, there is a simple relationship between
the distributions of My and Mj;. For the walk on G, the length of the time
segment until first hitting b, or by is distributed as M;; successive segments
(periods until next hitting one of {0, ay, as, b1, by, b3} other than the current
one) are like successive steps of the walk on G, so the number of segments
is distributed as M;. Using the same argument for general d gives

My is distributed as the d’th generation size in a Galton-Watson
branching process with 1 individual in generation 0 and offspring
distributed as AM;.

It is easy to calculate My = 5; indeed the distribution of M is determined
by its generating function, which can be calculated to be FzMt = 22 /(4-3z).
So EM; = 5% This suggests the existence of a limit process on G after
rescaling time, that is a limit

(XD, 0<t<oo) & (X 0<t <0

[5-41)”

In fact we can be more constructive. Branching process theory ([20] Example

4.4.1) shows that M,/5? % W where EW =1 and where W has the self-
consistency property

M d
S Wi = 5W (18)
=1

where (M; Wy, Wy, ...) are independent, M L My and W; 2 W. Now in
the topological setting, the vertices of G4 are a subset of GG. Let )N(t(d) be the
process on Gy C G whose sequence of jumps is as the jumps of the discrete-
time walk X (%) but where the times between jumps are independent with
distribution 5~¢W. Using (18) we can construct the processes X @ jointly
for all d such that the process X (4, watched only at the times of hitting
(successively distinct) points of G4_1, is exactly the process X (=1 These
coupled processes specify a process Xt(oo) on GG at a random subset of times
t. It can be shown that this random subset is dense and that sample paths

13



extend continuously to all ¢, and it is natural to call X (°°) Brownian motion
on the Sierpinski gaskel.

2 Infinite graphs

There is a huge research literature concerning random walks on infinite dis-
crete groups, and more generally on infinite graphs, and the recent mono-
graph of Woess [59] provides an in-depth treatment. This section focuses
narrowly on two aspects of an issue not emphasized in [59]: what does
study of random walk on infinite graphs tell us about random walks on
finite graphs? One aspect of this issue is that random walks on certain spe-
cific infinite graphs may be used to get approximations or inequalities for
random walks on specific finite graphs. We treat three examples.

e The infinite lattice Z% as an approximation to the discrete torus Zj'{,
for large N (section 2.4).

e The infinite degree-r tree T” and bounds for r-regular expander graphs
of large size (section 2.6).

e The hierarchical tree Ty, as an approximation to balanced (r—1)-ary
trees (section 2.9).

The second aspect concerns properties such as transience, non-trivial bound-
ary, and “spectral radius < 1”7, which have been well-studied as qualitative
properties which an infinite-state chain either possesses or does not possess.
What are the quantitative finite-state analogs of such properties? Here ac-
tual theorems are scarce; we present conceptual discussion in sections 2.3
and 2.10 as a spur to future research.

2.1 Set-up

We assume the reader has some acquaintance with classical theory (e.g., [20]
Chapter 5) for a countable-state irreducible Markov chain, which emphasizes
the trichotomy transient or null-recurrent or positive-recurrent. We use the
phrase general chain to refer to the case of an arbitrary irreducible transition
matrix P, without any reversibility assumption.

Recall from Chapter 3 section 2 the identification, in the finite-state
setting, of reversible chains and random walks on weighted graphs. Given

14



a reversible chain we defined edge-weights w;; = m;p;; = m;p;;; conversely,
given edge-weights we defined random walk as the reversible chain

Pvz = wvr./wv; Wy = waﬂ' (19)

In the infinite setting it is convenient (for reasons explained below) to take
the “weighted graph” viewpoint. Thus the setting of this section is that we
are given a connected weighted graph satisfying

wUEZwm<ooV:U, Zwvzoo (20)

and we study the associated random walk (X4), i.e., the discrete-time chain
with pyy = wyy/w,. So in the unweighted setting (w. = 1), we have nearest-
neighbor random walk on a locally finite, infinite graph.

To explain why we adopt this set-up, say 7 is invariant for P if

Zﬂ'ipij = Vj, ;> 0 Vj
7
Consider asymmetric random walk on Z, say

Pii+1 = 2/3, pii1 =1/3; —o0 < i < oo. (21)

One easily verifies that each of the two measures m; = 1 and 7; = 2% is invari-
ant. Such nonuniqueness makes it awkward to seek to define reversibility of
P via the detailed balance equations

Tipi; = m;pji Vi, ] (22)

without a prior definition of w. Stating definitions via weighted graphs
avoids this difficulty.

The second assumption in (20), that >, w, = oo, excludes the positive-
recurrent case (see Theorem 4 below); because in that case the questions
one asks, such as whether the relaxation time 79 is finite, can be analyzed
by the same techniques as in the finite-state setting.

Our intuitive interpretation of “reversible” in Chapter 3 was “a movie
of the chain looks the same run forwards or run backwards”. But the chain
corresponding to the weighted graph with weights w; ;41 = 2¢, which is the
chain (21) with m; = 2!, has a particle moving towards +oco and so certainly
doesn’t satisfy this intuitive notion. On the other hand, a probabilistic
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interpretation of an infinite invariant measure 7 is that if we start at time 0
with independent Poisson(m,) numbers of particles at vertices v, and let the
particles move independently according to P, then the particle process is
stationary in time. So the detailed balance equations (22) correspond to the
intuitive “movie” notion of reversible for the infinite particle process, rather
than for a single chain.

2.2 Recurrence and Transience

The next Theorem summarizes parts of the standard theory of general chains
(e.g., [20] Chapter 5). Write p, := P,(T;f < 0o) and let N,(c0) be the total
number of visits (including time 0) to v.

Theorem 4 For a general chain, one of the following alternatives holds.
Recurrent. p, = 1 and F,N,(c0) = 0o and P,(Ny(c0) = o0) = 1 for all
v, w.

Transient. p, < 1 and E,N,(c0) < oo and P,(N,(co0) < o0) = 1 for all
v, w.

In the recurrent case there exists an invariant measure w, unique up to
constant multiples, and the chain is either

positive-recurrent: F, T} < co Yv and y", 7, < 0o; or

null-recurrent: £, T;f = co Yv and }, 7, = cc.

In the transient and null-recurrent cases, P,(X; = w) — 0 as t — oo for all
v, w.

Specializing to random walk on a weighted graph, the measure (w,) is in-
variant, and the second assumption in (20) implies that the walk cannot
be positive-recurrent. By a natural abuse of language we call the weighted
graph recurrent or transient. Because E,N,(o0) =3, pv(j;), Theorem 4 con-
tains the “classical” method to establish transience or recurrence by con-
sidering the ¢ — oo behavior of pfj} This method works easily for random
walk on Z? (section 2.4).

Some of the “electrical network” story from Chapter 3 extends immedi-
ately to the infinite setting. Recall the notion of a flow f, and the net flow
J(z) out of a vertex z. Say f is a unit flow from z to infinity if f;) =1 and
J(vy = 0 Vv # z. Thompson’s principle (Chapter 3 Proposition 35) extends
to the infinite setting, by considering subsets A,, | ¢ (the empty set) with
AS finite.
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Theorem 5 Consider a weighted graph satisfying (20). For each v,

1

inf {%Zg:fz/we :f a unit flow from v to mﬁmty} = m

In particular, the random walk is transient iff for some (all) v there exists
a unit flow £ from v to infinity such that 3", f?/w. < co.

By analogy with the finite setting, we can regard the inf as the effective
resistance between v and infinity, although (see section ??) we shall not
attempt an axiomatic treatment of infinite electrical networks.

Theorem 5 has the following immediate corollary: of course (a) and (b)
are logically equivalent.

