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The setting of this Chapter is a finite-state irreducible Markov chain
(X¢), either in discrete time (¢ = 0,1,2,...) or in continuous time (0 <
t < 00). Highlights of the elementary theory of general (i.e. not-necessarily-
reversible) Markov chains are readily available in several dedicated textbooks
and in chapters of numerous texts on introductory probability or stochastic
processes (see the Notes), so we just give a rapid review in sections 1 and 1.2.
Subsequent sections emphasize several specific topics which are useful for our
purposes but not easy to find in any one textbook: using the fundamental
matrix in mean hitting times and the central limit theorem, metrics on
distributions and submultiplicativity, Matthews’ method for cover times,
and martingale methods.

1 Notation and reminders of fundamental results

We recommend the textbook of Norris [23] for a clear treatment of the basic
theory and a wide selection of applications.

Write I = {4,j,k,...} for a finite state space. Write P = p; ; for the
transition matrix of a discrete-time Markov chain (X; : ¢ = 0,1,2,...).
To avoid trivialities let’s exclude the one-state chain ({wo-state chains are
useful, because surprisingly often general inequalities are sharp for two-state
chains). The t-step transition probabilities are P(X; = j|Xo = 1) = pg-),
where P() = PP...P is the t-fold matrix product. Write P;(-) and E;(-)
for probabilities and expectations for the chain started at state ¢ and time
0. More generally, write P,(-) and F,(-) for probabilities and expectations
for the chain started at time 0 with distribution p. Write

T; =min{t > 0: X; =i}



for the first hitting time on state ¢, and write

Tt =min{t > 1: X; = i}.
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Of course TZ»+ = T; unless Xg = 7, in which case we call TZ»+ the first return
time to state ¢. More generally, a subset A of states has first hitting time

Ts=min{t > 0: X; € A}.

We shall frequently use without comment “obvious” facts like the fol-
lowing,.

Start a chain at state ¢, wait until it first hits 7, then wait until
the time (5, say) at which it next hits k. Then E;S = E;T; +
E;Ty.

The elementary proof sums over the possible values ¢ of T;. The sophisti-
cated proof appeals to the strong Markov property ([23] section 1.4) of the
stopping time T;, which implies

Ei(S|Xt,t < T]‘) = T]' + E]‘Tk.

Recall that the symbol | is the probabilist’s shorthand for “conditional on”.

1.1 Stationary distribution and asymptotics

Now assume the chain is irreducible. A fundamental result ([23] Theorems
1.7.7 and 1.5.6) is that there exists a unique stationary distribution 7 = (; :
i € I),i.e. a unique probability distribution satisfying the balance equations

T = Zmpij for all j. (1)

One way to prove this existence (liked by probabilists because it extends eas-
ily to the countable state setting) is to turn Lemma 6 below into a definition.
That is, fix arbitrary 7o, define 7(ip) = 1, and define

7(j) = E; (number of visits to j before time Tiﬁ), J # io.

It can then be checked that m; := 7(2)/ >_; 7(Jj) is a stationary distribution.
The point of stationarity is that, if the initial position Xy of the chain is
random with the stationary distribution 7, then the position X; at any
subsequent non-random time ¢ has the same distribution 7, and the process
(X¢,t=0,1,2,...) is then called the stationary chain.

A highlight of elementary theory is that the stationary distribution plays
the main role in asymptotic results, as follows.



Theorem 1 (The ergodic theorem: [23] Theorem 1.10.2) Let N;(t) be
the number of visits to state t during times 0,1, ...,t—1. Then for any initial
distribution,

t7INy(t) — m; a.s., ast — oo.

Theorem 2 (The convergence theorem: [23] Theorem 1.8.3) For any
initial distribution,

P(X;=j)—mjast— oo, forallj
provided the chain is aperiodic.

Theorem 1 is the simplest illustration of the ergodic principle “time averages
equal space averages”. Many general identities for Markov chains can be
regarded as aspects of the ergodic principle — in particular, in section 2.1
we use it to derive expressions for mean hitting times. Such identities are
important and useful.

The most classical topic in mathematical probability is time-asymptotics
for i.i.d. (independent, identically distributed) random sequences. A vast
number of results are known, and (broadly speaking) have simple analogs
for Markov chains. Thus the analog of the strong law of large numbers is
Theorem 1, and the analog of the central limit theorem is Theorem 17 below.
As mentioned in Chapter 1 section 2.1 (yyy 7/20/99 version) this book has
a different focus, on results which say something about the behavior of
the chain over some specific finite time, rather than what happens in the
indefinite future.

1.2 Continuous-time chains

The theory of continuous-time Markov chains closely parallels that of the
discrete-time chains discussed above. To the reader with background in
algorithms or discrete mathematics, the introduction of continuous time
may at first seem artificial and unnecessary, but it turns out that certain
results are simpler in continuous time. See Norris [23] Chapters 2 and 3 for
details on what follows.

A continuous-time chain is specified by transition rates (q(¢,7) = ¢;;,j #
i) which are required to be non-negative but have no constraint on the sums.
Given the transition rates, define

4= ¢ (2)
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and extend (g;;) to a matrix Q by putting ¢;; = —¢;. The chain (X, : 0 <
t < 00) has two equivalent descriptions.

1. Infinitesimal description. Given that X; = 4, the chance that
Xitdr = J is g;;dt for each 7 # 1.

2. Jump-and-hold description. Define a transition matrix J by
Ji;i = 0 and

Jij = qij /iy J F i (3)

Then the continuous-time chain may be constructed by the two-step proce-
dure
(i) Run a discrete-time chain X7 with transition matrix J.
(ii) Given the sequence of states ig, i1,1y,... visited by X7, the durations
spent in states 7,, are independent exponential random variables with rates
iy, -
The discrete-time chain X7 is called the jump chain associated with X;.

The results in the previous section go over to continuous-time chains
with the following modifications.

(a) Pi(X:=j) = Qg), where Q) := exp(Qt).

(b) The definition of 7;" becomes

T = min{t > Tp; : Xy = i}.

(c) If the chain is irreducible then there exists a unique stationary dis-
tribution 7 characterized by

Z m;¢;; = 0 for all j.

(d) In the ergodic theorem we interpret N,(t) as the total duration of
time spent in state ¢ during [0, ?]:

i
A;T,L(t) II/ 1(XS:i) ds.
0

(e) In the convergence theorem the assumption of aperiodicity is un-
necessary. [This fact is the one of the technical advantages of continuous
time.]

