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There is a well-established topic “interacting particle systems”, treated
in the books by Griffeath [14], Liggett [17], and Durrett [11], which studies
different models for particles on the infinite lattice Z%. All these models
make sense, but mostly have not been systematically studied, in the con-
text of finite graphs. Some of these models — the voter model, the antivoter
model, and the exclusion process — are related (either directly or “via du-
ality”) to interacting random walks, and setting down some basic results
for these models on finite graphs (sections 3 - 5) is the main purpose of
this chapter. Our focus is on applying results developed earlier in the book.
With the important exception of duality, we do not use the deeper theory
developed in the infinite setting. As usual, whether the deeper theory is ap-
plicable to the type of questions we ask in the finite setting is an interesting
open question. These models are most naturally presented in continuous
time, so our default convention is to work with continuous-time random
walk.

We have already encountered results whose natural proofs were “by cou-
pling”, and this is a convenient place to discuss couplings in general.

1 Coupling

If X and Y are random variables with Binomial (n,p;) and (n, pz) distribu-
tions respectively, and if p; < py, then it is intuitively obvious that

P(X >z) < P(Y > z) for all z. (1)



One could verify this from the exact formulas, but there is a more elegant
non-computational proof. For 1 <7 < n define events (A;, B;, C;), indepen-
dent as ¢ varies, with P(A;) = p1, P(B;) = p2 — p1, P(C;) = 1 — py. And
define

X' = Z 14, = number of A’s which occur

Y/ = Z 1Az‘UB¢

number of A’s and B’s which occur.

Then X’ <Y’ so (1) holds for X’ and Y’, but then because X' £ X and

V' 2 Y we have proved that (1) holds for X and Y. This is the prototype
of a coupling argument, which (in its wide sense) means

to prove some distributional inequality relating two random pro-
cesses X,Y by constructing versions X', Y’ which satisfy some
sample path inequality.

Our first “process” example is a somewhat analogous proof of part (a)
of the following result, which abstracts slightly a result stated for random
walk on distance-regular graphs (Chapter 7 Proposition yyy).

Proposition 1 Let (X;) be an irreducible continuous-time birth-and-death
chain on states {0,1,...,A}.

(a) M@ is non-increasing in 1, for fived t
2

(b) %‘)(%% is non-decreasing in t, for fired 1

Proof. Fix 11 < 1. Suppose we can construct processes Y; and Z;, dis-
tributed as the given chain started at ¢y and ¢5 respectively, such that

Y; < Z; for all ¢. (2)

Then
P(X:=0)=PY;,=0)>P(Z;=0)= P,(X; = 0).

But by reversibility

™ - .
Py(Xy=0)= — Po(X; = iy)

i
and similarly for i, establishing (a).
Existence of processes satisfying (2) is a consequence of the Doeblin

coupling discussed below. The proof of part (b) involves a different technique
and is deferred to section 1.3.



1.1 The coupling inequality

Consider a finite-state chain in discrete or continuous time. Fix states ¢, j.
Suppose we construct a joint process (Xt(Z),Xt(]);t > 0) such that

(Xt(i),t > 0) is distributed as the chain started at ¢
(Xt(j),t > 0) is distributed as the chain started at j. (3)

And suppose there is a random time T" < oo such that
xP=xY 1<t <. (4)
Call such a T a coupling time. Then the coupling inequality is
| P5(Xi €)= Pj(Xe €)|| < P(T>t), 0<t< 0. (5)

The inequality is clear once we observe P(Xt(z) €., T<t)= P(Xt(]) €, T<
t). The coupling inequality provides a method of bounding the variation
distance d(t) of Chapter 2 section yyy.

The most common strategy for constructing a coupling satisfying (3)
is via Markov couplings, as follows. Suppose the underlying chain has
state space I and (to take the continuous-time case) transition rate ma-
trix Q = (¢(¢,7)). Consider a transition rate matrix Q on the product space
I x I. Write the entries of Q as G(i,7; k,1) instead of the logical-but-fussy

G((#,7),(k,1)). Suppose that, for each pair (7, j) with j # 1,
G(i,7;,-) has marginals ¢(¢,-) and ¢(j, -) (6)

in other words 3, G(¢,7;k,1) = q(i,k) and Y, G(4,7;k,1) = q(5,1). And

suppose that

Gi, 0k, k) = q(i,k) for all k
G(i,i5k,0) = 0forl #k.

Take (Xlt(l)7 Xt(])) to be the chain on I x I with transition rate matrix Q and

initial position (7,7), Then (3) must hold, and 7" = min{¢ : Xt(l) = Xt(])}

is a coupling time. This construction gives a Markov coupling, and all the

examples where we use the coupling inequality will be of this form. In

practice it is much more understandable to define the joint process in words
xxx red and black particles.



A particular choice of Q is
(i, g5 k1) = q(2, k)q(4, 1), 7 # @ (7)

in which case the joint process is called to Doeblin coupling. In words, the
Doeblin coupling consists of starting one particle at ¢ and the other particle
at 7, and letting the two particles move independently until they meet, at
time M; ; say, and thereafter letting them stick together. In the particular
case of a birth-and-death process, the particles cannot cross without meeting
(in continuous time), and so if ¢ < j then Xt(i) < Xt(j) for all £, the property
we used at (2).

1.2 Examples using the coupling inequality

Use of the coupling inequality has nothing to do with reversibility. In fact it
finds more use in the irreversible setting, where fewer alternative methods
are available for quantifying convergence to stationarity. In the reversible
setting, coupling provides a quick way to get bounds which usually (but not
always) can be improved by other methods. Here are two examples we have
seen before.

Example 2 Random walk on the d-cube (Chapter 5 Example yyy).

For i = (i1,...,4q) and j = (j1,...,44) in T = {0,1}%, let D(i,j) be the
set of coordinates u where i and j differ. Write i* for the state obtained
by changing the i’th coordinate of 1. Recall that in continuous time the
components move independently as 2-state chains with transition rates 1/d.
In words, the coupling is “run unmatched coordinates independently until
they match, and then run them together”. Formally, the non-zero transitions
of the joint process are

q(i,J;1%,3%) = 1/dif iy = ju
q(i,j;1%,§) = 1/dif iy # ju
G(i,§;1,§") = 1/dif iy # ju.

For each coordinate which is initially unmatched, it takes exponential (rate
2/d) time until it is matched, and so the coupling time T satisfies

T 4 max(y, ..., &d,)



where the (£,) are independent exponential (rate 2/d) and do = d(1,]) is the
initial number of unmatched coordinates. So

P(T < 1) = (1 - exp(~2/d))"
and the coupling inequality bounds variation distance as
(1) < (1 = exp(—2t/d))".

This leads to an upper bound on the variation threshold time
T < (% +o(1))dlogd as d — .
In this example we saw in Chapter 5 that in fact
T~ idlogd as d — o0

so the coupling bound is off by a factor of 2.

Example 3 Random walk on a dense regular graph (Chapter 5 Ezample
yyy)-

Consider a r-regular n-vertex graph. Write A (v) for the set of neighbors
of v. For any pair v,w we can define a 1 — 1 map 6,,, : N(v) — N(w)
such that 8, ,,(z) = z for 2 € N(v) N N(w). We can now define a “greedy
coupling” by

G(v,w;z, 0, ,(z)=1/r, € N(v).