Corollary 6 (a) If a weighted graph is recurrent, then so is any subgraph.
(b) To show that a weighted graph is transient, it suffices to find a transient
subgraph.

Thus the classical fact that Z2 is recurrent implies that a subgraph of Z? is
recurrent, a fact which is hard to prove by bounding ¢-step transition prob-
abilities. In the other direction, it is possible (but not trivial) to prove that
73 is transient by exhibiting a flow: indeed Doyle and Snell [19] construct
a transient tree-like subgraph of Z3.

Here is a different formulation of the same idea.

Corollary 7 The return probability p, = P,(T;} < o0) cannot increase if a
new edge (not incident at v) is added, or the weight of an existing edge (not
incident at v) is increased.

2.3 The finite analog of transience

Recall the mean hitting time parameter 7 from Chapter 4. For a sequence
of n-state reversible chains, consider the property

n"'79(n) is bounded as n — oco. (23)

We assert, as a conceptual paradigm, that property (23) is the analog of the
“transient” property for a single infinite-state chain. The connection is easy
to see algebraically for symmetric chains (Chapter 7), where 7o = F. T, for
each v, so that by Chapter 2 Lemma 10

o0

’I”L—l'ro = Zyy = Z(puv(t) _ n—l).
t=0
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The boundedness (in n) of this sum is a natural analog of the transience
condition

> opll) < oo
t=0

for a single infinite-state chain. So in principle the methods used to de-
termine transience or recurrence in the infinite-state case ([59] Chapter 1)
should be usable to determine whether property (23) holds for finite families,
and indeed Proposition 37 of Chapter 3 provides a tool for this purpose. In
practice these extremal methods haven’t yet proved very successful; early
papers [14] proved (23) for expanders in this way, but other methods are
easier (see our proof of Chapter 9 Theorem 1). There is well-developed the-
ory ([59] section 6) which establishes recurrence for infinite planar graphs
under mild assumptions. It is natural to conjecture that under similar as-
sumptions, a planar n-vertex graph has 7o = ©(nlogn), as in the case of Z?2
in Proposition 8 below.

2.4 Random walk on Z¢

We consider the lattice Z? as an infinite 2d-regular unweighted graph. Write
X, for simple random walk on Z%, and write X, for the continuized random
walk. Of course, general random flights (i.e. “random walks”, in everyone’s
terminology except ours) and their numerous variations comprise a well-
studied classical topic in probability theory. See Hughes [29] for a wide-
ranging intermediate-level treatment, emphasizing physics applications. Our
discussion here is very narrow, relating to topics treated elsewhere in this
book.

To start some calculations, for d = 1 consider
p(t) = Po(X;=0)
P(J; = J;7), where J;™ and J; are the
independent Poisson(#/2) numbers of +1 and —1 jumps

()

n=0
= e_tlo (t)
where Iy(t) ==Y 72 %;ﬁ is the modified Bessel function of the first kind

of order 0. Now var X, = t, and as a consequence of the local CLT (or by
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quoting asymptotics of the Bessel function Iy) we have
pt) ~ (27t) "% as t — oo, (24)

As discussed in Chapter 4 section 6.2 and Chapter 5 Example 17, a great
advantage of working in continuous time in dimensions d > 2 is that the
coordinate processes are independent copies of slowed-down one-dimensional
processes, so that p(9)(t) = Py(X; = 0) in dimension d satisfies

PO = (B(t/d)* = e (o(t/d))". (25)
In particular, from (24),
PD() ~ (£)Y27%% as t — oo, (26)

One can do a similar analysis in the discrete time case. In dimension d = 1,

p(t) = Po(X;=0)

Q_t( t ) t even
t/2] "’

~ 2 (27t)"Y? as t — oo, t even. (27)

This agrees with (26) but with an extra “artificial” factor of 2 arising from
periodicity. A more tedious argument gives the analog of (26) in discrete
time for general d:

P () ~ 2(%)d/2t_d/2 as t — oo, t even. (28)

From the viewpoint of classical probability, one can regard (26,28) as the
special case 7 = 0 of the local CLT: in continuous time in dimension d,

sup | Po(Xo = j) = ()57 exp(—dlj|*/(20)) | = o(t=%) as t — oo
J
where |j| denotes Euclidean norm.

The occupation time No(t) satisfies FoNo(t) = [y p(s) ds (continuous
time) and = S_'Z{ p(s) (discrete time). In either case, as t — oo,



where Ry < oo for d > 3 by (26). This is the classical argument for estab-
lishing transience in d > 3 and recurrence in d < 2, by applying Theorem 4.
Note that the return probability p(® := Py(T;" < 00) is related to FoNy(co)
by FoNg(oo) = ﬁ; in other words

(@) - a1 4o g
Rd b) iy

Textbooks sometimes give the impression that calculating p(¥) is hard, but

one can just calculate numerically the integral (31). Or see [26] for a table.
The quantity p(? has the following sample path interpretation. Let V;

be the number of distinct vertices visited by the walk before time . Then

W, = 1—p @D as. , d>3. (32)

The proof of this result is a textbook application of the ergodic theorem for
stationary processes: see [20] Theorem 6.3.1.

2.5 The torus Z¢

We now discuss how random walk on Z% relates to m — oo asymptotics for
random walk on the finite torus Z¢ , discussed in Chapter 5. We now use
superscript -(™) to denote the length parameter. From Chapter 5 Example

17 we have

(m) d dm?

N — cos(27/m) = or?

"™ = e(m?) (33)

where asymptotics are as m — oo for fixed d. One can interpret this as a
consequence of the dN? time rescaling in the wweak convergence of rescaled
random walk to Brownian motion of the d-dimensional torus, for which (cf.
sections 1.1 and 1.2) 7 = 2772, At (74)—(75) of Chapter 5 we saw that the
eigentime identity gave an exact formula for the mean hitting time parameter

(m)

T, , whose asymptotics are, for d > 3,

1

1 1
—d(m) ; _/ / 00
S Ri= [ ... dzq...dzg < co. (34
e Tl TR (- cos(2may)) T B3

Here we give an independent analysis of this result, and the case d = 2.
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Proposition 8

(d=1) Tén) ~ Ip? (35)
(d=2) Tém) ~ 217 'm*logm (36)
(d > 3) ™~ Rym? (37)

for Ry defined by (31). In particular, the expressions for Ry and Ry at (31)
and (34) are equal, for d > 3.

The d =1 result is from Chapter 5 (26). We now prove the other cases.
(m)

Proof. We may construct continuized random walk )?t on Z% from
continuized random walk X; on Z% by

)?t(m) = X; mod m (38)
and then Po()?t(m) =0) > Py(X;=0). So
m_dr(gm) = /0 (PO()?t(m) =0) - m_d) dt
(Chapter 2, Corollary 12 and (8))
= / (Po(fft(m) =0) - m_d)+ dt by complete monotonicity
0

> /OOO (Po(Xi=0) - m_d)+ dt (39)
- /OOO Po(X;=0) dt = Ry.