(f) The evolution of P(X; = j) as a function of time is given by the
forwards equations

d

—P(Xi = j) = ZP(Xt = 1)4ij- (4)



Given a discrete-time chain X with some transition matrix P, one can
define the continuized chain X to have transition rates %G; = Pij, J # .
In other words, we replace the deterministic time-1 holds between jumps
by holds with exponential(1) distribution. Many quantities are unchanged
by the passage from the discrete time chain to the continuized chain. In
particular the stationary distribution 7 and mean hitting times F;T4 are
unchanged. Therefore results stated in continuous time can often be imme-
diately applied in discrete time, and vice versa.

In different parts of the book we shall be working with discrete or contin-
uous time as a current convention, mentioning where appropriate how results
change in the alternate setting. Chapter 4 (yyy section to be written) will
give a survey of the differences between these two settings.

2 Identities for mean hitting times and occupa-
tion times

2.1 Occupation measures and stopping times

The purpose of this section is to give a systematic “probabilistic” treat-
ment of a collection of general identities by deriving them from a single
result, Proposition 3. We work in discrete time, but give the correspond-
ing continuous-time results in section 2.3. Intuitively, a stopping time is
a random time which can be specified by some on-line algorithm, together
(perhaps) with external randomization.

Proposition 3 Consider the chain started at state 1. Let 0 < S < 0o be a
stopping time such that Xg = i and F;5 < oo. Let j be an arbitrary state.
Then

E;(number of visits to j before time S) = 7; E;S.

In the phrase “number of ...before time t”, our convention is to include
time 0 but exclude time ¢.

We shall give two different proofs. The first requires a widely-useful
general theorem in stochastic processes.

Proof. Consider the renewal process whose inter-renewal time is dis-
tributed as S. The reward-renewal theorem (e.g. Ross [27] Thm. 3.6.1)
says that the asymptotic proportion of time spent in state j equals

E;(number of visits to j before time 5)/E;S.



But this asymptotic average also equals 7;, by the ergodic theorem. O

We like that proof for philosophical reasons: a good way to think about
general identities is that they show one quantity calculated in two different
ways. Here is an alternative proof of a slightly more general assertion. We
refer to Propositions 3 and 4 as occupation measure identities.

Proposition 4 Let 6 be a probability distribution on I. Let 0 < § < oo be
a stopping time such that Ps(Xs € ) = 0(-) and EgS < oo. Let j be an
arbitrary state. Then
Eg(number of visits to j before time S) = m;EyS.
Proof. Write p; = Eg(number of visits to j before time ). We will show
J

Then by uniqueness of the stationary distribution, p(-) = en(:) for ¢ =

Checking (5) is just a matter of careful notation.

P = ZP@(Xt =k, 5> t)

t=0

= EPH(Xt-H =k, S > t) because Py(Xs=k)= Py(Xo=F)

t=0

= Zzpﬂ(Xt :]75 > t7Xt+1 = k)
t=0 7

= ZZ Py(Xy= 37,5 >1) pjr by the Markov property
t=0 7

= 2. PiPik
J

O

2.2 Mean hitting time and related formulas

The following series of formulas arise from particular choices of 7 and 5 in
Proposition 3. For ease of later reference, we state them all together before
starting the proofs. Some involve the quantity

Zi=3 (00 - x) (6)

t=0



In the periodic case the sum may oscillate, so we use the Cesaro limit or
(equivalently, but more simply) the continuous-time limit (9). The matrix Z
is called the fundamental matriz (see Notes for alternate standardizations).
Note that from the definition

Z Z;; = 0 for all 4. (7)

j
Lemma 5 EiTZ'+ =1/m;.
Lemma 6
E;(number of visits to j before time 1) = 7; /7.
Lemma 7 For j # 1,
FE;(number of visits to j before time T;) = m;(E;T; + E;T;).
Corollary 8 Forj # 1,

1
7TZ'(EZ'T]‘ + E]‘TZ') '

P(T; <T7F) =
Lemma 9 Fori # | and arbitrary j,
E;(number of visits to j before time T;) = m;(E£; T + E/T; — E/T;).

Corollary 10 Fori#1 and j # 1,

mn<szﬂLﬁ%£Mh
Lemma 11 w, FE,. T, = Z;.

Lemma 12 n; BT, = Z;; — Z;;.

Corollary 13 >, 7 E;T; = >, Z;; for each 1.

Corollary 14 (The random target lemma) 3, 7; E;T; does not depend
on t.

Lemma 15

-
E.(number of visits to j before time T;) = =L Z;; — Z;;.
m;



Lemmas 11 and 12, which will be used frequently throughout the book,
will both be referred to as the mean hitting time formula. See the Remark
following the proofs for a two-line heuristic derivation of Lemma 12. A
consequence of the mean hitting time formula is that knowing the matrix
Z is equivalent to knowing the matrix (£;7;), since we can recover Z;; as
;(E.T; — ET;).

Proofs. The simplest choice of § in Proposition 3 is of course the first
return time TZ-+. With this choice, the Proposition says

E;(number of visits to j before time T:*) = m; E;T:F.

Setting j = ¢ gives 1 = 7I'Z'EZ'T;_, which is Lemma 5, and then the case of
general j gives Lemma 6.

Another choice of S is “the first return to ¢ after the first visit to j”.
Then E;S = E;T; + E;T; and the Proposition becomes Lemma 7, because
there are no visits to j before time 7. For the chain started at ¢, the number
of visits to i (including time 0) before hitting j has geometric distribution,
and so

E;(number of visits to i before time T;) = 1/ P;(T; < T).

So Corollary 8 follows from Lemma 7 (with ¢ and j interchanged).
Another choice of § is “the first return to ¢ after the first visit to j after
the first visit to [”, where 7, j,[ are distinct. The Proposition says

(BT + ET; + E;T;) = E;(number of visits to j before time 77)

+ £ ;(number of visits to j before time 7}).

Lemma 7 gives an expression for the final expectation, and we deduce that
(for distinct 4, 7,1)

E;(number of visits to j before time 1) = =;(£;1; + E/T; — E/T5).

This is the assertion of Lemma 9, and the identity remains true if 7 = ¢
(where it becomes Lemma 7) or if j = [ (where it reduces to 0 = 0). We
deduce Corollary 10 by writing

FE;(number of visits to j before time T}) =

P(T; < T1)E;(number of visits to j before time 77)



and using Lemma 7 to evaluate the final expectation.
We now get slightly more ingenious. Fix a time ¢y > 1 and define 5 as
the time taken by the following 2-stage procedure (for the chain started at
(i) wait time %
(ii) then wait (if necessary) until the chain next hits 7.
Then the Proposition (with 7 = 7) says

to—1

S = milto + B,T)) (8)
t=0

where p(-) = P;(X¢, = -). Rearranging,

to—1

Z(pgf) — 71'2') = ﬂiEpTZ'.

t=0

Letting ¢ — oo we have p — 7 by the convergence theorem (strictly,
we should give a separate argument for the periodic case, but it’s simpler
to translate the argument to continuous time where the periodicity issue
doesn’t arise) and we obtain Lemma 11.