In general one cannot get useful bounds on the coupling time 7. But consider
the dense case, where r > n/2. As observed in Chapter 5 Example yyy, here
IN(v) N M(w)| > 2r — n and so the coupled processes (X;,Y:) have the
property that for w # v

IV (v) NN (w)] 2r —n

dt > dt
r r

P(Xt+dt = Yz&+dt|Xt =v,Y; = w) =
implying that T satisfies
P(T > t) < exp(—(2r —n)t/r).

So the coupling inequality implies d(t) < exp(—(2r—n)t/r), and in particular
the variation threshold satisfies

7 < .
1_2r—n



1.3 Comparisons via couplings

We now give two examples of coupling in the wide sense, to compare different
processes. The first is a technical result (inequality (8) below) which we
needed in Chapter 6 yyy. The second is the proof of Proposition 1(b).

Example 4 FEzit times for constrained random walk.

Let (X¢) be discrete-time random walk on a graph G, let A be a subset of
the vertices of G and let (Y;) be random walk on the subgraph induced by
A. Given B C A, let S be the first hitting time of (Y;) on B, and let T" be
the first hitting time of (X;) on B U A°. Then

F,T < E’Z'S, 1€ A. (8)

This is “obvious”, and the reason it’s obvious is by coupling. We can con-
struct coupled processes (X', Y’) with the property that, if both particles
are at the same position @ in A, and if X jumps to another state b in A,
then Y jumps to the same state b. This property immediately implies that,
for the coupled processes started at the same state in A, we have T' < §'
and hence (8).

In words, here is the coupling (X',Y’). When the particles are at differ-
ent positions they jump independently. When they are at the same position,
first let X’ jump; if X’ jumps to a vertex in A let Y/ jump to the same vertex,
and otherwise let Y/ jump to a uniform random neighbor in A. Formally,

the coupled process moves according to the transition matrix P on G' x A

defined by
plz,a;y,b) = pa(z,y) pa(a,b)ifa € Aorz # a
ﬁ(ava;bvb) = pg(a,b), be A

ﬁ(a7 ay, b) = pG(a7 y)pA(a7 b)7 be A7 Y€ A°

where p4 and pg refer to transition probabilities for the original random

walks on 4 and G.

Proof of Proposition 1(b). Fix ¢ > 1. By reversibility it is sufficient to
prove
Po(X¢ =1)

is non-decreasing in ¢ .
Po(X: =0



Consider the Doeblin coupling (Xt(o), Xt(i)) of the processes started at 0 and
(%)

at ¢, with coupling time 7. Since Xt(o) < X,/ we have
rx=0=rx”=0,T<1)
and so we have to prove
P(T < t|Xt(0) = 0) is non-decreasing in ¢ .
It suffices to show that, for ¢, > ¢,
(T <t)xV =0)> P(T < t|x” = 0)

(0)

and thus, by considering the conditional distribution of X, given Xt(lo) =0,
it suffices to show that

T <x® =j)> 1 <1x =0) (9)

for j > 0. So fix j and t. Write (XS(O’]), 0 < s < t) for the process conditioned
on Xg = 0,X; = 5. By considering time running backwards from ¢ to 0,
the processes X (9 and X (%) are the same non-homogeneous Markov chain
started at the different states 0 and j, and we can use the Doeblin coupling in
this non-homogeneous setting to construct versions of these processes with

X000 < xO9) p<s<t.

Now introduce an independent copy of the original process, started at time
0 in state i. If this process meets X (%0 before time ¢ then it must also meet
X (0.9) before time t, establishing (9).

2 Meeting times

Given a Markov chain, the meeting time M, ; is the time at which indepen-
dent copies of the chain started at 7 and at j first meet. Meeting times arose
in the Doeblin coupling and arise in several other contexts later, so deserve
a little study. It is natural to try to relate meeting times to properties such
as hitting times for a single copy of the chain. One case is rather simple.
Consider a distribution dist(£) on a group G such that

£ 4 e gt 4 &g for all g € G.



Now let X; and Y; be independent copies of the continuization of random
flight on G with step-distribution £. Then if we define Z; = X[ 'Y}, it is
easy to check that Z is itself the continuization of the random flight, but
run at twice the speed, i.e. with transition rates

qz(g,h) = 2P(g& = h).

It follows that EM; ; = %EiTj. The next result shows this equality holds un-
der less symmetry, and (more importantly) that an inequality holds without
any symmetry.

Proposition 5 For a continuous-time reversible Markov chain, let T; be
the usual first hitting time and let M; ; be the meeting time of independent
copies of the chain started at i and j. Then max; ; FM; ; < max; ; F;T;. If
moreover the chain is symmetric (recall the definition from Chapter 7 yyy)
then EM; ; = S ET;.

Proof. This is really just a special case of the cat and mouse game of Chapter
3 section yyy, where the player is using a random strategy to decide which
animal to move. Write X; and Y; for the chains started at 7 and j. Write
flz,y) = £, Ty — E;T,. Follow the argument in Chapter 3 yyy to verify

St = (2t + f(X4,Y:);0 <t < M,;;) is a martingale.
Then

ET; — E;T; = FES
E S, by the optional sampling theorem
QEZV[Z']' + Ef(XM” , YMiJ)

= 2EM;; — Et(Xn ), where t(k) = BT}

In the symmetric case we have t(k) = 1 for all k, establishing the desired
equality. In general we have #(k) < max; ; E;T; and the stated inequality
follows.

Remarks. Intuitively the bound in Proposition 5 should be reasonable
for “not too asymmetric” graphs. But on the n-star (Chapter 5 yyy), for ex-
ample, we have max; ; EM; ; = ©(1) while max; ; F;T; = ©(n). The “O(1)”
in that example comes from concentration of the stationary distribution,
and on a regular graph we can use Chapter 3 yyy to obtain

(n - 1)?

ZZ:ZJ: 71'2'71'J'EZWZ'7]‘ > T



But we can construct regular graphs which mimic the n-star in the sense
that max; ; EM; ; = o(7g). A more elaborate result, which gives the correct
order of magnitude on the n-star, was given in Aldous [3].

Proposition 6 For a continuous-time reversible chain,
—1
-
max EM; ; < K _
i, h = (22: max( L, T}, 7'1))
for an absolute constant K.

The proof is too lengthy to reproduce, but let us observe as a corollary
that we can replace the max; ; £;T; bound in Proposition 5 by the a priori
smaller quantity 79, at the expense of some multiplicative constant.

Corollary 7 For a continuous-time reversible chain,

max K M; ; < K1y
27]

for an absolute constant K.
Proof of Corollary 7. First recall from Chapter 4 yyy the inequality
1 S 667'0. (10)

“Harmonic mean < arithmetic mean” gives the first inequality in

-1
T
— < i BT,
(ZL: max( .1}, Tl)) - XZ: mi max( ™)
S ZWZ(EWTZ + Tl)
< Tt
< 67 by (10)

and so the result is indeed a corollary of Proposition 6.
Two interesting open problems remain. First, does Proposition 6 always
give the right order of magnitude, i.e.

Open Problem 8 In the setting of Proposition 6, does there exist an ab-
solute constant K such that

-1
K max EM; ; > (Z W—))

i - max( . T;, 7



The other open problem is whether some modification of the proof of Propo-
sition 5 would give a small constant K in Corollary 7. To motivate this
question, note that the coupling inequality applied to the Doeblin coupling
shows that for any chain d(t) < max; ; P(M;; > t). Then Markov’s inequal-
ity shows that the variation threshold satisfies 7 < emax; ; EM; ;. In the
reversible setting, Proposition 5 now implies 7y < e K7y where K is the con-
stant in Corollary 7. So a direct proof of Corollary 7 with small K would

improve the numerical constant in inequality (10).