Consider the case d > 3. To complete the proof, we need the corresponding
upper bound, for which it is sufficient to show

/OO (Po(X™ = 0) = m™ — Py(X, = 0))+ dt —0asm—oco.  (40)
0

To verify (40) without detailed calculations, we first establish a 1-dimensional
bound

(=1 () < =+ p(0). (41)
To obtain (41) we appeal to a coupling construction (the reflection coupling,
described in continuous-space in section 1.3 — the discrete-space setting here
is similar) which shows that continuized random walks X0 y(m) on 7,

with )?ém) =0 and };O(m) distributed uniformly can be coupled so that

f’t(m) = 0 on the event {)~(t(m) =0,T7 <t}
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where T is the first time that X (™) goes distance |m/2] from 0. And by
considering the construction (38)

PX™ =0) < P(X,=0)+ P(X™ =0,T <1)

and (41) follows, since P(fft(m) =0)=1/m.
Since the d-dimensional probabilities relate to the 1-dimensional proba-
~ d
bilities via PO(Xt(m) =0) = (ﬁ(m)(t/d)) and similarly on the infinite lattice,

we can use inequality (41) to bound the integrand in (40) as follows.
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(/D) ﬁ(t/d)] |

m md-1

= (24—2)[

The fact (24) that p(t) = O(t~/2) for large ¢ easily implies that the integral
in (40) over 0 <t < m? tends to zero. But by (33) and submultiplicativity
of d(t),
0< R(X™ =0) —m™? <d(t) <d(t) < Biexp(—gtz)  (42)
where By, By depend only on d. This easily implies that the integral in (40)
over m® < t < oo tends to zero, completing the proof of (37).
In the case d = 2, we fix b > 0 and truncate the integral in (39) at bm
to get

2

bm? -
m_ZT(gm) > —b—I—/ Fy(X:=0) dt
0

22



= —b+(1+ 0(1))%10g(bm2) by (30)
= (1+o0(1))2logm.

Therefore
Tém) > (14 o(1))2m*log m.

For the corresponding upper bound, since f0m2 PO(XQ = 0)dt ~ %logm by
(30), and m_QTém) =7 (PO()?t(m) =0) - m_2) dt , it suffices to show that

/OOO (PU(X = 0) = m™ = (R = )" e

+ / (Po(x{™ =0) - m_2)+ dt = o(log N). (43)
To bound the first of these two integrals, we observe from (41) that Po(f(t(m) =
0) < (m~'+ p(¢/2))?, and so the integrand is bounded by 2p(t/2). Using
(24), the first integral is O(1) = o(logm). To analyze the second inte-
gral in (43) we consider separately the ranges m? < t < m? logg/2
m? 10g3/2 m < t < oo. Over the first range, we again use (41) to bound the
integrand by 2p(t/2) 4 (p(¢/2)). Again using (24), the integral is bounded
by

m and

2 m? logg’/2 m m? logg’/2 m
(1—1—0(1))—/ ~12dp + (1—1—0(1))71'_1/ L dr

71'1/2771 m2 m2
= 0(log**m) + ©(loglog m) = o(logm).

To bound the integral over the second range, we use (42) and find

/ (Po()M(t(m) =0) - m_2) dt < ByBym? exp(—%)

m2 logg’/2 m

= o(1) = o(logm).

O

2.6 The infinite degree-r tree

Fix r > 3 and write T" for the infinite tree of degree r. We picture T"
as a “family tree”, where the root ¢ has r children, and each other vertex
has one parent and r — 1 children. Being a vertex-transitive graph (recall
Chapter 7 section 1.1; for r even, T" is the Cayley graph of the free group
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on r/2 generators), one can study many more general “random flights” on
T" (see Notes), but we shall consider only the simple random walk (X}).

We can get some information about the walk without resorting to calcu-
lations. The “depth” process d(Xy, ¢) is clearly the “reflecting asymmetric
random walk” on Zt :={0,1,2,...} with

Po,1 = 1; Pii-1 = 1/7‘§ Dii+1 = (7“ - 1)/7‘7 1> 1.

By comparison with asymmetric random walk on all Z, which has drift
(r —2)/r, we see that

-2
(X, ¢) —

a.s. as t — oo. (44)

In particular, the number of returns to ¢ is finite and so the walk is tran-
sient. Now consider the return probability p = P¢(T¢+ < 00) and note that
(by considering the first step) p = Py(T, < oo) where ¢ is a child of ¢.
Considering the first two steps, we obtain the equation p = %—l— %pQ, and

since by transience p < 1, we see that

1
p::P(b(TJ<oo):P¢(Tc<oo):T_1. (45)
So . .
"”_
E4N, = —= . 4
6 Ng(c0) 2 (46)

As at (32), p has a sample path interpretation: the number V; of distinct
vertices visited by the walk before time t satisfies

Wi s 1-p= ::% a.s. as t — oo.

By transience, amongst the children of ¢ there is some vertex L; which
is visited last by the walk; then amongst the children of L; there is some
vertex L9 which is visited last by the walk; and so on, to define a “path
to infinity” ¢ = Lg, L1, Lo,.... By symmetry, given Ly, Lo, ..., L;_1 the
conditional distribution of L; is uniform over the children of L;_q, so in the
natural sense we can describe (L;) as the uniform random path to infinity.

2.7 Generating function arguments

While the general qualitative behavior of random walk on T” is clear from
the arguments above, more precise quantitative estimates are most naturally
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obtained via generating function arguments. For any state ¢ of a Markov
chain, the generating functions G;(z) := Y 72y Pi(X; = 1)2" and F(z) :=
S22, P(TH =t)z¢ are related by

G; =1+ F,G; (47)

(this is a small variation on Chapter 2 Lemma 19). Consider simple sym-
metric reflecting random walk on Z%. Clearly

> (2t
e = 5 (H)rr =
t=0

the latter identity being the series expansion of (1 — z)~'/2. So by (47)

o0

Fo(z) = Z PO(T(;" = Qt)ZZt =1 (1 _ z2)1/2.
=0 Or 1
Consider an excursion of length 2¢, that is, a path (0 = ig, ?1, ..., 921, 92: =

0) with i; > 0,1 < j < 2t — 1. This excursion has chance 2'~% for the sym-
metric walk on Z*, and has chance ((r — 1)/r)!=1(1/r)? for the asymmetric
walk d(Xy, ¢). So

Po(Tg =2t)  2(r—1)

Py(T; = 2t) r <4(r - 1))f

r2

where the numerator refers to simple RW on the tree, and the denominator
refers to simple symmetric reflecting RW on Z*. So on the tree,

N r ar—1)\ _ r 4(r —1)22 12
10 = 5y (V) = 55 (1(17) )

Then (47) gives an expression for G4(z) which simplifies to

2(r—1)

Go(2) = r—24/r? —4(r —1)22

(48)

In particular, G4 has radius of convergence 1/3, where
B=2r"r—-1<1. (49)

Without going into details, one can now use standard Tauberian arguments
to show

Py(X;=¢) ~ a2t even (50)
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for a computable constant «, and this format (for different values of o and
{) remains true for more general radially symmetric random flights on T"
([59] Theorem 19.30). One can also in principle expand (48) as a power
series to obtain P,(X; = ¢). Again we shall not give details, but according
to Giacometti [25] one obtains

Py(X = ¢) = “1(

r

r LF@2+t/2)T(14+1t/2)
X 2F1(%7 1,2+ %, 4 751 ), t even (51)

m)f I(1+¢)

where 5F) is the generalized hypergeometric function.

Finally, the 8 at (49) can be interpreted as an eigenvalue for the infinite
transition matrix (p;;), so we anticipate a corresponding eigenfunction f;
with

> piif2(4) = Bfa(d) Vi, (52)
J

and one can verify this holds for

fa(d) := (1 + 2=23)(r — 1)7V/2, (53)

r

2.8 Comparison arguments

Fix r > 3 and consider a sequence (G,,) of n-vertex r-regular graphs with
n — oo. Write (X7) for the random walk on G,,. We can compare these
random walks with the random walk (X7°) on T" via the obvious inequality

To spell this out, there is a universal cover map v : T" — G, with v(¢) =v
and such that for each vertex w of T" the r edges at w are mapped to the
r edges of G, at y(w). Given the random walk X° on T", the definition
X[ = v(X7°) constructs random walk on G, and (54) holds because {X}* =
v} 2 {Xp° = ).

It is easy to use (54) to obtain asymptotic lower bounds on the funda-
mental parameters discussed in Chapter 4. Instead of the relaxation time
T9, it is more natural here to deal directly with the second eigenvalue As.