For Lemma 12, where we may take j # ¢, we combine the previous
ideas. Again fix ¢g and define S as the time taken by the following 3-stage
procedure (for the chain started at 7).

(i) wait until the chain hits k.

(ii) then wait a further time #,.

(iii) then wait (if necessary) until the chain next hits 3.

Applying Proposition 3 with this .5 and with j = ¢ gives

to—1
Ei(number of visits to ¢ before time T%) + Z pgfi) = m(ETe + to + E,T5),
t=0

where p(-) = Py(Xt, = -). Subtracting the equality of Lemma 7 and rear-
ranging, we get

to—1
ST — m) = (BT - ELT).
t=0

Letting tg — oo, we have (as above) p — 7, giving

Z;m' = Wi(EwTZ’ — EkTZ’).



Appealing to Lemma 11 we get Lemma 12. Corollary 13 follows from Lemma
12 by using (7).

To prove Lemma 15, consider again the argument for (8), but now apply
the Proposition with j # ¢. This gives

to—1
Z pl(»;-) + E,(number of visits to j before time T;) = 7;(to + £,1})
=0

where p(-) = P;(Xy, = -). Rearranging,

to—1
Z (pl(»;) — m;) + E,(number of visits to j before time 1;) = 7; £,T;.
t=0

Letting to — oo gives
Z;; + Er(number of visits to j before time 7;) = 7; E;T;.

Applying Lemma 11 gives Lemma 15.
Remark. We promised a two-line heuristic derivation of the mean hitting
time formula, and here it is. Write

00 T;-1 00
(1(xt=]‘) - ”J') =2 (1<Xt=j) - ﬂj) + ] (1(Xt=j) - ﬂj) :
t=0 t=0 t=

<

Take F;(-) of each term to get Z;; = —n;E;T; + Z;;. Of course this argu-
ment doesn’t make sense because the sums do not converge. Implicit in our
(honest) proof is a justification of this argument by a limiting procedure.

Example 16 Patterns in coin-tossing.

This is a classical example for which Z is easy to calculate. Fix n. Toss

a fair coin repeatedly, and let Xg, X1, Xo,... be the successive overlapping
n-tuples. For example (with n = 4)

tosses H T H H T T

Xo= H T H H

Xy = T H H'T

Xg = H H T T

So X is a Markov chain on the set I = {H,T}" of n-tuples i = (i1,...,1%,),
and the stationary distribution 7 is uniform on I. For 0 < d < n — 1 write

10



1(7,j,d) for the indicator of the set “pattern j, shifted right by d places,
agrees with pattern ¢ where they overlap”: formally, of the set

ju:iu—}—dy 1§u§n_d

For example, with n =4, = HHTH and j = HTHH,
d 01 2 3
I(i,7,d) 0 1 0 1

Then write

n—1
e(i,j) =y 27"1(i,j,d).
d=0

From the definition of Z, and the fact that Xy and X; are independent for
t>n,
Zi; = c(i,j)—n27".

So we can read off many facts about patterns in coin-tossing from the general
results of this section. For instance, the mean hitting time formula ( Lemma
11) says FE,T; = 2"¢(t,1) — n. Note that “time 0” for the chain is the n’th
toss, at which point the chain is in its stationary distribution. So the mean
number of tosses until first seeing pattern ¢ equals 2"¢(%,%). For n = 5 and
t = HHTHH, the reader may check this mean number is 38. We leave
the interested reader to explore further — in particular, find three patterns
1,7,k such that

P(pattern i occurs before pattern j) > 1/2

P(pattern j occurs before pattern k) > 1/2
P(pattern k occurs before pattern i) > 1/2.

Further results. Omne can of course obtain expressions in the spirit of
Lemmas 5-15 for more complicated quantities. The reader may care to find

expressions for
E; min(Ty,T7)

Fi(number of visits to j before time min(7%,77))
P;(hit 7 before time min(T}, 17)).

Warning. Hitting times T4 on subsets will be studied later (e.g. Chapter
3 section 5.3) (yyy 9/2/94 version) in the reversible setting. It is important

11



to note that results often do not extend simply from singletons to subsets.
For instance, one might guess that Lemma 11 could be extended to

o0

Z
E.Ta= 2240 7,4 := S (Po(X; € A|Xq € A) — n(A)),
T(A) P

but it is easy to make examples where this is false.

2.3 Continuous-time versions

Here we record the continuous-time versions of the results of the previous
section. Write

Ziy = [ (PXe= )= mpdt (9)

This is consistent with (6) in that Z is the same for a discrete-time chain
and its continuized chain. Recall from section 1.2 the redefinition (b) of
TZ»+ in continuous time. In place of “number of visits to 7" we use “total
duration of time spent in ¢”. With this substitution, Proposition 3 and the
other results of the previous section extend to continuous time with only the
following changes, which occur because the mean sojourn time in a state ¢

is 1/¢; in continuous time, rather than 1 as in discrete time.
Lemma 5. EZ'TZ»+ =1

qiTy

Lemma 6.
T
E;(duration of time spent in j before time T7") = —.
T
Corollary 8. For j # 1,

1
ami( BT + E;T;)

P(T; <Tj) =

3 Variances of sums

In discrete time, consider the number N;(t) of visits to state ¢ before time ¢.
(Recall our convention is to count a visit at time 0 but not at time ¢.) For
the stationary chain, we have (trivially)

EWIVZ'(t) = i{m;.