3 Coalescing random walks and the voter model

Sections 3 and 4 treat some models whose behavior relates “by duality” to
random-walk-type processes. It is possible (see Notes) to fit all our exam-
ples into an abstract duality framework, but for the sake of concreteness I
haven’t done so. Note that for simplicity we work in the setting of regular
graphs, though the structural results go over to general graphs and indeed
to weighted graphs.

Fix a r-regular n-vertex graph GG. In the voter model we envisage a person
at each vertex. Initially each person has a different opinion (person ¢ has
opinion i, say). As time passes, opinions change according to the following
rule. For each person i and each time interval [¢,¢ + dt], with chance dt
the person chooses uniformly at random a neighbor (j, say) and changes (if
necessary) their opinion to the current opinion of person j. Note that the
total number of existing opinions can only decrease with time, and at some
random time Cyy there will be only one “consensus” opinion.

In the coalescing random walk process, at time 0 there is one particle at
each vertex. These particles perform independent continuous-time random
walks on the graph, but when particles meet they coalesce into clusters and
the cluster thereafter sticks together and moves as a single random walk. So
at time ¢ there are clusters, composed of one or more particles, at distinct
vertices, and during [t, ¢+ dt] each cluster has chance dt to move to a random
neighbor and (if that neighbor is occupied by another cluster) to coalesce
with that other cluster. Note that the total number of clusters can only
decrease with time, and at some random time Cepw the particles will have
all coalesced into a single cluster.

Remarkably, the two random variables Cymy and Cepw associated with
the two models turn out to have the same distribution, depending only on
the graph G. The explanation is that the two processes can be obtained by

10



looking at the same picture in two different ways. Here’s the picture. For
each edge e and each direction on e, create a Poisson process of rate 1/r. In
the figure, G is the 8-cycle, “time” is horizontal and an event of the Poisson
process for edge (i, j) at time ¢ is indicated by a vertical arrow ¢ — 7 at time
t.

tg time for coalescing RW 0

4J \ ‘ 4
vertices \ vertices

i I

0 time for voter model to

In the voter model, we interpret time as increasing left-to-right from 0
to tp, and we interpret an arrow j — ¢ at time ¢ as meaning that person
7 adopts ¢’s opinion a time t. In the coalescing random walk model, we
interpret time as increasing right-to-left from 0 to tg, and we interpret an
arrow j — ¢ at time ¢ as meaning that the cluster (if any) at state j at time
t jumps to state ¢, and coalesces with the cluster at ¢ (if any).

So for fixed ty, we can regard both processes as constructed from the
same Poisson process of “arrows”. For any vertices ¢, 7, k the event (for the

11



voter model)

The opinions of persons ¢ and j at time g are both the opinion
initially held by &

is exactly the same as the event (for the coalescing random walk process)

The particles starting at ¢+ and at j have coalesced before time
to and their cluster is at vertex & at time ¢g.

The horizontal lines in the figure indicate part of the trajectories. In terms
of the coalescing random walks, the particles starting at 5 and 7 coalesce,
and the cluster is at 4 at time tg. In terms of the voter model, the opinion
initially held by person 4 is held by persons 5 and 7 at time ty. The reader
may (provided this is not a library book) draw in the remaining trajectories,
and will find that exactly 3 of the initial opinions survive, i.e. that the
random walks coalesce into 3 clusters.
In particular, the event (for the voter model)

By time g everyone’s opinion is the opinion initially held by
person k

is exactly the same as the event (for the coalescing random walk process)

All particles have coalesced by time 3, and the cluster is at k£ at
time tg.

So P(Cym < tp) = P(Cerw < tg), and these two times (which we shall now
call just C') do indeed have the same distribution.

We now discuss bounds on FC'. It is interesting that the two models give
us quite different ways to prove bounds. Bounding FC' here is somewhat
analogous to the problem of bounding mean cover time, discussed in Chapter

6.

3.1 A bound using the voter model

Recall from Chapter 4 yyy the definition of the Cheeger time constant ..
In the present setting of a r-regular graph, the definition implies that for
any subset A of vertices
Al(n—|A
number of edges linking A and A° > M (11)

NTe

12



Proposition 9 (a) If G is s-edge-connected then EC < %.
(b) EC < 2log?2 T.n.

Proof. The proof uses two ideas. The first is a straightforward compari-
son lemma.

Lemma 10 Let (X;) be a continuous-time chain on states I. Let f : I —
{0,1,...,n} be such that f(X;) never jumps by more than 1, and such that
there exist strictly positive constants v,a(1),...,a(n—1) such that, for each
1 <i<n-—1 and each state z with f(z) =1,

PUIXtgar) =i+ 1 Xy =2)  P(f(Xeyar) =i - [ Xe = 2)

dt - dt 2 ya(i)-
Then
—1 g% *
=10 710y 77 L Tlomy
where E*T* refers to mean hitting time for the chain X* on states {0,1,...,n}

with transition rates
Giit1 = Gii—1 = a(i).

The second idea is that our voter model can be used to define a less-
informative “two-party” model. Fix an initial set B of vertices, and group
the opinions of the individuals in B into one political party (“Blues”) and
group the remaining opinions into a second party (“Reds”). Let NP be
the number of Blues at time ¢t and let CB < C be the first time at which
everyone belongs to the same party. Then

P(NtB+dt = NP 4 1] configuration at time t)
= P(Nﬁ_dt = NP — 1] configuration at time t)
number of edges linking Blue - Red vertices at time ¢

= dt.  (12)

T

Cases (a) and (b) now use Lemma 10 with different comparison chains. For
(a), while both parties coexist, the number of edges being counted in (12) is
at least s. To see this, fix two vertices v, z of different parties, and consider
(c.f. Chapter 6 yyy) a collection of s edge-disjoint paths from v to z. Each
path must contain at least one edge linking Blue to Red. Thus the quantity
(12) is at least £ d¢. If that quantity were 1 dt then N would be continuous
time random walk on {0,...,n} and the quantity £C® would be the mean

13



time, starting at | B|, for simple random walk to hit 0 or n, which by Chapter
5 yyy we know equals |B|(n — |B]). So using Lemma 10

2

r rn
ECB < —|B|(n—|B|) < —. 13
< o 1Bl(n—1B) < (13
B B
For (b), use (11) to see that the quantity (12) must be at least %_CN” dt.
Consider for comparison the chain on {0, ..., n} with transition rates ¢; ;41 =

¢.i—1 = t(n —1)/n. For this chain

ETh,y = Z:l ( time spent in j before 77, ,
J

n—1 1
— ’I’nZ #
Z:: (n—g)/n

where m;(j) is the mean occupation time for simple symmetric random walk
and the second term is the speed-up factor for the comparison chain under
consideration. Using the formula for m;(j) from Chapter 5 yyy,

n—1 i—1
, 1
ET{O”}:ZZE—I_ n—lzn - < nlog2.
J=t =1
So using Lemma 10
ECP < r.nlog?2. (14)

Finally, imagine choosing B at random by letting each individual ini-
tially be Blue or Red with probability 1/2 each, independently for different
vertices. Then by considering some two individuals with different opinions
at time t,

P(CB >1)>=P(C >1).

