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There are two main settings in which explicit calculations for random
walks on large graphs can be done. One is where the graph is essentially just
1-dimensional, and the other is where the graph is highly symmetric. The
main purpose of this chapter is to record some (mostly) bare-hands calcula-
tions for simple examples, in order to illuminate the general inequalities of
Chapter 4. Our focus is on natural examples, but there are a few artificial
examples devised to make a mathematical point. A second purpose is to set
out some theory for birth-and-death chains and for trees.

Lemma 1 below is useful in various simple examples, so let’s record it
here. An edge (v,z) of a graph is essential (or a bridge) if its removal
would disconnect the graph, into two components A(v,z) and A(z,v), say,
containing v and z respectively. Recall that £ is the set of (undirected)
edges, and write £(v, z) for the set of edges of A(v,z).

Lemma 1 (essential edge lemma) For random walk on a weighted graph
with essential edge (v, z),

2 Z(i,j)eg(v,z) Wij

E,T, = 1 1
o + (1)

w
ET.+ ET, = , wh = i 2
+ o where w XZ:ZJ: W (2)

Specializing to the unweighted case,
BT, = 28w, z)|+ 1 (3)
ET.+ ET, = 2|&. (4)



Proof. 1t is enough to prove (1), since (2) follows by adding the two
expressions of the form (1). Because (v,z) is essential, we may delete all
vertices of A(z,v) except z, and this does not affect the behavior of the
chain up until time 7}, because  must be the first visited vertex of A(z,v).
After this deletion, 7! = E, T} = 1+ E,T, by considering the first step
from z, and 7y = Wy, /(2wyy + 2 E(i,j)eg(u,z‘) w;;), giving (1). =

Remarks. Of course Lemma 1 is closely related to the edge-commute
inequality of Chapter 3 Lemma yyy. We can also regard (2), and hence (4),
as consequences of the commute interpretation of resistance (Chapter 3 yyy),
because the effective resistance across an essential edge (v, z) is obviously

1/ wyg

1 One-dimensional chains

1.1 Simple symmetric random walk on the integers

It is useful to record some elementary facts about simple symmetric random
walk (X) on the (infinite) set of all integers. As we shall observe, these may
be derived in several different ways.

A fundamental formula gives exit probabilities:

b—

P(T.<T)=-—2 a<b<e (5)
An elementary argument is that g(¢) = P;(T. < T,) satisfies the 1-step
recurrence

gi)=1g(i+ 1)+ 1g(i—1), a<i<b
g(a) =0, g(b) =1,

whose solution is g(i¢) = (¢ — a)/(b — a). At a more sophisticated level, (5)
is a martingale result. The quantity p = Py(7T. < T,) must satisfy

b=Ey X(Ty NT.) = pc+ (1 —p)a,

where the first equality is the optional sampling theorem for the martingale
X, and solving this equation gives (5).

For a < ¢, note that T, A T, is the “exit time” from the open interval
(a,c). We can use (5) to calculate the “exit before return” probability

P(TF >T,ANT.) = $P(T. <Ty)+ 5P-1(Ts < Tp)



cC—a

= e—bb-a) (6)

For the walk started at b, let m(b,z;a,c) be the mean number of visits to
z before the exit time T, A T.. (Recall from Chapter 2 our convention that
“before time ¢” includes time 0 but excludes time ¢). The number of returns
to b clearly has a Geometric distribution, so by (6)

m(b,b;a,c)zw, a<b<e. (7)

To get the analog for visits to # we consider whether or not z is hit at all
before exiting; this gives

m(b,z;a,¢)= Py(Ty, <T, NT.) m(z,z;a,c).

Appealing to (5) and (7) gives the famous mean occupation time formula

2(z—a)(c=b)

—— s, a<r<b<ec
m(b,z;a,¢c) = (8)
W? a<b<z<e.