12



It’s not hard to calculate the variance:
t—11—1

var . N;(t) = Z Z(PW(XT =i, X, =1i)— 7))

r=0s=0
t—1

= (Z 20t — u)(p™ — m) — (1 — m))
u=0

setting u = |s — r|. This leads to the asymptotic result

var »N;(t)
t
The fundamental matrix Z of (6) reappears in an apparently different con-
text. Here is the more general result underlying (10). Take arbitrary func-
tions f: 1 — R and g : [ — R and center so that £, f(X¢) := >, 7 f(i) =0
and Erg(Xo) = 0. Write

— 71'2'(2Z”' -1+ ’/'TZ'). (10)

=1
Stf = Z f(Xs)
s=0
and similarly for S7. Then

t—1¢-1

EwSthf = ZZ]C(Z)Q(])ZZ(PW(XT =1, X = J) - 7ri7r]‘).

r=0s=0

The contribution to the latter double sum from terms r < s equals, putting

U=s8—r,
t—1

T Z(t — u)(pff) — ’/T]‘) ~ tﬂ'iZZ'J'.

u=0
Collecting the other term and subtracting the twice-counted diagonal leads
to the following result.

fqg
% — fTg:= ZZf(z’)ng(j) (11)

where I' is the symmetric positive-definite matrix
Uy i=mZy + m; 25 + mimj — w65 (12)
As often happens, the formulas simplify in continuous time. The asymp-
totic result (10) becomes
var »N;(t)

13



and the matrix I' occurring in (11) becomes
Fij = WiZij + 7I'J‘Z]‘Z'.

Of course these asymptotic variances appear in the central limit theorem
for Markov chains.

Theorem 17 For centered f,
1267 LA Normal(0, fI'f) as t — oo.

The standard proofs (e.g. [6] p. 378) don’t yield any useful finite-time
results, so we won’t present a proof. We return to this subject in Chapter
4 section 4.1 (yyy 10/11/94 version) in the context of reversible chains.
In that context, getting finite-time bounds on the approximation (10) for
variances is not hard, but getting informative finite-time bounds on the
Normal approximation remains quite hard.

Remark. Here’s another way of seeing why asymptotic variances should
relate (via Z) to mean hitting times. Regard N;(¢) as counts in a renewal
process; in the central limit theorem for renewal counts ([6] Exercise 2.4.13)
the variance involves the variance var ;(T;") of the inter-renewal time, and
by (22) below this in turn relates to F,.T;.

4 Two metrics on distributions

A major theme of this book is quantifying the convergence theorem (The-
orem 2) to give estimates of how close the distribution of a chain is to the
stationary distribution at finite times. Such quantifications require some
explicit choice of “distance” between distributions, and two of the simplest
choices are explained in this section. We illustrate with a trivial

Example 18 Rain or shine?

Suppose the true probability of rain tomorrow is 80% whereas we think
the probability is 70%. How far off are we? In other words, what is the
“distance” between 7 and 6, where

m(rain) = 0.8, 7(shine) = 0.2
f(rain) = 0.7, #(shine) = 0.3.

Different notions of distance will give different numerical answers. Our first
notion abstracts the idea that the “additive error” in this example is 0.8 —
0.7=0.1.

14



4.1 Variation distance

Perhaps the simplest notion of distance between probability distributions is
variation distance, defined as

|61 — Bs]| = max 161(A) — 2(A)].

So variation distance is just the maximum additive error one can make,
in using the “wrong” distribution to evaluate the probability of an event.
In example 18, variation distance is 0.1. Several equivalent definitions are
provided by

Lemma 19 For probability distributions 61,6y on a finite state space I,

%Z|01(i)—02(z’)| = D (6i() = b5(i)T

k3

= > (01(i) — B2(i))”

- 1_ Zmin(01(i), 65(1))
— 1}3}1( |01(A) — 62(A)
= min P(V; # V3)

the minimum taken over random pairs (V1, V) such that V,, has distribution
0, (m = 1,2). So each of these quantities equals the variation distance

|61 — 62

Proof. The first three equalities are clear. For the fourth, set B = {i :

61(i) > 02(¢)}. Then
01(A) = 65(A)

> _(B1(i) = 02(i))

€A

<Y (61(8) — 6a(d)
1€ANB

<D (0i(i) — 6a(i))
1€B

= > _(6:(i) = 62(i))*

k3

with equality when A = B. This, and the symmetric form, establish the
fourth equality. In the final equality, the “<” follows from

|01(A) — 0:(A)| = |P(Vh1 € A) — P(Vy € A)| < P(Va #Vq).

15



And equality is attained by the following joint distribution. Let 6(i) =
min(#1(z),02(7)) and let

P(Vi =i,Vy = i) = 6(i)

: o (61(8) — 6(3)(82(5) — 6(5))
P VA = =
(‘1 27V2 .7) 1_Ek0(k)
(If the denominator is zero, then #; = 6, and the result is trivial.) O
In the context of Markov chains we may use

, EF ]

di(t) == [|Pi(Xy = ) — = (-)] (13)

as a measure of deviation from stationarity at time ¢, for the chain started
at state 1. Also define
d(t) := max d;(t) (14)
k3

as the worst-case deviation from stationarity. Finally, it is technically con-
venient to introduce also

d(t) = max || PA(Xe = ) = (X, = ). (15)

In Chapter 4 we discuss, for reversible chains, relations between these “vari-
ation distance” notions and other measures of closeness-to-stationarity, and
discuss parameters 7 measuring “time until d(¢) becomes small” and their
relation to other parameters of the chain. For now, let’s just introduce a
fundamental technical fact, the submultiplicativity property.

Lemma 20

(a) d(s+1t) < d(s)d(t), s,t > 0 [the submultiplicativity property].
(b) d(s+1) < 2d(s)d(t), s,t >0 .

(c) d(t) < d(t) < 2d(t), 1 > 0.

(d) d(t) and d(t) decrease as t increases.

Proof. We use the characterization of variation distance as
||01 — 02” = min P(V1 7£ ‘/2), (16)

the minimum taken over random pairs (V7, V3) such that V,,, has distribution
0, (m=1,2).

16



Pix states i1, i3 and times s, ¢, and let Y', Y2 denote the chains started at
i1, 1o respectively. By (16) we can construct a joint distribution for (Y, Y2)
such that

P(Y, #£Y7)

1P (X =) = Pip (X = )|
d(s).

IN

Now for each pair (j1,j2), we can use (16) to construct a joint distribution
for (Y, ,, Y2,) given (V! = j1,Y? = j3) with the property that

( s+t #Y, +t|Y1 _317Y2 =J2) = ||P] (Xt =")— Jz(Xt -

The right side is 0 if j; = jo, and otherwise is at most d(t). So uncondition-
ally

PV # Vi) < d(s)d(t)
and (16) establishes part (a) of the lemma. For part (b), the same argument
(with Y2 now being the stationary chain) shows

d(s+1) < d(s)d(t) (17)

so that (b) will follow from the upper bound d(t) < 2d(t) in (c). But this
upper bound is clear from the triangle inequality for variation distance. And
the lower bound in (c) follows from the fact that y — [|# — p|| is a convex
function, so that averaging over j with respect to 7 in (15) can only decrease
distance. Finally, the “decreasing” property for d(t) follows from (a), and
for d(t) follows from (17). O

The assertions of this section hold in either discrete or continuous time.
But note that the numerical value of d(¢) changes when we switch from a
discrete-time chain to the continuized chain. In particular, for a discrete-
time chain with period ¢ we have d(t) — (¢—1)/q as t — oo (which incidently
implies, taking ¢ = 2, that the factor 2 in Lemma 20(b) cannot be reduced)
whereas for the continuized chain d(t) — 0.