DN | —

Integrating over ¢ gives FC < 2ECB. But ECB < maxg ECP, so the
Proposition follows from (13) and (14).
3.2 A bound using the coalescing random walk model

The following result bounds the mean coalescing time in terms of mean
hitting times of a single random walk.

Proposition 11 EC < e(logn + 2) max; ; ;T

14



Proof. We can construct the coalescing random walk process in two steps.
Order the vertices arbitrarily as ¢1,...,%,. First let the n particles perform
independent random walks for ever, with the particles starting at ¢, 5 first
meeting at time M; ;, say. Then when two particles meet, let them cluster
and follow the future path of the lower-labeled particle. Similarly, when
two clusters meet, let them cluster and follow the future path of the lowest-
labeled particle in the combined cluster. Using this construction, we see

Ccrw S maXZ 2'17]'. (15)
J

Now let m* = max; ; F'M; ;. Using subexponentiality as in Chapter 2 section

yyy,
4

em*

P(Mi; > 1) < exp(—|—]). (16)

and so

EC

/0 T PC > tdt

/ min(1, 3" P(My, ; > 1)) dt by (15)
0

J

IN

I

> t
/0 min(1, ne exp(—w)) dt by (16)
em*(2 + logn)

where the final equality is the calculus fact
/ min(1, Ae™ ) dt = a1 (14 log A), A >1.
0
The result now follows from Proposition 5.

3.3 Conjectures and examples

The complete graph. On the complete graph, the number K; of clusters at
time t in the coalescing random walk model is itself the continuous-time
chain with transition rates

k-1 =k(k—1)/(n—1); n>k>2.
Since Cerw is the time taken for Ky to reach state 1,

on—1 (n—1)?
EC=Y" = ~ .
= k(k—1) n

15



Recall from Chapter 7 yyy that in a vertex-transitive graph with 75/7
small, the first hitting time to a typical vertex has approximately exponential
distribution with mean 75. Similarly, the meeting time M, ; for typical
i,7 has approximately exponential distribution with mean 74/2. It seems
intuitively clear that, for fixed small k£, when the number of clusters first
reaches k these clusters should be approximately uniformly distributed, so
that the mean further time until one of the k(k — 1)/2 pairs coalesce should
be about k(kT—O—l) Repeating the analysis of the complete graph suggests

Open Problem 12 Prove that for a sequence of vertex-transitive graphs
with 5 /179 — 0, we have EC ~ 1.

In the general setting, there is good reason to believe that the log term in
Proposition 11 can be removed.

Open Problem 13 Prove there exists an absolute constant K such that on
any graph
EC < Kmax E,T,,.
v,

The assertion of Open Problem 12 in the case of the torus Z% for d > 2
was proved by Cox [5]. A detailed outline is given in [11] Chapter 10b, so
we will not repeat it here, but see the remark in section 3.5 below.

xxx discuss d = 17

3.4 Voter model with new opinions

For a simple variation of the voter model, fix a parameter 0 < A < oo
and suppose that each individual independently decides at rate A (i.e. with
chance Adt in each time interval [t,7 4+ dt]) to adopt a new opinion, not
previously held by anyone. For this process we may take as state space
the set of partitions A = {Ay, Ag, ...} of the vertex-set of the underlying
graph G, where two individuals have the same opinion iff they are in the
same component A of A. The duality relationship holds with the following
modification. In the dual process of coalescing random walks, each cluster
“dies” at rate A. Thus in the dual process run forever, each “death” of a
cluster involves particles started at some set A of vertices, and this partition
A = {A;} of vertices into components is (by duality) distributed as the
stationary distribution of the voter model with new opinions. This is the
unique stationary distribution, even though (e.g. on the n-cycle) the Markov
chain may not be irreducible because of the existence of transient states.

16



The time to approach stationarity in this model is controlled by the time
C for the dual process to die out completely. Clearly EC < EC + 1/A, where
(' is the coalescing time discussed in previous sections, and we do not have
anything new to say beyond what is implied by previous results. Instead,
we study properties of the stationary distribution A = {A4;}. A natural
parameter is the chance, ¥ say, that two random individuals have the same
opinion, i.e.

|Ai|?

Lemma 14
2F & 1

7= Arn?2  n’

where & is the number of edges with endpoints in different components, under
the stationary distribution.

Proof. Run the stationary process, and let A(¢) and £(¢) be the partition
and the number of edges linking distinct components, at time ¢, and let
S(t) = 3;1Ai(t)|?. Then
E(S?(t + dt) — 5?(t)| configuration at time ?)
dt

- %S(t) F20 YA - A1), (18)

The first term arises from the “voter” dynamics. If an opinion change in-
volves an edge linking components of sizes a and b, then the change in 52
has expectation

(a+ 1) +(@a=1)*+(b+1)° - (b-1)
2

and for each of the £(t) edges linking distinct components, opinion changes

—(a2—|—b2):2

occur at rate 2/r. The second term arises from new opinions. A new opinion
occurs in a component of size a at rate Aa, and the resulting change in $? is

(a—1)*+1%—a? =2(1 - a).

Stationarity implies that the expectation of (18) equals zero, and so
4
—EE =2XY E|A;|(|A;| — 1) = 2A(n?y -
. A1 = 1) = 2207 )
and the lemma follows.
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14+A7c A+1
Corollary 15 1++A—:cn <7< %

Proof. Clearly E£ is at most the total number of edges, nr/2, so the upper
bound follows from the lemma. For the lower bound, (11) implies

¢ 5 TTilAl(n = 4]
- 2nT.

[

and hence ,

EE >

- 2717:(712 B nQ'y)

and the bound follows from the lemma after brief manipulation.

We now consider bounds on vy obtainable by working with the dual pro-
cess. Consider the meeting time M of two independent random walks started
with the stationary distribution. Then by duality (xxx explain)

7= P(M <)

where {(;)) denotes a random variable with exponential (2X) distribution in-
dependent of the random walks. Now M is the hitting time of the stationary
“product chain” (i.e. two independent continuous-time random walks) on
the diagonal A = {(v,v)}, so by Chapter 3 yyy M has completely monotone
distribution, and we shall use properties of complete monotonicity to get

Corollary 16

—iog S S ! + 2
1+ 20EM 1+ 20EM " EM

Proof. We can write M 4 RE¢(1), where £(1) has exponential(1) distribution
and R is independent of £(;). Then

7 = P(R{qy < e
= E P(R{q) < §an)lR)
1
El + 2)\R

1
> TToNER by Jensen’s inequality

1
14+ 20\EM’

For the upper bound, apply Chapter 3 yyy to the product chain to obtain

P(M >1t)>exp(—t/EM)—1/EM

18



(recall that 73 is the same for the product chain as for the underlying random

walk). So
l—y = P(M > {ay)
_ / P(M > 1) 22~ PMd1
0

2 EM Ty
= 1=2\EM EM
and the upper bound follows after rearrangement.
Note that on a vertex-transitive graph Proposition 5 implies EM = 74/2.

So on a sequence of vertex-transitive graphs with 75 /79 — 0 and with Arg —

6, say, Corollary 16 implies v — ﬁ. But in this setting we can say much

more, as the next section will show.