Lemma 9 For random walk on n-vertex r-regular graphs, with r > 3 fized
and n — 00

(a) liminf n=17o(n) > ::%;
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(b) lim inf 1)

r .
logn (r—2)log(r—1)~’

>
(c) liminf A\y(n) > B :=2r=1y/r — 1.

Theory concerning ezpanders (Chapter 9 section 1) shows there exist graphs
where the limits above are finite constants (depending on r), so Lemma 9
gives the optimal order of magnitude bound.

Proof. For (a), switch to the continuous-time walk, consider an arbitrary
vertex v in G, and take ¢y(n) — co with £g(n)/n — 0. Then we repeat the
argument around (39) in the torus setting:

n BT, = / (Py(X=v)- 1) dt

0
to

> / (P(XP =v) — L) dt
0
to to

> -0 [P = 0) di by (54)

0

5 /OOOP¢(X;’° — ) di

r—1
= EyNy(o0) = Y

which is somewhat stronger than assertion (a). Next, the discrete-time
spectral representation implies

Py(X} =v) < & +nb'(n).
Using (54) and (50), for any n — oo, — oo with ¢ even,
17226 (o — o(1)) < &+ nf' (n). (55)

For (b), the argument for (54) gives a coupling between the process X"
started at v and the process X started at ¢ such that

d* (X v) < d¥ (X7, 9)

where d” and d* denote graph distance. Fix £ > 0 and write v = % + €.
By the coupling and (44), P(d"(X}*,v) > vyt) — 0 as n,t — oco. This remains
true in continuous time. Clearly 7 (n) — oo, and so by definition of 7, we
have

limsup 7{w : d"(w,v) > yr(n)} <e '
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But by counting vertices,

T+r4rr—1)4-Fr@r—1)°41
n
log n

log(r — 1)

For these two limit results to be consistent we must have yr(n) > (1 —
5)10;?%1) for all large n, establishing (b).

For (c), fix a vertex vy of GG, and use the function f; at (53) to de-
fine f(v) = fa(d(v,vo)) for all vertices v of GG,. The equality (52) for
f2 on the infinite tree easily implies the inequality Pf > gf on G,. Set
f:=n"'3, f(v) and write 1 for the unit function. By the Rayleigh-Ritz
characterization (Chapter 4 eq. (73)), writing (g, k) = 3", migipi;h;,

17— 1111
Ph) =T
FiEEE
BIAIE - P2
z e

As n — oo we have f — 0 while || f|| tends to a non-zero limit, establishing

(c).

m{w:d"(v,w) <d} <

— 0ifd~ (1—-¢)

AQ(TL)

2.9 The hierarchical tree

Fix r > 2. There is an infinite tree (illustrated for r = 2 in the figure)
specified as follows. Each vertex is at some height 0,1,2,.... A vertex
at height h has one parent vertex at height A + 1 and (if A > 1) r child
vertices at height h — 1. The height-0 vertices are leaves, and the set L of
leaves has a natural labeling by finite r-ary strings. The figure illustrates
the binary (r = 2) case, where L = {0,1,10,11,100,101,...}. L forms an
Abelian group under entrywise addition modulo r, e.g. for r = 2 we have
11014110 = 110140110 = 1011. Adopting a name used for generalizations
of this construction in statistical physics, we call L the hierarchical lattice

and the tree T}, . the hierarchical tree.

28



0 1 10 11 100 101 110 111

Fix a parameter 0 < A < r. Consider biased random walk X; on the tree
hier» Where from each non-leaf vertex the transition goes to the parent with
probability A/(A + r) and to each child with probability 1/(A + r). Then
consider Y = “X watched only on L”, that is the sequence of (not-necessarily
distinct) successive leaves visited by X. The group L is distance-transitive
(for Hamming distance on L) and Y is a certain isotropic random flight on
L. A nice feature of this example is that without calculation we can see that
Y is recurrent if and only if A < 1. For consider the path of ancestors of 0.
The chain X must spend an infinite time on that path (side-branches are
finite); on that path X behaves as asymmetric simple random walk on Z1,
which is recurrent if and only if A < 1; so X and thence Y visits 0 infinitely
often if and only if A < 1.

Another nice feature is that we can give a fairly explicit expression for
the t-step transition probabilities of Y. Writing H for the maximum height
reached by X in an excursion from the leaves, then

. . L1
P(H > h) = Pi(T < To) = 25—, h>1
(5) -1
where T denotes hitting time for the height process. Writing M; for the
maximum height reached in ¢ excursions,

r_1\?
P(M; < h) = (P(H < h))' = (1—(;)}7_1) :

It is clear by symmetry that the distribution of Y; is conditionally uniform
on the leaves which are descendants of the maximal-height vertex previously
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visited by X. So for leaves v, 2 with branchpoint at height d,

P(Y,=z) =Y r "P(M, = h).
h>d
Since P(My = h) = P(M; < h+1) — P(M; < h), we have found the “fairly
explicit expression” promised above. A brief calculation gives the following

time-asymptotics. Fix s > 0 and consider ¢ ~ s(%)j with 7 — oo; then

P,(Yi=v) ~ T_jf(S); where
fe) = _io: r= (exp(=s(5 = D(E) ) —exp(=s(5 - (5 7)) -

In particular,

2logr

P,(Yy=v) =0 ast — 00, d= (56)

logr —log A\’
Comparing with (26), this gives a sense in which Y mimics simple random
walk on Z%, for d defined above. Note that d increases continuously from 0
to 0o as A increases from 0 to r, and that Y is recurrent if and only if d < 2.

Though we don’t go into details, random walk on the hierarchical lattice
is a natural infinite-state analog of biased random walk on the balanced
finite tree (Chapter 5 section 2.1). In particular, results in the latter context
showed that, writing n for number of vertices, 79(n) = O(n) if and only if
A/r > 1/r, that is if and only if d > 2. This is the condition for transience
of the infinite-state walk, confirming the paradigm of section 2.3.

2.10 Towards a classification theory for sequences of finite
chains

Three chapters of Woess [59] treat in detail three properties that random
walk on an infinite graph may or may not possess:

e transience
e spectral radius < 1

e non-trivial boundary.

Can these be related to properties for sequences of finite chains? We already
mentioned (section 2.3) that the property 79(n) = O(n) seems to be the
analog of transience. In this speculative section we propose definitions of
three other properties for sequences of finite chains, which we name

30



e compactness
e infinite-dimensionality
e expander-like.

Future research will show whether these are useful definitions! Intuitively
we expect that every reasonably “natural” sequence should fall into one of
these three classes.

For simplicity we consider reversible random walks on Cayley graphs.
It is also convenient to continuize. The resulting chains are special cases
of (reversible) Lévy processes. We define the general Lévy process to be a
continuous-time process with stationary independent increments on a (con-
tinuous or discrete) group. Thus the setting for the rest of this section is a
sequence (Xt(n)) of reversible Lé—vy processes on finite groups G(" of size
n — oo through some subsequence. Because we work in continuous time,
the eigenvalues satisfy 0 = /\(1”) < /\(2”) <-ee
(A): Compactness. Say the sequence (Xt(n)) is compact if there exists a
(discrete or continuous) compact set S and a reversible Lévy process X, on
S such that

(i) d(t) = ||Pr(X; € ) = || = 0 as t — oo;

(i1) ;\;EZ; — ;\j asn — 00, j > 2; where 1 = Ay < A3 < --- are the

eigenvalues of (X);

(iti) d(t 72(n)) — d(t) as n — oo; t > 0.
These properties formalize the idea that the sequence of random walks form
discrete approximations to a limit Lévy process on a compact group, at
least as far as mixing times are concerned. Simple random walk on Z% , and
the limit Brownian motion on R? (section 1.2) form the obvious example.
Properties (i) and (iii) imply, in particular, that

71(n)/m2(n) is bounded as n — oo. (57)
One might hope that a converse is true:

Does every sequence satisfying (57) have a compact subsequence?