One often sees slightly disguised corollaries of the submultiplicativity
property in the literature. The following is a typical one.

Corollary 21 Suppose there exists a probability measure p, a real 6 > 0
and a time t such that
pg) > opj Vi, J.
Then
d(s) < (1 =8l s >0,
Proof. The hypothesis implies d(¢) < 1 — ¢, by the third equality in Lemma
19, and then the conclusion follows by submultiplicativity.
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4.2 [? distance

Another notion of distance, which is less intuitively natural but often more
mathematically tractable, is L? distance. This is defined with respect to
some fixed reference probability distribution 7 on I, which for our purposes
will be the stationary distribution of some irreducible chain under consider-
ation (and so m; > 0 Vi). The L? norm of a function f : I — R is

fll2 =, [> maf?(5). (18)

k3

We define the L? norm of a signed measure v on I by

Wz = |3 v2/m (19)

This may look confusing, because a signed measure v and a function f are
in a sense “the same thing”, being determined by values (f(7);i € I) or
(vi;t € I) which can be chosen arbitrarily. But the measure v can also be
determined by its density function f(:) = v;/7;, and so (18) and (19) say
that the L? norm of a signed measure is defined to be the L? norm of its
density function.

So [|6 — ul|2 is the “L?” measure of distance between probability dis-
tributions @, . In particular, the distance between # and the reference
distribution 7 is

0; — ;) 0;
p-rll= YOI sy

- e
i 7

In Example 18 we find ||6 — 7||; = 1/4.

Writing 6(t) for the distribution at time ¢ of a chain with stationary
distribution 7, it is true (cf. Lemma 20(d) for variation distance) that ||6(¢)—
7||2 is decreasing with ¢. Since there is a more instructive proof in the
reversible case (Chapter 3 Lemma 23) (yyy 9/2/94 version) we won’t prove
the general case (see Notes).

Analogous to the L? norms are the L' norms

11l = Y mil 7))
Wl = 3 Il

k3
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The Cauchy-Schwarz inequality gives || - ||t < || - ||2. Note that in the

definition of ||v||; the reference measure 7 has “cancelled out”. Lemma 19
shows that for probability measures 6,6, the L' distance is the same as
variation distance, up to a factor of 2:

161 — Ba]| = 5161 — 62]]1.
As a trivial example in the Markov chain setting, consider

Example 22 Take I = {0,1,...,n — 1}, fix a parameter 0 < a < 1 and
define a transition matriz

1—a

Dij = al(j:'H-I mod n) + n

In this example the ¢-step transition probabilities are

¢ 1-— (Zt
pgj) = atl(j:i—}—t mod n) +

n
and the stationary distribution 7 is uniform. We calculate (for arbitrary

J#1)

d(t) = ||P(Xs € ) — Pj(Xt €)= at
[|Pi(X: €)=z =(n— 1)1/2at.

dt) = ||P(Xi € ) =7l = (1= n7")a'

4.3 Exponential tails of hitting times

The submultiplicative property of d(?) is one instance of a general principle:

because our state space is finite, many quantities which converge
to zero as t — oo must converge exponentially fast, by iterating
over worst-case initial states.

Here’s another instance, tails of hitting time distributions.
Consider the first hitting time 7’4 on a subset A. Define % := max; £;T4.
For any initial distribution g, any time s > 0 and any integer m > 1,

Py(T4 > s) for some dist.
max P;(T4 > s)

/s

P,(Ty > ms|Ty > (m—1)s)

IN

IN



So by induction on m
Py(Ta > js) < (th/s)’
implying
PATy > 1) < (B9, 1> 0.

In continuous time, a good (asymptotically optimal) choice of s is s = et?,
giving the exponential tail bound

t
sup P,(T4 > 1) < exp (— \‘ .
M etA

J),O<t<oo. (20)

A messier bound holds in discrete time, where we have to choose s to be an
integer.

5 Distributional identities

It is much harder to get useful information about distributions (rather than
mere expectations). Here are a few general results.

5.1 Stationarity consequences

A few useful facts about stationary Markov chains are, to experts, just spe-
cializations of facts about arbitrary (i.e. not-necessarily-Markov) stationary
processes. Here we give a bare-hands proof of one such fact, the relation
between the distribution of return time to a subset A and the distribution
of first hitting time to A from a stationary start. We start in discrete time.

Lemma 23 Fort=1,2,...,
Po(Ta=t-1)=P(Tf =t)=n(A)P,
where m4(1) := m;/7(A), 1 € A.

Proof. The first equality is obvious. Now let (X;) be the chain started with
its stationary distribution 7. Then

P(Tf=1) = P(X1¢€A,....X;1¢ A, X, €A)
= P(X e Xe 1 A - P(X1 g AL X g A)
P(X, ¢ G Xi 1 @A) —P(Xod A, X1 g A)

P(Xo € n X1 A X;1d A)
= m(A)P (TT > 1),

20



establishing the Lemma.
We’ll give two consequences of Lemma 23. Summing over ¢ gives

Corollary 24 (Kac’s formula) 7(A)E,, T =1

which extends the familiar fact Ein = 1/m;. Multiplying the identity of
Lemma 23 by ¢ and summing gives

ETqa4+1 = > tP, (Ta=t-1)

t>1
= R AP (T 2 1)
t>1
1
= 7(A) Z §m(m + )P, (TS =m)
m>1
m(4)
= 9 (EWATX + EWA(TX)Z) :
Appealing to Kac’s formula and rearranging,
2F, T4+ 1
E. (Tf)? = —/—~— 21
A( A) ’/T(A) ’ ( )
2E, T4+ 1 1
(T = - : 22
varz,, (1) T(A) 72(A) (22)
More generally, there is a relation between E, (T1)? and E.(T7])P~1.
In continuous time, the analog of Lemma 23 is
P (Tye(t,t+dt))=Q(A,A)P,, (T4 > t)dt, t >0 (23)
where
Q(A7AC) = Z Z Qij, PA(]) = ZqZ]/Q(A,AC),] € A%
1€A jEAC €A
Integrating over ¢t > 0 gives the analog of Kac’s formula
QA AE, T4 = m(A°). (24)

5.2 A generating function identity

Transform methods are useful in analyzing special examples, though that
is not the main focus of this book. We record below just the simplest
“transform fact”. We work in discrete time and use generating functions
— the corresponding result in continuous time can be stated using Laplace
transforms.
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Lemma 25 Define

Then Fi; = Gi;]Gj;.