3.5 Large component sizes in the voter model with new opin-
ions

xxx discuss coalescent, GEM and population genetics.
xxx genetics already implicit in xxx
Fix 0 < § < oo. takeindependent random variables (;) with distribution

Pét>z)=(1-2), 0<z<1
and define
(7, x5, X400 = (6,0 - )6, (1- &)1 - &) )
so that >, XZ»(e) =1.
Proposition 17 Consider a sequence of vertex-transitive graphs for which

T9/70 — 0. Consider the stationary distribution A of the voter model with
new opinions, presented in size-biased order. If Atq — 0 then

A A
<uﬂ> o x® XY for all fived k.
n n
xxxX proof
Remark. The same argument goes halfway to proving Open Problem 12,

by showing

Corollary 18 Consider a sequence of vertex-transitive graphs for which
T9/T0 — 0. Let C®) be the coalescing time for k walks started at inde-
pendent uniform positions. Then, for fized k, EC'*) ~ To(1 — k71).

xxx argument similar (?) to part of the proof in Cox [5] for the torus.
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3.6 Number of components in the voter model with new
opinions

XXX T, result

4 The antivoter model

Recall from section 3 the definition of the voter model on a r-regular n-
vertex graph. We now change this in two ways. First, we suppose there are
only two different opinions, which it is convenient to call £1. Second, the
evolution rule is

For each person ¢ and each time interval [t,t + dt], with chance
dt the person chooses uniformly at random a neighbor (7, say)
and changes (if necessary) their opinion to the opposite of the
opinion of person j.

The essential difference from the voter model is that opinions don’t disap-
pear. Writing 7,(¢) for the opinion of individual v at time ¢, the process
n(t) = (n(t),v € G) is a continuous-time Markov chain on state-space
{=1,1}%. So, provided this chain is irreducible, there is a unique stationary
distribution (7,,v € ) for the antivoter model.

This model on infinite lattices was studied in the “interacting particle
systems” literature [14, 17], and again the key idea is duality. In this model
the dual process consists of annihilating random walks. We will not go into
details about the duality relation, beyond the following definition we need
later. For vertices v, w, consider independent continuous-time random walks
started at v and at w. We have previously studied M, ,,, the time at which
the two walks first meet, but now we define N,,, to be the total number
of jumps made by the two walks, up to and including the time M, ,,. Set
Ny, = 0.

Donnelly and Welsh [10] considered our setting of a finite graph, and
showed that Proposition 19 is a simple consequence of the duality relation.

Proposition 19 The antivoter process has a unique stationary distribution
(1nv), which satisfies

(i) En, =0

(71) c(v,w) = Enyny = P(Ny,y is even ) — P(N,,, is odd ).

If G is neither bipartite nor the n-cycle, then the set of all 2" — 2 non-
unanimous configurations is irreducible, and the support of the stationary
distribution is that set.

20



In particular, defining

S=) m

so that 5 or —5 is the “margin of victory” in an election, we have .5 = 0

and
var S = ch(v,w). (19)

On a bipartite graph with bipartition (A, A°) the stationary distribution
is

P(ny,=1Vve A,n, = —1Vo € A°) = P(n, = —1Vv € A,n, = IVv € A°) =1/2

and ¢(v,w) = —1 for each edge. Otherwise ¢(v,w) > —1 for every edge.

The antivoter process is in general a non-reversible Markov chain, be-
cause it can transition from a configuration in which » has the same opinion
as all its neighbors to the configuration where v has the opposite opinion,
but the reverse transition is impossible. Nevertheless we could use duality
to discuss convergence time. But, following [10], the spatial structure of the
stationary distribution is a more novel and hence more interesting question.
Intuitively we expect neighboring vertices to be negatively correlated and
the variance of S to be smaller than n (the variance if opinions were inde-
pendent). In the case of the complete graph on n vertices, N, ,, has (for
w # v) the geometric distribution

1 m
P(Nyo —(1- >0
Now>m)= (1= =) m

n(n

from which we calculate ¢(v,w) = —1/(2n — 3) and var S = T::Qa) < n/2.
We next investigate var 5 in general.

4.1 Variances in the antivoter model

Write £ = (&,) for a configuration of the antivoter process and write
S(f) = E v

a(£) = number of edges (v, w) with £, =&, =1
b(£) = number of edges (v, w) with &, = £, = —1.

A simple counting argument gives

2(a(§) — b(£)) = r5(£). (20)
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Lemma 20 var § = 2E(a(n)+b(n)), where n is the stationary distribution.

Proof. Writing (7;) for the stationary process and dS¢ = S(nigar) — S(m),
we have

P(dSy = +2|n;) = b(m:)dt
P(dS; = =2|my) = a(my)dt

and so

0 = ES*(nigar) — ES*(1;) by stationarity
2ES(n)dS; + E(dSt)Q
AES () (b(me) — a(ne))dt + 4E(a(ne) + b(ne))dt
= —2rES§? (me)dt + 4E(a(n:) + b(ne))dt by (20)

establishing the Lemma.
Since the total number of edges is nr/2, Lemma 20 gives the upper bound
which follows, and the lower bound is also clear.

Corollary 21 Let k = k(G) be the largest integer such that, for any subset
A of vertices, the number of edges with both ends in A or both ends in A° is

at least k. Then
2K
— <var S <.
r

Here x is a natural measure of “non-bipartiteness” of G. We now show how
to improve the upper bound by exploiting duality. One might expect some
better upper bound for “almost-bipartite” graphs, but Examples 27 and 28
indicate this may be difficult.

Proposition 22 var 5 < n/2.

Proof. Take two independent stationary continuous-time random walks on
the underlying graph G, and let (Xt(l),Xt(Q);t =...,—1,0,1,2,...) be the
jump chain, i.e. at each time we choose at random one component to make
a step of the random walk on the graph. Say an “event’ happens at t if

Xt(l) = Xt(Q), and consider the inter-event time distribution L:

P(L=1)=P(min{t>0: X" = x} = 11x{" = x{?).
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In the special case where GG is vertex-transitive the events form a renewal
process, but we use only stationarity properties (c.f. Chapter 2 yyy) which
hold in the general case. Write

T =min{t >0: Xt(l) = Xt(z)}
where the stationary chain is used. Then
Pou(T=1)= P(T =t|X" =0, XV = w) = P(N,, = 1)
and so by (19) and Proposition 19(ii),
var S = ZE(PWH(T is even) — P, ,,(T is odd))
= n*(P(T is even) — P(T is odd)).
If successive events occur at times tg and ¢y, then

{s:to<s<ty:ty —siseven }| —{s:1p < s <t :1; —sis odd} 0 if |t; — o] is even

1if |t1 — tol is odd

and an ergodic argument gives
P(T is even) — P(T is odd) = P(L is odd)/FE L.
But KL = 1/P(event) = n, so we have established

Lemma 23 n~'var S = P(L is odd).

Now consider
T~ =min{t >0: X)) = x®).

If successive events occur at tg and ¢1, then there are ¢t —ty — 1 times s with
tg < s < t1, and another ergodic argument shows

(I-1)P(L =1)

Pr+T- =1)= > 2.
So
1
n~'(P(L is even) — P(L is odd)) = L (—=1)'P(L =1) since EL=mn
1>2
1)
= Z(z ) P(T+T™ =1). (21)
>2 " 1
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Now let ¢(z) be the generating function of a distribution on {1,2,3,...} and
let Z,Z~ be independent random variables with that distribution. Then

Mf) dz > 0. (22)

z

e =n= |

1>2

Conditional on (Xél),XéQ)) = (v,w) with w # », we have that 7" and 7~
are independent and identically distributed. So the sum in (21) is positive,
implying P(L is odd) < 1/2, so the Proposition follows from the Lemma.