Unfortunately, we are convinced that the answer is “no”, for the following

reason. Take (X}') which is compact, where the limit Lévy process has
function d(t) as at (i). Now consider a product chain (Xt(n),Yt(n))7 where
components run independently, and where Y (" has the cut-off property
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(Chapter 7) and 7{ (n) ~ 75*(n). Note that by Chapter 7-1 Lemma 1 we
have 73 (n) = o(ry (n)). If the product chain had a subsequential limit, then

its total variation function at (i), say d’(¢), must satisfy

dt) = d), t>1
= 1. t<1

But it seems intuitively clear (though we do not know a proof) that ev-
ery Lévy process on a compact set has continuous d(-). This suggests the
following conjecture.

Conjecture 10 For any sequence of reversible Lévy processes satisfying
(57), there exists a subsequence satisfying the definition of compact except
that condition (ii) is replaced by

(iv): o >0 :

d™(t () — 1; t<to

— d(t); t>to.

Before describing the other two classes of chains, we need a definition and
some motivating background. In the present setting, the property “trivial
boundary” is equivalent (see Notes) to the property

tli>rgo ||PU(/Y7§ € ) - Pu;()(t € )” = 0, Vv,'w. (58)

This suggests that an analogous finite-state property might involve whether
the variation distance for nearby starts becomes small before time 7. Say
that a sequence (L, (¢)) of subsets is an asymptotic e-neighborhood if

[|Ps(Xer, €)= Py(Xer, €9)]] = 0 as n — o0

uniformly over v € L,(¢); here ¢ is an arbitrary reference vertex. From
Chapter 7-1 Lemma 1(b) we can deduce that, if the cut-off property holds,
such a neighborhood must have size |L,(g)| = o(n).
(B): Infinite dimensional. Say the sequence (Xt(n)) is infinite-dimensional
if the following three properties hold.

(i) 7 (n) = O(ryloglogn)

(i) The cut-off property holds
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(iii) there exists some §(¢), increasing from 0 to 1 as € increases from 0
to 1, such that a maximal-size asymptotic e-neighborhood (L, (g)) has

log |Ln(e)| = (logn)*@+() as n — oo,

This definition is an attempt to abstract the essential properties of random
walk on the d-cube (Chapter 5 Example 15), where properties (i) and (ii)
were already shown. We outline below a proof of property (iii) in that exam-
ple. Another fundamental example where (i) and (ii) hold is card-shuffling
by random transpositions (Chapter 7 Example 18)), and we conjecture that
property (iii) also holds there. Conceptually, this class infinite-dimensional
of sequences is intended (cf. (58)) as the analog of a single random walk
with trivial boundary on an infinite-dimensional graph.

Property (iii) for the d-cube. Let (X (t)) be continuous-time random
walk on the d-cube, and (X*(¢)) continuous-time random walk on the b-
cube, where b < d. The natural coupling shows

if d(v,w) = b then
1P (X(2) € 1) = Py (X(2) € )| = [|[Po(X7(tb/d) € -) = Po(X7(tb/d) € -)]|.

Take d — oo with
b(d) ~d*, t(d)~ igdlogd

for some 0 < o, < 1, so that

Since the variation cut-off for the b-cube is at ib log b, we see that for vertices
v and w at distance b(d),

IP/(X(t(d)) € ) = Pu(X(H(d)) € )| = 1, e>a
— 0, e<a.

So a maximal-size asymptotic e-neighborhood (L, (¢)) of 0 must be of the
form {w : d(w,0) < d*t°(M}. So

d
log |Ln(€)| = log (d5+0(1)> — ds+o(1) — (log n)a+o(1)

as required.
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Finally, we want an analog of a random walk with non-trivial boundary,
expressed using property (ii) below.
(C): Expander-like. Say the sequence (Xt(n)) is expander-like if

(i) i = O(rzlogn)

(ii) every asymptotic e-neighborhood (L, (¢)) has

log | L, (£)] = (logn)°™") as n — oo

(ili) The cut-off property holds.
Recall from Chapter 9 section 1 that, for symmetric graphs which are r-
regular expanders for fixed r, we have 75(n) = ©(1) and 71(n) = O(logn).
But it is not known whether properties (ii) and (iii) always hold in this
setting.

3 Random Walks in Random Environments

In talking about random walk on a weighted graph, we have been assuming
the graph is fixed. It is conceptually only a minor modification to consider
the case where the “environment” (the graph or the edge-weights) is itself
first given in some specified random manner. This has been studied in several
rather different contexts, and we will give a brief description of known results
without going into many details.

Quantities like our mixing time parameters 7 from Chapter 4 are now
random quantities 7. In general we shall use boldface for quantities depend-
ing on the realization of the environment but not depending on a realization
of the walk.

3.1 Mixing times for some random regular graphs

There is a body of work on estimating mixing times for various models of
random regular graph. We shall prove two simple results which illustrate
two basic techniques, and record some of the history in the Notes.

The first result is Proposition 1.2.1 of Lubotzky [37]. This illustrates
the technique of proving expansion (i.e., upper-bounding the Cheeger time
constant 7.) by direct counting arguments in the random graph.

Proposition 11 Let Gy, be the 2k-reqular random graph on vertices {1, 2, ...

with edges {(1,7;(7)) : 1 < i< n,1<j <k}, where (1,1 < i < k) are inde-
pendent uniform random permutations of {1,2,...,n}. Write .(k,n) for
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the Cheeger time constant for random walk on Gy ,,. Then for fized k > 7,
P(r.(k,n)>2k) — 0 as n — oo.

Note that a realization of G ,, may be disconnected (in which case 7, = co)
and have self-loops and multiple edges.
Outline of proof. Suppose a realization of the graph has the property

Al < n/2=[0A] > |A]/2 (59)
where 0A := {edges(i,7):i € A,j € A°}. Then

k|Al(n—|A k|Al(n—|A
Cl e HAIG-1A) Al = |A]

< 2k.
An<|Al<nsz POAl T sncialcnsz PlAl2 T

So we want to show that (59) holds with probability — 1 as n — oco. If (59)
fails for some A with |A| = a, then there exists B with |B] = [3a| = b such
that

R(A)C B, 1<j<k (60)

(just take B = U;m;(A;) plus, if necessary, arbitrary extra vertices). For
given A and B, the chance of (60) equals ((b)./(n)a)", Where (n), =
[1°Z5(n — 7). So the chance that (59) fails is at most

> dla), where g(a) = (”) (Z) (B)a/(n)a)"

1<a<n/2

So it suffices to verify 371 <,<n/2 ¢(@) — 0. And this is a routine but tedious
verification (see Notes). O

Of course the bound on 7. gives, via Cheeger’s inequality, a bound on
73, and thence a bound on 7 via 71 = O(rzlogn). But Proposition 11
is unsatisfactory in that these bounds get worse as k increases, whereas
intuitively they should get better. For bounds on 7 which improve with &
we turn to the second technique, which uses the “L! < L?” inequality to
bound the variation threshold time 7;. Specifically, recall (Chapter 3 Lemma
8b) that for an n-state reversible chain with uniform stationary distribution,
the variation distance d(t) satisfies

d(t) < 2 max(np;;(2t) - 1)Y/2, (61)

This is simplest to use for random walk on a group, as illustrated by the
following result of Roichman [52].
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Proposition 12 Fiz o > 1. Given a group G, let S be a random set of
k = |log®|G|] distinct elements of G, and consider random walk on the
associated Cayley graph with edges {(g,gs): g € G,s € SUS™}. For any
sequence of groups with |G| — oo,