Now the (random) time to exit must equal the sum of the (random)
times spent at each state. So, taking expectations,

C

Ey(T, ANT,) = Z m(b,z;a,c),

and after a little algebra we obtain
Lemma 2 Fy(T, ANT.)=(b—a)(c—b), a<b<c.

This derivation of Lemma 2 from (8) has the advantage of giving the mean
occupation time formula (8) on the way. There are two alternative ways

to prove Lemma 2. An elementary proof is to set up and solve the 1-step
recurrence for h(i) = E;(T, A T,):

hi)=14Fh(i+1)+ 3h(i—1), a<i<c



The more elegant proof uses a martingale argument. Taking b = 0 without
loss of generality, the first equality below is the optional sampling theorem
for the martingale (X2(¢) — t):

Eo(Ty AN TY)

EoX* (T, NT,)

= a2PO(Ta < Tc) + C2P0(Tc < Ta)

= 2 42 by (5)
cC—a cC—a

= —dac.

The preceding discussion works in discrete or continuous time. Exact
distributions at time ¢ will of course differ in the two cases. In discrete time
we appeal to the Binomial distribution for the number of 4+1 steps, to get

Po(Xyr =25) = %2_%7 —-1<j<t (9)

and a similar expression for odd times ¢. In continuous time, the numbers
of +1 and of —1 steps in time ¢ are independent Poisson(?) variables, so

0 t2i+]
Po(Xi=—j)=Po(Xy=j)=e > -, j > 0. 10
0( i ]) 0( 1 ]) € ZZO'L'(Z‘}'])"]_ ( )
1.2 Weighted linear graphs
Consider the n-vertex linear graph 0 —1 -2 — .- — (n — 1) with arbitrary
edge-weights (w1, ..., w,_1), where w; > 0 is the weight on edge (i — 1,7).

Set wg = w, = 0 to make some later formulas cleaner. The corresponding
discrete-time random walk has transition probabilities

Wip1 wy ;
Pii4l = ———, Pij-1 = ———, 0<i1<n-1
Wi + Wigq Wi + Wit
and stationary distribution
w; + wigq .
T = Ziﬁ, 0<i<n-1
w

where w = 23", w;. In probabilistic terminology, this is a birth-and-death
process, meaning that a transition cannot alter the state by more than 1.
It is elementary that such processes are automatically reversible (xxx spells
out the more general result for trees), so as discussed in Chapter 3 yyy



the set-up above with weighted graphs gives the general discrete-time birth-
and-death process with p; = 0. But note that the continuization does
not give the general continuous-time birth-and-death process, which has
2(n — 1) parameters (g;;—1,¢ ;+1) instead of just n — 1 parameters (w;).
The formulas below could all be extended to this general case (the analog
of Proposition 3 can be found in undergraduate textbooks, e.g., Karlin and
Taylor [9] Chapter 4) but our focus is on the simplifications which occur in
the “weighted graphs” case.

Proposition 3 (a) Fora <b< ¢,

b -1
BT, < T,) = Zizot1 Vi
Dimat1 W;
(b) Forb < c,
c J—1
EyT.=c—b+2 Z Zwiw;
j=b+1:=1
(c) Forb < c,

ET. 4+ ETy=w Y w'
1=b+1

Note that we can obtain an expression for E. T}, b < ¢, by reflecting the
weighted graph about its center.

Proof. These are extensions of (5,1,2) and recycle some of the previous
arguments. Writing h(j) = ] _, wi", we have that (h(X;)) is a martingale,
s0

h(b) = Eph(X(Ta ATe)) = ph(c) + (1 — p)h(a)
)=h(a

for p= Py(T. < T,). Solving this equation gives p = hEb) hE ; which is (a).