Implicit in the proof are a corollary and an open problem. The open
problem is to show that var 5 is in fact maximized on the complete graph.
This might perhaps be provable by sharpening the inequality in (22).

Corollary 24 On an edge-transitive graph, write Cedge = c(v,w) = Enyny
for an arbitrary edge (v, w). Then
var S =n(l+ Cedge)/2
Cedge < 0.

Proof. In an edge-transitive graph, conditioning on the first jump from (v, v)
gives
P(L is odd) = P(N,,, is even)

for an edge (v,w). But P(N,, iseven ) = (1 + Cedge)/2 by Proposition
19(ii), so the result follows from Lemma 23 and Proposition 22.
4.2 Examples and Open Problems

In the case of the complete graph, the number of +1 opinions evolves as the
birth-and-death chain on states {1,2,...,n — 1} with transition rates

71— 14+ 1 rate(
—17—1 I’atem

From the explicit form of the stationary distribution we can deduce that
as n — oo the asymptotic distribution of S is Normal. As an exercise in
technique (see Notes) we ask

Open Problem 25 Find sufficient conditions on a sequence of graphs which
imply S has asymptotic Normal distribution.
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Example 26 Distance-reqular graphs.

On a distance-regular graph of diameter A, define 1 = f(0), f(1),..., f(A)
by

f(i) = ¢e(v,w) = P(Ny,, is even ) — P(N,,, is odd ), where d(z,y) = 1.
Conditioning on the first step of the random walks,
J@) = = Piinn fG+ 1)+ piif(8) + piga f(1 - 1)), 1<i< A (23)

where (c.f. Chapter 7 yyy) the p; ; are the transition probabilities for the
birth-and-death chain associated with the discrete-time random walk. In
principle we can solve these equations to determine f(1) = Cedge- Note
that the bipartite case is the case where p;; = 0, which is the case where
f(i) = (=1) and Codge = —1- A simple example of a non-bipartite distance-
regular graph is the “2-subsets of a d-set” example (Chapter 7 yyy) for d > 4.
Here A = 2 and

_ 1 _ _d-3 _ d—2
P10 = 2(d— 2) P11 = 5(g—g) P12= 2(d— 2)
4 2d — 8

P21 = 5= P22 = m

Solving equations (23) gives Cedge = —1/(3d - 7).

Corollary 24 said that in an edge-transitive graph, Cedge < 0. On a
vertex-transitive graph this need not be true for every edge, as the next
example shows.

Example 27 An almost bipartite vertex-transitive graph.

Consider the m + 2-regular graph on 2m vertices, made by taking m-cycles
(v1,...,0y) and (w1, ..., w,) and adding all edges (v;, w;) between the two
“classes”. One might guess that, under the stationary distribution, almost
all individuals in a class would have the same opinion, different for the two
classes. But in fact the tendency for agreement between individuals in the
same class is bounded: as m — oo

c(vi,wj) — —=

9
1
c(vi,v;) — 3 Jj# 1. (24)
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To prove this, consider two independent continuous-time random walks,
started from opposite classes. Let N be the number of jumps before meeting
and let M > 1 be the number of jumps before they are again in opposite
classes. Then

P(M isodd )= % +0(m™?); P(N<M)= % +0(m™?).

So writing My = M, My, Ms, ... for the cumulative numbers of jumps each
time the two walks are in opposite components, and writing

@ = min{j : M; is odd},

we have

1
P( walks meet before Q) = R +0(m™).

Writing @1 = @, Q2, @3, ... for the sucessive j's at which M; changes parity,
and
L = max{k : Mg, < meeting time}

for the number of parity changes before meeting,

P(L=1)= % (%)Z +0(m™), 1>0

So P(ny; ., is odd) = P(L is even) — 5 and (24) follows easily.

Example 28 Another almost-bipartite graph.

Consider the torus Z;“;l1 with d > 2 and with even m > 4, and make the
graph non-bipartite by moving two edges as shown.

Let m — oo and consider the covariance ¢(vy,, w,,) across edges (v, wy,)
whose distance from the modified edges tends to infinity. One might suspect
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that the modification had only “local” effect, in that ¢(v,,,w,) — —1. In
fact,

(v, W) — —1, d=2

— B(d)> -1, d> 3.

We don’t give details, but the key observation is that in d > 3 there is a
bounded-below chance that independent random walks started from v,, and
w,, will traverse one of the modified edges before meeting.

5 The interchange process

xxx notation: X for process or underlying RW?

Fix a graph on n vertices. Given n distinguishable particles, there are n!
“configurations” with one particle at each vertex. The interchange process
is the following continuous-time reversible Markov chain on configurations.

On each edge there is a Poisson, rate 1, process of “switch times”,
at which times the particles at the two ends of the edge are
interchanged.

The stationary distribution is uniform on the n! configurations. We want to
study the time taken to approach the uniform distribution, as measured by
the parameters 75 and 7.

As with the voter model, there is an induced process obtained by declar-
ing some subset of particles to be “visible”, regarding the visible particles
as indistinguishable, and ignoring the invisible particles. Interchanging two
visible particles has no effect, so the dynamics of the induced process are as
follows.

On each edge there is a Poisson, rate 1, process of “switch times”.
At a switch time, if one endpoint is unoccupied and the other
endpoint is occupied by a (visible) particle, then the particle
moves to the other endpoint.

This is the finite analog of the exclusion process studied in the interacting
particle systems literature. But in the finite setting, the interchange process
seems more fundamental.

If we follow an individual particle, we see a certain continuous-time
Markov chain X;, say, with transition rate 1 along each edge. In the termi-
nology of Chapter 3 yyy this is the fluid model random walk, rather than
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the usual continuized random walk. Write 75 for the relaxation time of X.
The contraction principle (Chapter 4 yyy) implies 72 > 75.

Open Problem 29 Does 15 = 75 in general?

If the answer is “yes”, then the general bound of Chapter 4 yyy will give
1
< To(l+ §log n!) = O(Tenlogn)

but the following bound is typically better.
Proposition 30 7 < (24 logn)e max, E,T,.

Proof. We use a coupling argument. Start two versions of the interchange
process in arbitrary initial configurations. Set up independent Poisson pro-
cesses N, and N7 for each edge e. Say edge e is special at time ¢ if the
particles at the end-vertices in process 1 are the same two particles as in
process 2, but in transposed position. The evolution rule for the coupled
processes is

Use the same Poisson process N, to define simultaneous switch
times for both interchange processes, except for special edges
where we use N, for process 1 and N7 for process 2.

Clearly, once an individual particle is matched (i.e. at the same vertex in
both processes), it remains matched thereafter. And if we watch the process
(X4, Y:) recording the positions of particle ¢ in each process, it is easy to
check this process is the same as watching two independent copies of the
continuous-time random walk, run until they meet, at time U;, say. Thus
max; U; is a coupling time and the coupling inequality (5) implies

d(t) < P(max U; > t).