P(ry > t1) = 0, wheret; = [ﬁ%“

Proof. We first give a construction of the random walk jointly with the
random set S. Write A = {a,b,...} for a set of k symbols, and write
A={a,a”1, 6,671, .. }. Fixt > land let (&,,1 < s < t) be independent uni-
form on A. Choose (g(a),a € A) by uniform sampling without replacement
from G, and set g(a™') = (g(a))™". Then the process (Xs;1 < s < ) con-
structed via X = ¢(&1)g(&2) - .. g(&s) is distributed as the random walk on
the random Cayley graph, started at the identity ¢. So P(X; =) = Ep,,(¢)
where p,,(t) is the ¢-step transition probability in the random environment,
and by (61) it suffices to take ¢t = ¢; (for ¢; defined in the statement of the
Proposition) and show

GIP(Xp: = 1) — 1 - 0. (62)

To start the argument, let .J(2¢) be the number of distinct values taken
by ((&),1 < s < 2t), where we define (¢) = (a7!) = a. Fix j < ¢ and
1 <81 <sy<...<s; <2t. Then

P(J(2t) = j|(&,) distinct for 1 < i < j) = (/k)*7 < (¢/k)".

By considering the possible choices of (s;),

PU) =) < (?) (t/5)".
Since )~ ; (2;) = 2% we deduce
P < 1) < (417k)" (63)

Now consider the construction of Xy given above. We claim

P(Xo = 1|&,1 <s<2t) < on {J(2t) > t}. (64)

1
G] — 2t

For if J(2t) > t then there exists some b € A such that (§;) = b for exactly
one value of s in 1 < s < 2¢. So if we condition also on {g(a);a € A, a # b},

36



then Xy = g19(b)g2 or g19(b)~1g2 where g; and gy are determined by the
conditioning, and then the conditional probability that P(Xgy; = ¢) is the
conditional probability of ¢g(b) taking a particular value, which is at most
/(1G] - 20).

Combining (64) and (63),

P(Xa = 1) < (4t/k)' + iy < (48/k)" + 18 + O (i)
So proving (62) reduces to proving
|G| (4t/k)" + /|G| = 0

and the definition of ¢ was made to ensure this.

3.2 Randomizing infinite trees

Simple random walk on the infinite regular tree is a fundamental process, al-
ready discussed in section 2.6. There are several natural ways to randomize
the environment; we could take an infinite regular tree and attach random
edge-weights; or we could consider a Galton—Watson tree, in which num-
bers of children are random. Let us start by considering these possibilities
simultaneously. Fix a distribution (&; Wy, Wy, ..., We) where

€>1; P(E>2)>0; Wi >0,i <& (65)

Note the (W;) may be dependent. Construct a tree via:

the root ¢ has £ children, and the edge (¢, 1) to the ith child has
weight W;; repeat recursively for each child, taking independent
realizations of the distribution (65).

So the case {; = r — 1 gives the randomly-weighted r-ary tree (precisely,
the modification where the root has degree r — 1 instead of r), and the case
W; = 1 gives a Galton—Watson tree. As in Chapter 3 section 2 to each
realization of a weighted graph we associate a random walk with transition
probabilities proportional to edge-weights. Since random walk on the un-
weighted r-ary tree is transient, a natural first issue is prove transience in
this “random environment” setting. In terms of the electrical network anal-
ogy (see comment below Theorem 5), interpreting W as conductance, we
want to know whether the (random) resistance R between ¢ and oo is a.s.
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finite. By considering the children of ¢, it is clear that the distribution of
R satisfies

-1

&

R = (Z(mwvﬂ)-l) (66)
=1

where the (R;) are independent of each other and of (& Wy, Wy, ..., We),

and R; £ R. But R = o is a solution of (66), so we need some work to
actually prove that R < oo.

Proposition 13 The resistance R between ¢ and co satisfies R < 0o a.s..

Proof. Write R(¥) for the resistance between ¢ and height k (i.e. the height-k
vertices, all shorted together). Clearly R*) 1+ R as k — oo, and analogously
to (66)

¢ -1
R+ 2 (Z(RE’“) —I—W[l)‘l)

=1

where the (ng)) are independent of each other and of (& Wy, Wa, ..., We),
and ng) 2 R,

Consider first the special case & = 3. Choose z such that P(W/Z»_1 >
z for some i) < 1/16. Suppose inductively that P(R*) > z) < 1/4 (which
holds for k = 0 since R(®) = 0). Then
)? <

P(ng) + W/Z»_l > 2z for at least 2 i’s ) < % + 3(

=

1
4

This implies P(R(k"'l) > ) < 1/4, and the induction goes through. Thus
P(R > z) < 1/4. By (66) p := P(R = 00) satisfies p = p3, sop=10or 1,
and we just eliminated the possibility p = 1. So R < 0o a.s..

Reducing the general case to the special case involves a comparison idea,
illustrated by the figure.
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Here the edge-weights are resistances. In the left network, ¢ is linked to
{a,b, c} via an arbitrary tree, and in the right network, this tree is replaced
by three direct edges, each with resistance r = 3(r(1) + 7(2) + ... + r(5)).
We claim that this replacement can only increase the resistance between
¢ and oo. This is a nice illustration of Thompson’s principle (Chapter 3
section 7.1) which says that in a realization of either graph, writing r*(e)
for resistance and suming over undirected edges e,

Ryoo = irt;f Z r*(e) f*(e)

where f = (f(e)) is a unit flow from ¢ to co. Let f be the minimizing flow in
the right network; use f to define a flow g in the left network by specifying
that the flow through a (resp. b, ¢) is the same in the left network and the
right network. It is easy to check

(left network) E r(e)g?(e) < (right network) Z r(e) f3(e)

e e

and hence the resistance Ry., can indeed only be less in the left network.
In the general case, the fact P(£¢ > 2) > 0 implies that the number of
individuals in generation g tends to co a.s. as g = oco. So in particular we
can find 3 distinct individuals {A, B,C'} in some generation GG. Retain the
edges linking ¢ with these 3 individuals, and cut all other edges within the
first G generations. Repeat recursively for descendants of {A, B,C'}. This
procedure constructs an infinite subtree, and it suffices to show that the
resistance between ¢ and oo in the subtree is a.s. finite. By the comparison
argument above, we may replace the network linking ¢ to {A, B, C'} by three
direct edges with the same (random) resistance, and similarly for each stage
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of the construction of the subtree; this gives another tree T, and it suffices
to shows its resistance is finite a.s.. But 7 fits the special case £ =3. =

It is not difficult (we won’t give details) to show that the distribution of
R is the unique distribution on (0, co) satisfying (66). It does seem difficult
to say anything explicit about the distribution of R in Proposition 13. One
can get a little from comparison arguments. On the binary tree (£ = 2), by
using the exact potential function and the exact flows from the unweighted
case as “test functions” in the Dirichlet principle and Thompson’s principle,
one obtains

FR<EW™'; ER™! < EW.

3.3 Bias and speed

Lyons et al [38, 39, 40], summarized in [42] Chapter 10, have studied in detail
questions concerning a certain model of biased random walk on deterministic
and random infinite trees. Much of their focus is on topics too sophisticated
(boundary theory, dimension) to recount here, but let us give one simple
result.

Consider the unweighted Galton—Watson tree with offspring distribution
p = dist (§), i.e., the case W; = 1 of (65). Fix a parameter 0 < A < oo.
In the biased random walk X;, from a vertex with r children the walker
goes to any particular child with probability 1/(A 4+ r), and to the parent
with probability A/(A+r). It turns out [40] that the biased random walk is
recurrent for A > F¢ and transient for A < F¢. We will just prove one half
of that result.