Analysis proof. Conditioning on T gives

p” EP p]] )

and so

PIRIEED DD DI EIE

t>0 [>0t-1>0

Thus Gy;(z) = Fi;(2)G;;(z), and the lemma follows. O
Probability proof. Let ( have geometric(z) law P({ > t) = 2!, indepen-
dent of the chain. Then

Gij(z) = FE;y(number of visits to j before time ()
= P(T; < ¢) Ej(number of visits to j before time ()
= Fij(2)G(2)-
O

Note that, differentiating term by term,

EiTj = %FM(Z)‘

=1

This and Lemma 25 can be used to give an alternative derivation of the
mean hitting time formula, Lemma 12.

5.3 Distributions and continuization

The distribution at time ¢ of the continuization X of a discrete-time chain X
is most simply viewed as a Poisson mixture of the distributions (X;). That

is, X’t 4 Xy, where N; has Poisson(?) distribution independent of X. At
greater length,
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This holds because we can construct X from X by replacing the determin-
istic “time 1” holds by random, exponential(1), holds (£;) between jumps,
and then the number N; of jumps before time ¢ has Poisson(¢) distribution.
Now write S, = 3771 ; for the time of the n’th jump. Then the hitting

time TA for the continuized chain is related to the hitting time T4 of the
discrete-time chain by 74 = St,. Though these two hitting time distribu-
tions are different, their expectations are the same, and their variances are
related in a simple way. To see this, the conditional distribution of 74 given
Ty is the distribution of the sum of T4 independent £’s, so (using the notion
of conditional expectation given a random variable)

E(T4|Ty) = Ty, var (T4|T4) = Th.
Thus (for any initial distribution)
ETy = EE(T4|Ts) = ET,.
And the conditional variance formula ([6] p. 198)
var Z = E var (Z|Y) 4 var E(Z]Y)
tells us that

var T4 = Evar (TA|TA) + var E(TA|TA)
= ET4+ var T4. (25)

6 Matthews’ method for cover times

Theorem 26 below is the only non-classical result in this Chapter. We make
extensive use of this Matthews’ method in Chapter 6 to analyze cover times
for random walks on graphs.

Consider the cover time C' := max; T; of the chain, i.e. the time required
to visit every state. How can we bound F;C in terms of the mean hitting
times E;T;? To appreciate the cleverness of Theorem 26 let us first consider
a more routine argument. Write t* := max; ; £;T;. Since F;C is unaffected
by continuization, we may work in continuous time. By (20)

Pi(T; > ket*) < e k=1,2,3,....
By Boole’s inequality, for an n-state chain

Pi(C > ket™) < ne ® k=1,2,3,....
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One can rewrite this successively as

P; (Q > x)
et*

C
P, <? — log(en) > x) < €% 0<2<o00.
e

ne-e ¥, 0<zr<o

IN

C
et*

smaller that the exponential(1) distribution, implying £; (e% — log(en)) <

In words, this says that the distribution of — log(en) is stochastically

1 and hence
max F;C < (24 logn)et™.

This argument does lead to a bound, but one suspects the factors 2 and e
are artifacts of the proof; also, it seems hard to obtain a lower bound this
way. The following result both “cleans up” the upper bound and gives a
lower bound.

Theorem 26 (Matthews [20]) For any n-state Markov chain,

max £,C < h,_1 max E;T;
v 27]

min £,C > h,_1 n;én ET;
v i#]

where h,_q = YL %

Proof. We’'ll prove the lower bound — the upper bound proof is identi-
cal. Let Jy,J3,...,J, be a uniform random ordering of the states, inde-
pendent of the chain. Define €, := max;<,, Tj; to be the time until all of
{J1,J2,...,Jm} have been visited, in some order. The key identity is

E(Cm - m—1|J17---7Jm;Xt7t < Cm—l) = t(Lm—lajm)l(Lm:Jm) (26)
where (7, j) := E;T; and
L,, is the state amongst {Jy, Ja,. .., J,, } hit last.

To understand what this says, suppose we are told which are the states
{J1,J2,...,Jn} and told the path of the chain up through time C,,_;. Then
we know whether or not L,, = J,,: if not, then C,, = C,,_1, and if so, then
the conditional distribution of (', — C,,_1 is the distribution of the time to
hit .J,, from the state at time C,,_1, which we are told is state L,,_1.
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Writing t. := ming; ¢(7,j), the right side of (26) is > .11, 7,,), and
so taking expectations

E(Cp—Chn1) 2 tP(Ly = Jn).
But obviously P(L,, = J.,,) = 1/m by symmetry. So
n n 1
EUC = EUCI + Ev(cm - Cm—l) > EUCI + 1, .

Allowing for the possibility J; = v we see F,C; > (1 — %)t*, and the lower
bound follows.

7 New chains from old

Consider a chain (X¢) on state-space I, and fix A C I. There are many dif-
ferent constructions of new chains whose state space is (exactly or roughly)
just A, and it’s important not to confuse them. Three elementary con-
structions are described here. Anticipating the definition of reversible from
Chapter 3, it is easy to check that if the original chain is reversible then
each new chain is reversible.

7.1 The chain watched only on A
This is the chain (V),) defined by
So=T4s=min{t >0: X; € A}
Syp =min{t > 5,1 : X; € A}
Y, = Xs, .

The chain (Y,,) has state space A and transition matrix

PA(%]) = Pi(XTA = ])7 27.7 € A

From the ergodic theorem (Theorem 1) it is clear that the stationary distri-
bution 74 of (V) is just 7 conditioned on A, that is

ma(t) = mi/7(A), 1 € A, (27)
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7.2 The chain restricted to A

This is the chain with state space A and transition matrix P4 defined by

Pa(iyi) = 1—= Y P(i,j), i€ A
JEA,j#4

In general there is little connection between this chain and the original chain
(X¢), and in general it is not true that the stationary distribution is given
by (27). However, when the original chain is reversible, it is easy to check
that the restricted chain does have the stationary distribution (27).