Now U; is distributed as M, (i) .(;), where v(i) and w(7) are the initial po-
sitions of particle 7 in the two versions and where M, ,, denotes meeting
time for independent copies of the underlying random walk X,. Writing
m* = max, ., £ M, ., we have by subexponentiality (as at (16))

{
P(M,,, >1t) <exp <1 — )

em*

and so

_ t
d(t) < nexp <1— *)
em

This leads to 7y < (24 logn)em™ and the result follows from Proposition 5.
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5.1 Card-shuffling interpretation

Taking the underlying graph to be the complete graph on n vertices, the
discrete-time jump chain of the interchange process is just the “card shuf-
fling by random transpositions” model from Chapter 7 yyy. On any graph
(G, the jump chain can be viewed as a card-shuffling model, but note that
parameters 7 are multiplied by |€| (the number of edges in ') when passing
from the interchange process to the card-shuffling model. On the complete
graph we have max,,, £,T, = (1) and |§] = ©(n?), and so Proposition
30 gives the bound 71 = O(n?logn) for card shuffling by random trans-
positions, which is crude in view of the exact result 73 = O(nlogn). In
contrast, consider the n-cycle, where max,,, BT, = O(n?) and |&] = n.
Here the jump process is the “card shuffling by random adjacent transposi-
tions” model from Chapter 7 yyy. In this model, Proposition 30 gives the
bound 71 = O(n®logn) which as mentioned in Chapter 7 yyy is the correct
order of magnitude.

Diaconis and Saloff-Coste [8] studied the card-shuffling model as an ap-
plication of more sophisticated techniques of comparison of Dirichlet forms.

xxx talk about their results.

6 Other interacting particle models

As mentioned at the start of the chapter, the models discussed in sections
3 - 5 are special in that their behavior relates to the behavior of processes
built up from independent random walks on the underlying graph. In other
models this is not necessarily true, and the results in this book have little
application.

xxx mention Ising model and contact process.

6.1 Product-form stationary distributions

Consider a continuous-time particle process whose state space is the collec-
tion of subsets of vertices of a finite graph (representing the subset of vertices
occupied by particles), and where only one state can change occupancy at
a time. The simplest stationary distribution would be of the form

each vertex v is occupied independently with probability 6/(1 + 8) (25)

where 0 < # < oo is a parameter. By considering the detailed balance
equations (Chapter 3 yyy), such a process will be reversible with stationary
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distribution (25) iff its transition rates satisfy
O x! which coincide except that vertex v is

1 g(x%x') _
, we have T x0) = 0.

For configurations x

unoccupied in x¥ and occupied in x

There are many ways to set up such transition rates. Here is one way,
observed by Neuhauser and Sudbury [20]. For each edge (w,v) at time ¢
with w occupied,

if v is occupied at time ¢, then with chance dt it becomes unoccupied by
time ¢ + dt

if v is unoccupied at time ¢, then with chance #dt it becomes occupied
by time t + dt.
If we exclude the empty configuration (which cannot be reached from other
configurations) the state space is irreducible and the stationary distribution
is given by (25) conditioned on being non-empty.

Convergence times for this model have not been studied, so we ask

Open Problem 31 Give bounds on the relazation time 1o in this model.

6.2 Gaussian families of occupation measures

We mentioned in Chapter 3 yyy that, in the setting of a finite irreducible
reversible chain (X;), the fundamental matrix Z has the property

7;Z;; is symmetric and positive-definite .

So by a classical result (e.g. [12] Theorem 3.6.4) there exists a mean-zero
Gaussian family (7;) such that

E~iy; = m;Z;; for all 4, 5. (26)

What do such Gaussian random variables represent? It turns out there is a
simple interpretation involving occupation measures of “charged particles”.
Take two independent copies (X;" : —0o <t < o0) and (X; : —00 < t < o)
of the stationary chain, in continuous time for simplicity. For fixed u > 0
consider the random variables

W =3 _Ou (L= = Ly =)

Picture one particle with charge +1/2 and the other particle with charge

(u)

—1/2, and then ’y(u) has units “charge x time”. Clearly Fv; "’ = 0 and it is

7

30



easy to calculate

u u 1 0 0
B )7]( )= §E/_u /_u (1(Xs:i,Xt:j) - Wiﬂj) ds dt
1 0 0
= Sm / (P(X; = j|X, = i) — 7;) ds dt
w r
= n [ (1= 2) Gitr) - mp dr
0 U
and hence

u_lE'y(u)ny(-“) — Wi Zij as u — 0. (27)

k3
The central limit theorem for Markov chains (Chapter 2 yyy) implies that
the v — oo distributional limit of (u—1/272(u)
family (7;), and so (27) identifies the limit as the family with covariances
(26).

As presented here the construction may seem an isolated curiousity, but
in fact it relates to deep ideas developed in the context of continuous-time-
and-space reversible Markov processes. In that context, the Dynkin iso-
morphism theorem relates continuity of local times to continuity of sample
paths of a certain Gaussian process. See [19] for a detailed account. And
various interesting (Gaussian processes can be constructed via “charged par-
ticle” models - see [1] for a readable account of such constructions. Whether
these sophisticated ideas can be brought to bear upon the kinds of finite-
state problems in this book is a fascinating open problem.

) is some mean-zero Gaussian

7 Other coupling examples
Example 32 An m-particle process on the circle.

Fix m < K. Consider m indistinguishable balls distributed amongst K
boxes, at most one ball to a box, and picture the boxes arranged in a circle.
At each step, pick uniformly at random a box, say box 2. If box 7 is occupied,
do nothing. Otherwise, pick uniformly at random a direction (clockwise or
counterclockwise) search from 7 in that direction until encountering a ball,

and move that ball to box 7. This specifies a Markov chain on the fz )

possible configurations of balls. The chain is reversible and the stationary
distribution is uniform. Can we estimate the “mixing time” parameters 7
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and 737 Note that as K — oo there is a limit process involving m particles
on the continuous circle, so we seek bounds which do not depend on K.

There is a simple-to-describe coupling, where for each of the two versions
we pick at each time the same box and the same direction. The coupling
has the usual property (c.f. the proof of Proposition 30) that the number
of “matched” balls (i.e. balls in the same box in both processes) can only
increase. But analyzing the coupling time seems very difficult. Cuellar-
Montoya [7] carries through a lengthy analysis to show that 7, = O(m!?).
In the other direction, the bound

3
Ty 2>
82

is easily established, by applying the extremal characterization (Chapter 3
yyy) to the function

g(x) = ﬁ: sin(2rz;/m)

where x = (z1,...,2,,) denotes the configuration with occupied boxes
{z1,..., 2, }. It is natural to conjecture 75 = O(m?) and 71 = O(m?>logm).

The next example, from Jerrum [15] (xxx cite final version), uses a cou-
pling whose construction is not quite obvious.

Example 33 Permutations and words.

Fix a finite alphabet A of size |A|. Fix m, and consider the set A™ of

“words” x = (z1,...,2,) with each z; € A. Consider the Markov chain on
A™ in which a step x — y is specified by the following two-stage procedure.
Stage 1. Pick a permutation o of {1,2,..., m} uniformly at random from

the set of permutations o satisfying z,¢;y = z;Vi.

Stage 2. Let (¢;(0);7 > 1) be the cycles of 0. For each j, and indepen-
dently as j varies, pick uniformly an element a; of A, and define y; = a; for
every i € ¢;(o).

Here is an alternative description. Write 1 for the set of permutations of
{1,...,m}. Consider the bipartite graph on vertices A™ U Il with edge-set
{(x,0) : 2,4 = x;Vi}. Then the chain is random walk on this bipartite
graph, watched every second step when it is in A™.