Proposition 14 The biased random walk is a.s. recurrent for A > FE¢.

Proof. We use a “method of fictitious roots”. That is, to the root ¢ of
the Galton-Watson tree we append an extra edge to a “fictitious” root ¢*,
and we consider random walk on this extended tree (rooted at ¢*). Write q
for the probability (conditional on the realization of the tree) that the walk
started at ¢ never hits ¢*. It will suffice to prove P(q = 0) = 1. Fix a
realization of the tree, in which ¢ has z children. Then

z

q=> /\;—I—z(% +(1-a)q)

=1

where ¢; is the probability (on this realization) that the walk started at the
’th child of ¢ never hits ¢. Rearrange to see ¢ = (3°; ¢;)/(A+>_; ¢;). So on
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the random tree we have

é Z§:1 q;
A5 a

where the (q;) are independent of each other and &, and q; £ q. Applying
Jensen’s inequality to the concave function z — —=Z

T+
(E€)(Eq)
Pas e (re)

By considering the relevant quadratic equation, one sees that for A > F¢
this inequality has no solution with F'q > 0. So Fq = 0, as required. =

In the transient case, we expect there to exist a non-random speed
s(A, ) < 1 such that

shows

t71d( X4, 0) = s(\, 1) a.s. as t — oo. (67)

Lyons et al [40] show that, when F{ < oo, (67) is indeed true and that
s(A,p) > 0 forall 1 <X < E£. Moreover in the unbiased (A = 1) case there

is a simple formula [39]

-1
s(1,p) = EE?

There is apparently no such simple formula for s(A, i) in general. See Lyons
et al [41] for several open problems in this area.

3.4 Finite random trees

Cayley’s formula ([55] p. 25) says there are n"~2 different trees on n > 2
labeled vertices {1,2,...,n}. Assuming each such tree to be equally likely
gives one tractable definition (there are others) of random n-tree T,. One
can combine the formulas from Chapter 5 section 3 for random walks on
general trees with known distributional properties of T, to get a variety of
formulas for random walk on T,,, an idea going back to Moon [45].

As an illustration it is known [45] that the distance d(1,2) between vertex
1 and vertex 2 in T,, has distribution

PA(1,2)=k) =(k+1)n n-2)_, 1<k<n-1

where (m); = m(m —1)---(m — s+ 1). Routine calculus gives
Ed(1,2) ~ \/m/2 n'/2. (68)
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Now on any n-vertex tree, the mean hitting time £(z, j) = E;T; satisfies
1, )+ 1, 1) = 2(n — 1), ) (69)
(Chapter 5 (84)), and so
Ft(1,2) = (n - 1)Ed(1,2).

Combining with (68),
Et(1,2) ~ /7 /2 n®/2. (70)

Instead of deriving more formulas of this type for random walk on T,,,
let’s jump to the bottom line. It turns out that all the mixing and hitting
time parameters T&n) of Chapter 4, and the analogous “mean cover time”
parameters of Chapter 6, are of order n3/2 but are random to first order:

that is,

n=327 (") 4 (%) as n = oo (71)
for non-deterministic limits TSLOO). The fact that all these parameters have

the same order is of course reminiscent of the cases of the n-cycle and n-path
(Chapter 5 Examples 7 and 8), where all the parameters are ©(n?). And
the sophisticated explanation is the same: one can use the weak convergence
paradigm (section 1.1). In the present context, the random tree T, rescales
to a limit continuum random tree T, and the random walk converges (with
time rescaled by n®/? and space rescaled by n1/2) to Brownian motion on
T, and (analogously to section 1.1) the rescaled limits of the parameters
are just the corresponding parameters for the Brownian motion. See the
Notes for further comments.

3.5 Randomly-weighted random graphs

Fix a distribution W on (0, co) with EW < oco. For each n consider the ran-
dom graph G(n,p(n)), that is the graph on n vertices where each possible
edge has chance p(n) to be present. Attach independent random conduc-
tances, distributed as W, to the edges. Aspects of this model were studied
by Grimmett and Kesten [28]. As they observe, much of the behavior is
intuitively rather clear, but technically difficult to prove: we shall just give
the intuition.

Case (i): p(n) = u/n for fixed 1 < pu < co. Here the number of edges
at vertex 1 is asymptotically Poisson(u), and the part of the graph within
a fixed distance d of vertex 1 is asymptotically like the first d generations
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in the random family tree 7° of a Galton—Watson branching process with
Poisson(u) offspring distribution, with independent edge-weights attached.
This tree essentially fits the setting of Proposition 13, except that the num-
ber of offspring may be zero and so the tree may be finite, but it is not hard
to show (modifying the proof of Proposition 13) that the resistance R in
T between the root and oo satisfies {R < oo} = {7 is infinite} and its
distribution is characterized by the analog of (

refRdef). The asymptotic approximation implies that, for d(n) — oo slowly,

the resistance R, 4(,,) between vertex 1 and the depth-d(n) vertices of G(n, p(n))

satisfies Ry, 4(n) 4 RM L R. We claim that the resistance R(lg) between

vertices 1 and 2 of G/(n, p(n)) satisfies

R(lg) 4 RO + R(Z); where R' and R? are independent copies of R .
The lower bound is clear by shorting, but the upper bound requires a compli-
cated construction to connect the two sets of vertices at distances d(n) from
vertices 1 and 2 in such a way that the effective resistance of this connecting
network tends to zero.

The number of edges of the random graph is asymptotic to nu/2. So the
total edge weight 3, >, Wi; is asymptotic to nuEW, a:nd by the commute

interpretation of resistance the mean commute time CleQ) for random walk
on a realization of the graph satisfies
n'el) 4 uEw(RD 4 RO,

Case (ii): p(n) = o(1) = Q(n°"!), some ¢ > 0. Here the degree
of vertex 1 tends to oo, and it is easy to see that the (random) station-
ary probability 71 and the (random) transition probabilities and stationary
distribution the random walk satisfy

max p1,; LN 0, nm, 5 lasn— .
J
So for fixed k > 1, the k-step transition probabilities satisfy p(lﬁ) 5 0 as
n — oo. This suggests, but it is technically hard to prove, that the (random)
fundamental matrix Z satisfies

Zy 5 lasn— oo (72)

Granted (72), we can apply Lemma 11 of Chapter 2 and deduce that the
mean hitting times t(7,1) = K77 on a realization of the random graph
satisfies

n~lt(r, 1) = nZTMl %1, as n — oo. (73)
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3.6 Random environments in d dimensions

The phrase random walk in random environment (RWRE) is mostly used
to denote variations of the classical “random flight in d dimensions” model.
Such variations have been studied extensively in mathematical physics as
well as theoretical probability, and the monograph of Hughes [29] provides
thorough coverage. To give the flavor of the subject we quote one result,
due to Boivin [8].

Theorem 15 Assign random conductances (w.) to the edges of the two-
dimensional lattice Z?, where

(i) the process (w.) is stationary ergodic.

(ii) c1 < w. < ¢3 a.s., for some constants 0 < ¢; < ¢ < 0.

Let (Xt > 0) be the associated random walk on this weighted graph, Xo = 0.

Then t_l/QXt —d> Z where Z is a certain two-dimensional Normal distri-
bution, and moreover this convergence holds for the conditional distribution
of Xy given the environment, for almost all environments.
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4 Notes on Chapter 13

Section 1. Rigorous setup for discrete-time continuous-space Markov chains
is given concisely in Durrett [20] section 5.6 and in detail in Meyn and
Tweedie [44]. For the more sophisticated continuous-time setting see e.g.
Rogers and Williams [51]. Aldous et al [4] prove some of the Chapter 4
mixing time inequalities in the discrete-time continuous-space setting.