7.3 The collapsed chain

This chain has state space I* = AU{a} where a is a new state. We interpret
the new chain as “the original chain with states A¢ collapsed to a single
state a”. Warning. In later applications we switch the roles of A and A°,
i.e. we collapse A to a single state a and use the collapsed chain on states
I" = A°U{a}. The collapsed chain has transition matrix

p?a = Z Pik, 1€ A
keAC

Pai = ! > Trpri, 1€ A

- 3]
. T(A°) S
1

Paa = S mrpm

m(A°) e igae

The collapsed chain has stationary distribution 7* given by

T =mi,1 € Ay w, = w(A°).

a

Obviously the P-chain started at 7+ and run until T4c is the same as the
P*-chain started at ¢ and run until 7,. This leads to the general collapsing
principle

To prove a result which involves the behavior of the chain only
up to time T 4c, we may assume A° is a singleton.
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For we may apply the singleton result to the P*-chain run until time 7},
and the same result will hold for the P-chain run until time 74.

It is important to realize that typically (even for reversible chains) all
three constructions give different processes. Loosely, the chain restricted to
A “rebounds off the boundary of A¢ where the boundary is hit”, the collapsed
chain “exits A° at a random place independent of the hitting place”, and
the chain watched only on A “rebounds at a random place dependent on the
hitting place”.

8 Miscellaneous methods

8.1 Martingale methods

Modern probabilists regard the martingale optional stopping theorem as
one of the most important results in their subject. As propaganda for mar-
tingales we give below four quick applications of that theorem, and a few
more will appear later. All of these results could be proved in alternative,
elementary ways. For the reader unfamiliar with martingales, Durrett [6]
Chapter 4 contains much more than you need to know: Karlin and Taylor
[14] Chapter 6 is a gentler introduction.

Lemma 27 Given a non-empty subset A C I and a function f(i) defined
for i € A, there exists a unique extension of f to all I satisfying

1) = Yo pif (), i € A

Proof. If f satisfies the equations above then for any initial distribution the
process M; := f(Xmin(t,TA)) is a martingale. So by the optional stopping
theorem

f(i) = E;f(Xr,) for all ¢. (28)

This establishes uniqueness. Conversely, if we define f by (28) then the
desired equations hold by conditioning on the first step.

Corollary 28 Ifh is harmonic, i.e. if

h(i) = Zpijh(j) for all i

J

then h is constant.
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Proof. Clearly a constant function is harmonic. So the Corollary follows
from the uniqueness assertion of Lemma 27, taking A to be some singleton.

Lemma 29 (The random target lemma) The sum ; E;T;7; does not
depend on 1.

Proof. This repeats Corollary 14 with a different argument. The first-step
recurrence for g;(¢) := E;1} is

9i(1) = Vanp) + Lazg) > picgi (k).
k

By Corollary 28 it is enough to show that A(7) := 3, 7;¢;(?) is a harmonic
function. We calculate

h(l) 1—m+ Zﬂ'jpikgj(k)l(i;éj)
ik

1—m+ Y pi(h(k) — m;gi(k)) by definition of h(k)
k

Zpikh(k) +1—m (1 + szkgz(k)) .
k k

But 1/7; = Ez'T{I_ =14 31 pikgi(k), so h is indeed harmonic.
Lemma 30 For any stopping time S and any states t, 7, k,
Ei(number of transitions j — k starting before time ')
= p;rLi(number of visits to j before time §).

Proof. Recall that “before” means strictly before. The assertion of the
lemma is intuitively obvious, because each time the chain visits j it has
chance p;;, to make a transition 7 — k, and one can formalize this as in the
proof of Proposition 4. A more sophisticated proof is to observe that M (¢)
is a martingale, where

M(t) := Njp(t) — pjxN;(2).
N;(t) := number of visits to j before time ¢

N;i(t) :== number of transitions j — k starting before time ¢ .

And the assertion of the lemma is just the optional stopping theorem applied
to the martingale M and the stopping time §.
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Lemma 31 Let A be a non-empty subset of I and let h : I — R satisfy
(i) h(i) >0, i € A

(ii) h(i) > 1+ 32, pijh(f), i € A°.

Then E; T4 < h(l), 1€ 1.

Proof. For arbitrary h, define g by
h(i) =1+ pi;h(5) + g(i)
J

and then define ;
t_

My =1+ h(Xe)+ Y g(Xy).

s=0

Then Myin(,T,) is @ martingale, so the optional sampling theorem says
EﬂwTA = F;Mgy = h(@)

But the hypotheses on £ imply M, > T4.

8.2 A comparison argument

A theme running throughout the book is the idea of getting inequalities for
a “hard” chain by making a comparison with some “easier” chain for which
we can do exact calculations. Here is a simple example.

Lemma 32 Let X be a discrete-time chain on states {0,1,2,...,n} such
that p;; = 0 whenever j > i. Write m(i) = 1 — EXl, and suppose 0 <

m(1) <m(2) <...<m(n). Then E, Ty < 377 lm Wik

Proof. The proof implicitly compares the given chain to the continuous-time
chain with ¢; ;1 = m(i). Write A(7) = 3°%_; 1/m(j), and extend h by linear
interpolation to real 0 < z < n. Then A is concave and for z > 1

E;h(X1) < h(F;Xy) by concavity
= h(i—m(7))
< h(i) - m(z) '(1) by concavity
= hi) -

where A’ is the left derivative. The result now follows from Lemma 31.
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8.3 Wald equations

As mentioned previously, the results above don’t really require martingales.
Next we record a genuine martingale result, not directly involving Markov
chains but ultimately useful in their analysis. Part (c¢) is Wald’s equation
and part (b) is Wald’s equation for martingales. The result is a standard
consequence of the optional sampling theorem: see [6] (3.1.6) for (c¢) and [6]
Theorem 4.7.5 for (a).

Lemma 33 (a) Let 0 =Yy, <Y; <Y3... be such that
E(Yiq1 = YilY;,5<i)<e, 020
for a constant c¢. Then for any stopping time T,
EYr < cET.

(b) If in the hypothesis we replace “< ¢” by “= ¢”, then EYr = cET.
(c) In particular, if Y, = > ", & for i.i.d. nonnegative (§;) then EYr =

9 Notes on Chapter 2.

Textbooks on Markov chains.

It is easy to write books on .. .or finite Markov chains, or on any
of the other well-understood topics for which no further exposi-
tions are needed. G.-C. Rota

Your search for the Subject: MARKOV PROCESSES
retrieved 273 records. U.C. Berkeley Library book catalog,
September 1999.