From the second description, it is clear that the stationary probabilities
7(x) are proportional to the degree of x in the bipartite graph, giving

T(x) x H ng(x)!
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where ny(x) = [{7: z; = a}|. We shall use a coupling argument to establish
the following bound on variation distance:

d(t) < m (1 _ ﬁ)t (28)

implying that the variation threshold satisfies

141
n<1d— T 4 (14 logm)|Al.
The construction of the coupling depends on the following lemma, whose
proof is deferred.

Lemma 34 Givcen finite sets F', F? we can construct (for v = 1,2) a
uniform random permutation o* of F* with cycles (C}-‘;j > 1), where the
cycles are labeled such that

CinF'nF*=CinF'nF? forallj.

We construct a step (x!,x?) — (Y!,Y?) of the coupled processes as follows.
For each @ € A, set F1* = {i : 2! = a}, F?* = {i : 2? = a}. Take
random permutations o', ¢*® as in the lemma, with cycles C}’Q,C;’a.
Then (6% a € A) define a uniform random permutation o' of {1,...,m},
and similarly for o2. This completes stage 1. For stage 2, for each pair (a, j)
pick a uniform random element aj of A and set

1 _ _a . 1,a
Yy = aj for every i € C'}

2 _ _a . 2,a
Y;" = af for every i € €.
This specifies a Markov coupling. By construction

1
k3

P F

So the coupled processes (X'(t), X?(¢)) satisfy

then V! = V2
then P(Y! =Y?2)=1/]A|.

if z

if z

1 t
P(X](t) # X}(1) = <1 - m) Lix1(0)£x2(0))-
In particular P(X(¢) # X2(t)) < m(1—1/|A|)! and the coupling inequality
(5) gives (28).

xxx proof of Lemma — tie up with earlier discussion.
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7.1 Markov coupling may be inadequate

Recall the discussion of the coupling inequality in section 1.1. Given a
Markov chain and states ¢, 7, theory (e.g. [18] section 3.3) says there exists
a mazimal coupling Xt(i), Xt(j) with a coupling time T for which the coupling
inequality (5) holds with equality. But this need not be a Markov coupling,
i.e. of form (6), as the next result implies. The point is that there exist
fixed-degree expander graphs with 7 = O(1) and so iy = O(logn), but
whose girth (minimal cycle length) is Q(logn). On such a graph, the upper
bound on 71 obtained by a Markov coupling argument would be O(ET),
which the Proposition shows is nf(1).

Proposition 35 Fiz vertices i,j in a r-reqular graph (r > 3) with girth
g. Let (Xt(i),Xt(j)) be any Markov coupling of discrete-time random walks
started at © and j. Then the coupling time T satisfies

N 1 — (7'- — 1)_d(27])/2

g 1
—1)17z,
- r—2 (r )e

ET

Proof. We quote a simple lemma, whose proof is left to the reader.

Lemma 36 Let £,& be (dependent) random variables with P(§, = 1) =
=l P(& = —1) = 1. Then

r

1, 1
Eoate < T7 292 292 g <.
T T

In particular, setting 8 = (r — 1)_1/2, we have
EfSite <« q.

Now consider the distance D; = d(Xt(i),Xt(j)) between the two particles.
The key idea is

B@OP+ - 0™ x0, X)) < 0if Dy < [g/2] -1

<

< (72— 1)0l9/% else. (29)
The second inequality follows from the fact D4y — Dy > —2. For the
first inequality, if D; < |g/2] — 1 then the incremental distance D¢yq — Dy

is distributed as & + & in the lemma, so the conditional expectation of
gP+1-Dt is < 1. Now define a martingale (My) via My = 0 and

M1 — My = gl+1 _ gD _ E(QDtH _ th|Xt(i)’Xt(j)).
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Rearranging,
=1 ' '
0P — D0 = M, + > E(6P+ — 7| XD, X))
s=0

M; + (672 — 1)9l9/2¢ by (29).

IN

Apply this inequality at the coupling time T and take expectations: we have
EMt = 0 by the optional sampling theorem (Chapter 2 yyy) and Dr = 0,
Lol

1—g%9) < (972 — 1)gL/A T

and the Proposition follows.

8 Notes on Chapter 14

Section 1. Coupling has become a standard tool in probability theory.
Lindvall [18] contains an extensive treatment, emphasizing its use to prove
limit theorems. Stoyan [21] emphasizes comparison results in the context of
queueing systems.

Birth-and-death chains have more monotonicity properties than stated
in Proposition 1 — see van Doorn [22] for an extensive treatment. The
coupling (2) of a birth-and-death process is better viewed as a specialization
of couplings of stochastically monotone processes, c.f. [18] Chapter 4.3.

Section 1.1. Using the coupling inequality to prove convergence to sta-
tionarity (i.e. the convergence theorem, Chapter 2 yyy) and the analogs for
continuous-space processes is called the coupling method. See [18] p. 233
for some history. Systematic use to bound variation distance in finite-state
chains goes back to Aldous [2]. repeated here. The coupling inequality is
often presented as involving the chain started from an arbitrary point and
the stationary chain, leading to a bound on d(t) instead of d(t).

Section 3. The voter model on Z¢, and its duality with coalescing ran-
dom walk, has been extensively studied — see [11, 17] for textbook treat-
ments. The general notion of duality is discussed in [17] section 2.3. The
voter model on general finite graphs has apparently been studied only once,
by Donnelly and Welsh [9]. They studied the two-party model, and obtained
the analog of Proposition 9(a) and some variations.

In the context of Open Problem 13 one can seek to use the randomization
idea in Matthews’ method, and the problem reduces to proving that, in the
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coalescing of k randomly-started particles, the chance that the final join is
between a (k — 1)-cluster and a 1-cluster is small.

Section 3.5. On the infinite two-dimensional lattice, the meeting time
M of independent random walks is such that log M has approximately an
exponential distribution. Rather surprisingly, with a logarthmic time trans-
formation one can get a analog of Proposition 17 on the infinite lattice — see
Cox and Griffeath [6].

Section 4. Donnelly and Welsh [10] obtained Proposition 19 and a few
other results, e.g. that, over edge-transitive graphs, ¢ is uniquely max-
imized on the complete graph.

In the context of Open Problem 25, there are many known Normal limits
in the context of interacting particle systems on the infinite lattice, but it
is not clear how well those techniques extend to general finite graphs. It
would be interesting to know whether Stein’s method could be used here
(see Baldi and Rinott [4] for different uses of Stein’s method on graphs).

Section 5. The name “interchange process” is my coinage: the process,
in the card-shuffling interpretation, was introduced by Diaconis and Saloff-
Coste [8].

The interchange process can of course be constructed from a Poisson
process of directed edges, as was the voter model in section 3. On the n-
path, this “graphical representation” has an interpretation as a method to
create a pseudo-random permutation with paper and pencil — see Lange and
Miller [16] for an entertaining elementary exposition.

Miscellaneous. One can define a wide variety of “growth and coverage”
models on a finite graph, where there is some prescribed rule for growing a
random subset &; of vertices, starting with a single vertex, and the quantity
of interest is the time T until the subset has grown to be the complete
graph. Such processes have been studied as models for rumors, broadcast
information and percolation — see e.g. Weber [23] and Fill and Pemantle

13].

edge
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9 Other stuff

xx interacting SA with 2 particles
xx exclusion process via distinguished paths, after Diaconis S-C.
xx J-S matchings via distinguished paths
xx coupling proof of differentiation of stat dists — notes.
xx interacting version of approximate counting
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