The central limit theorem (for sums of functions of a Markov chain) does
not automatically extend from the finite-space setting (Chapter 2 Theorem
17) to the continuous-space setting: regularity conditions are required. See
[44] Chapter 17. But a remarkable result of Kipnis - Varadhan [33] shows
that for stationary reversible chains the central limit theorem remains true
under very weak hypotheses.

Sections 1.1 - 1.3. The eigenvalue analysis is classical. The reflection
coupling goes back to folklore; see e.g. Lindvall [36] Chapter 6 for applica-
tions to multidimensional diffusions and Matthews [43] for Brownian motion
in a polyhedron. Burdzy and Kendall [13] give a careful study of coupling
for Brownian motion in a triangle. Chen [15] surveys use of coupling to
estimate spectral gaps for diffusions on manifolds.

Here is a more concise though less explicit expression for d(t) at (6) (and
hence for G/(t)at (1)). Consider Brownian motions B° on the circle started
at 0 and at 1/2. At any time ¢, the former distribution dominates the latter
on the interval (—1/4,1/4) only, and so

d(t) = Po(Bf € (-1/4,1/4
= Py(Bf € (-1/4,1/4
= 2Py (B} € (-1/4,1/4
= 2P((t"?Z) mod 1 €

Pyjo(B; € (—=1/4,1/4))
Po(B;y € (1/4,3/4))

) -1

—1/4,1/4)) =1

) -
) -
)
(
where 7 has Normal(0, 1) law. We quoted this expression in the analysis of
Chapter 5 Example 7

Section 1.5. Janvresse [30], Porod [50] and Rosenthal [53] study mixing
times for other flights on matrix groups involving rotations and reflections;
Porod [49] also discusses more general Lie groups.

Section 1.6. The mathematical theory has mostly been developed for
classes of nested fractals, of which the Sierpinski gasket is the simplest.
See Barlow [6], Lindstrem [35], Barlow [7] for successively more detailed

treatments. Closely related is Brownian motion on the continuum random
tree, mentioned in section 3.4.
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One-dimensional diffusions. The continuous-space analog of a birth-and-
death process is a one-dimensional diffusion (X;), described by a stochastic
differential equation

dXt = /L(Xt)dt + O'(Xt)dBt

where By is standard Brownian motion and p(-) and o(-) are suitably regular
specified functions. See Karlin and Taylor [32] for non-technical introduc-
tion. Theoretical treatments standardize (via a one-to-one transformation
R — R) to the case p(-) = 0, though for our purposes the standardization
to o(-) = 1 is perhaps more natural. In this case, if the formula

1) xexp ([ 2ut)dy)

can give a density function f(z) then f is the stationary density. Such
diffusions relate to two of our topics.

(i) For MCMC, to estimate a density f(z) o exp(—H (z)), one can in
principle simulate the diffusion with ¢(z) =1 and p(z) = —H'(z)/2. This
idea was used in Chapter MCMC section 5.

(ii) Techniques for bounding the relaxation time for one-dimensional
diffusions parallel techniques for birth-and-death chains [16].

Section 2. We again refer to Woess [59] for systematic treatment of
random walks on infinite graphs.

Our general theme of using the infinite case to obtain limits for finite
chains goes back at least to [1], in the case of Z¢; similar ideas occur in
the study of interacting particle systems, relating properties of finite and
infinite-site models.

Section 2.2. There is a remarkable connection between recurrence of re-
versible chains and a topic in Bayesian statistics: see Eaton [21]. Properties
of random walk on fractal-like infinite subsets of Z¢ are studied by Telcs
[56, 57].

Section 2.9. One view of (Y;) is as one of several “toy models” for the
notion of random walk on fractional-dimensional lattice. Also, when we seek
to study complicated variations of random walk, it is often simpler to use
the hierarchical lattice than Z? itself. See for instance the sophisticated
study of self-avoiding walks by Brydges et al [11]; it would be interesting to
see whether direct combinatorial methods could reproduce their results.

Section 2.10. Another class of sequences could be defined as follows.
There are certain continuous-time, continuous-space reversible processes on
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compact spaces which “hit points” and for which 79 < oco; for example
(i) Brownian motion on the circle (section 1.1)

(ii) Brownian motion on certain fractals (section 1.6)

(iii) Brownian motion on the continuum random tree (section 3.4).

So for a sequence of finite-state chains one can define the property

T0(n)/72(n) is bounded

as the finite analog of “diffusions which hit points”. This property holds for
the discrete approximations to the examples above: (i) random walk on the
n-cycle

(i) random walk on graphs approximating fractals (section 1.6)

(iii) random walk on random n-vertex trees (section 3.4).

Equivalence (58) is hard to find in textbooks. The property “trivial
boundary” is equivalent to “no non-constant bounded harmonic functions”
([59] Corollary 24.13), which is equivalent ([58] Theorem 6.5.1) to existence
of successful shift-coupling of two versions of the chain started at arbitrary
points. The property (58) is equivalent ([58] Theorem 4.9.4) to existence of
successful couplings. In the setting of interest to us (continuized chains on
countable space), existence of a shift-coupling (a priori weaker than existence
of a coupling) for the discrete-time chain implies existence of a coupling for
the continuous-time chain, by using independence of jump chain and hold
times.

Section 3. Grimmett [27] surveys “random graphical networks” from
a somewhat different viewpoint, emphasising connections with statistical
physics models.

Section 3.1. More precise variants of Proposition 11 were developed in
the 1970s, e.g. [48, 17]. Lubotzky [37], who attributes this method of proof
of Proposition 11 to Sarnak [54], asserts the result for & > 5 but our own
calculations give only k£ > 7. Note that Proposition 11 uses the permutation
model of a 2k-regular random graph. In the alternative uniform model we
put 2k balls labeled 1, 2k balls labeled 2, ...... and 2k balls labeled n
into a box; then draw without replacement two balls at a time, and put an
edge between the two vertices. In both models the graphs may be improper
(multiple edges or self-loops) and unconnected, but are in fact proper with
probability €2(1) and connected with probability 1 —o(1) as n — oo for fixed
k. Behavior of 7. in the uniform model is implicitly studied in Bollobas [9].
The L? ideas underlying the proof of Proposition 12 were used by Broder
and Shamir [10], Friedman [23] and Kahn and Szemerédi [24] in the setting
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of the permutation model of random r-regular graphs. One result is that
B = max(Ag, —A,) = O(QQTE) with probability 1 — o(1). Further results
in the “random Cayley graph” spirit of Proposition 12 can be found in
[5, 18, 47].

Section 3.2. The monograph of Lyons and Peres [42] contains many
more results concerning random walks on infinite deterministic and Galton—
Watson trees. A challenging open problem noted in [41] is to prove that R
has absolutely continuous distribution when £ is non-constant. The method
of fictitious roots used in Proposition 14 is also an ingredient in the analysis
of cover times on trees [3].

Section 3.4. Moon [45] gives further results in the spirit of (70), e.g.
for variances of hitting times. The fact that random walk on T,, rescales to
Brownian motion on a “continuum random tree” T, was outlined in Aldous
[2] section 5 and proved in Krebs [34]. While this makes the “order n3/2”
property (71) of the parameters essentially obvious, it is still difficult to get
explicit information about the limit distributions 7(°°), What’s known [2] is
(a) Eréoo) = \/7/2, as suggested by (70);

(b) T(>)* = /27, from (69) and the known asymptotics for the diameter

of T,;

(c) The “cover and return” time C'T appearing in Chapter 6 satisfies n_?’/QEC’?;" —
6+/27, modulo some technical issues.

Section 3.5. Grimmett and Kesten [28] present their results in terms of
resistances, without explicitly mentioning random walk, so that results like
(73) are only implicit in their work.
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