Almost every introductory textbook on stochastic processes has a chapter
or two about Markov chains: among the best are Karlin-Taylor [14, 15],
Grimmett-Stirzaker [8] and, slightly more advanced, Asmussen [3]. In ad-
dition to Norris [23] there are several other undergraduate-level textbooks
entirely or mostly devoted to Markov chains: Adke-Manjanuth [1], Hunter
[9], losifescu [10], Isaacson-Madsen [11], Kemeny-Snell [17], Romanovsky
[26]. At the graduate level, Durrett [6] has a concise chapter on the mod-
ern approach to the basic limit theory. Several more advanced texts which
overlap our material were mentioned in Chapter 1 section 2.3 (yyy 7/20/99
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version ); other texts are Freedman [7], Anderson [2], and the treatize of Syski
[30] on hitting times. Most textbooks leave an exaggerated impression of
the difference between discrete- and continuous-time chains.

Section 1.2. Continuized is an ugly neologism, but no-one has collected
my $5 prize for suggesting a better name!

Section 2. Elementary matrix treatments of results like those in section
2.2 for finite state space can be found in [9, 17]. On more general spaces,
this is part of recurrent potential theory: see [5, 18] for the countable-state
setting and Revuz [25] for continuous space. Our treatment, somewhat novel
at the textbook level, Pitman [24] studied occupation measure identities
more general than thos in section 2.1 and their applications to hitting time
formulas, and we follow his approach in section MHTF. We are being slightly
dishonest in treating Lemmas 5 and 6 this way, because these facts figure in
the “right” proof of the ergodic theorems we use. We made a special effort
not to abbreviate “number of visits to j before time $” as N;(.5), which
forces the reader to decode formulas.

Kemeny and Snell [17] call Z41I the fundamental matrix, and use (EZ'T;")
rather than (£;7;) as the matrix of mean hitting times. Our set-up seems
a little smoother — cf. Meyer [13] who calls Z the group inverse of I — P.

The name “random target lemma” for Corollary 14 was coined by Lovasz
and Winkler [19]; the result itself is classical ([17] Theorem 4.4.10).

Open Problem 34 Portmanteau theorem for occupation times.

Can the results of section 2.2 be formulated as a single theorem? To explain
the goal by analogy, consider the use [12] of Feynman diagrams to calculate
quantities such as E(A*BC?) for dependent mean-zero Gaussian (A, B, C').
One rewrites the expectation as E[J0_, & for & = € =€ = A€y = B, & =
& = C, and then applies the formula

6
ET[&=>_v(M)
=1

M

where the sum is over matchings M = {{uy, v}, {ug, v2}, {us, v3}} of{1,2,3,4,5,6}

and where
3

v(M) = [ B(&w,,)-

i=1

By analogy, we seek a general rule which associates an expression like

FEi(number of visits to j before time min(7%,77))
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with a combinatorial structure involving {i,j, k,[}; then associates with
the combinatorial structure some function of variables {p,,zyw, v,w €
{i,7,k,1}}; then shows that the value of the expression applied to a finite
Markov chain equals the function of {7, Z,,,, v, w € {i,7,k,[}}.

Section 4.1. Corollary 21 and variants are the basis for the theory of
positive-recurrent chains on continuous spaces: see [6] section 5.6 and Meyn
and Tweedie [22].

Section 4.2. The fact that ||6(f) — ||z is decreasing is a special case
(H(u) = u?) of the following result (e.g. [16] Theorem 1.6).

Lemma 35 Let H : [0,00) — [0,00) be concave [convex]. Let 6(t) be the
distribution of an irreducible chain with stationary distribution ©. Then
i miH(8;(t)/7;) is increasing [decreasing].

Section 6. Matthews [20, 21] introduced his method (Theorem 26) to
study some highly symmetric walks (cf. Chapter 7) and to study some
continuous-space Brownian motion covering problems.

Section 7. A more sophisticated notion is “the chain conditioned never
to hit A”, which can be formalized using Perron-Frobenius theory.

Section 8.1. Applying the optional stopping theorem involves checking
side conditions (involving integrability of the martingale or the stopping
time), but these are trivially satisfied in our applications.

Numerical methods. In many applications of non-reversible chains, e.g.
to queueing-type processes, one must resort to numerical computations of
the stationary distribution: see Stewart [29]. We don’t discuss such issues
because in the reversible case we have conceptually simple expressions for
the stationary distribution,

Matriz methods. There is a curious dichotomy between textbooks on
Markov chains which use matrix theory almost everywhere and textbooks
which use matrix theory almost nowhere. Our style is close to the latter;
matrix formalism obscures more than it reveals. For our purposes, the one
piece of matrix theory which is really essential is the spectral decomposition
of reversible transition matrices in Chapter 3. Secondarily useful is the the-
ory surrounding the Perron-Frobenius theorem, quoted for reversible chains
in Chapter 3 section 6.5. (yyy 9/2/94 version)
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yyy move both subsections to Chapter 8 “A Second Look ...”.

10 Move to other chapters

10.1 Attaining distributions at stopping times

We quote a result, Theorem 36, which may look superficially like the iden-
tities in section 2.1 but which in fact is deeper, in that it cannot be proved
by mere matrix manipulations or by Proposition 3. The result goes back
to Baxter and Chacon [4] (and is implicit in Rost [28]) in the more general
continuous-space setting: a proof tailored to the finite state space case has
recently been given by Lovasz and Winkler [19].

Given distributions o, u, consider a stopping time T such that

Fo(X7 €)= p(-). (29)

Clearly, for any state j we have E,T; < E,T + E,T;, which rearranges to
E,T > E,T; — E,/T;. So if we define

t(o,u) = inf{E,T : T a stopping time satisfying (29)}

then we have shown that #(o, u) > max;(E,T; — E,T;). Surprisingly, this
inequality turns out to be an equality.

Theorem 36 t(o,u) = max;(E,T; — E,T;).

10.2 Differentiating stationary distributions

From the definition (6) of the fundamental matrix Z we can write, in matrix
notation,

I-P)Z=Z1-P)=1-1 (30)

where II is the matrix with (¢, j)-entry 7;. The matrix I—P is not invertible
but (30) expresses Z as a “generalized inverse” of I — P, and one can use
matrix methods to verify general identities in the spirit of section 2.1. See
e.g. [9, 17]. Here is a setting where such matrix methods work well.

Lemma 37 Suppose P (and hence © and Z) depend on a real parameter o,
and suppose R = %P exists. Then, at a such that P is irreducible,

%ﬂ =7RZ.
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Proof. Write n = %7& Differentiating the balance equations 7 = 7P gives
n =nP + 7R, in other words (I — P) = 7R. Right-multiply by Z to get

TRZ=nI-P)Z=n1-11)=n-nll

But nIl = 0 because }_; n; d (>, m)=0.

= da
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