The mean hitting time formula (b) has four different proofs! Two that we
will not give are as described below Lemma 2: Set up and solve a recurrence
equation, or use a well-chosen martingale. The slick argument is to use the
essential edge lemma (Lemma 1) to show

=1
E],_IT], =14+ QM_
w;

Then

BT, = > EiaT;,
j=b+1



establishing (b). Let us also write out the non-slick argument, using mean
occupation times. By considering mean time spent at z,

b—1 c—1
BT, = ZPb(Ti < Tc)m(i,i,c) + Zm(i,i,c), (11)

where m(i,1, c) is the expectation, starting at 7, of the number of visits to i
before T,. But
1
P(T. <TH)
1
Piiv1 P (Te < T;)

m(i,i,c) =

= (w; + wit1) Z w; usmg a).
7=1+1

Substituting this and (a) into (11) leads to the formula stated in (b).
Finally, (c¢) can be deduced from (b), but it is more elegant to use the
essential edge lemma to get

F, T, + ET;,_1 = w/wl (12)

and then use

C

ET.+ETy= > (EaTi+ ETi). =
i=ht1

We now start some little calculations relating to the parameters discussed
in Chapter 4. Plainly, from Proposition 3

™ =w Zw;l (13)

Next, consider calculating F.T;. We could use Proposition 3(b), but instead
let us apply Theorem yyy of Chapter 3, giving F,T} in terms of unit flows
from b to 7. In a linear graph there is only one such flow, which for ¢ > b has
fiisi =i+ 1,n—-1] = Z;L_H-l 7, and for 7 < b —1 has f; ;41 = —7[0,1],
and so the Proposition implies

n—1
ETy=w Y

i=b+1

27+ _1 b 2 _1
T4, n ]-I-'wz7r [0,¢ . (14)
=1

]
w; w;



There are several ways to use the preceding results to compute the av-
erage hitting time parameter 7. Perhaps the most elegant is

To = Z Zﬂiﬂj(EiTj + E]'TZ')

P >0
n—1
= E 71'[0, k— 1]7I'[k, n— 1](Ek_1Tk + Eka_l)
k=1
n—1
= Z 7[0,k — 1]x[k,n — 1Jw/wy by (12)
k=1
n—1 k—1 n—1
= w! Z w;l (wk + 2 Z w]-) (w;C + 2 Z 'wj) . (15)
k=1 j=1 7=k+1

There are sophisticated methods (see Notes) of studying 7, but let us
just point out that Proposition 23 later (proved in the more general context
of trees) holds in the present setting, giving

1
e min max( EoTy, Fpo1Ty) < 7 < Kyminmax(FoT,, F,1T:).  (16)
{1 = z

We do not know an explicit formula for 75, but we can get an upper bound
easily from the “distinguished paths” result Chapter 4 yyy. For z < y the
path 7., has r(7sy) = >.0_, .1 1/w, and hence the bound is

7—1n—1 Yy

< %mfxz E Z (wz + weqr)(wy + 'wy+1). (17)

Wy,

r=0y=j5 u=z+1

jij This uses the Diaconis—Stroock version. The Sinclair version is

1 1 7—1n—-1
T3 < —max — Z Z(wz + wyg1 )(wy + wyg1)(y — ).
wog o wi i

xxx literature on 75 (van Doorn, etc.)

jij Also relevant is work of N. Kahale (and others) on how optimal
choice of weights in use of Cauchy—Schwarz inequality for Diaconis—Stroock—
Sinclair leads to equality in case of birth-and-death chains.

jij See also Diaconis and Saloff-Coste Metropolis paper, which mentions
work of Diaconis students on Metropolizing birth-and-death chains.

xxx examples of particular w. jjj might just bring up as needed?



xxx contraction principle and lower bounds on 7, (relating to current
Section 6 of Chapter 4)
By Chapter 4 Lemma yyy,
7[0,¢— 1]7w[i, n— 1]

T, = max . (18)
1<i<n—1 w;

1.3 Useful examples of one-dimensional chains

Example 4 The two-state chain.

This is the birth-and-death chain on {0,1} with po; = 1 — pgo = p and
pro=1—p11 = q, where 0 < p < 1 and 0 < ¢ < 1 are arbitrarily specified.
Since poo and py; are positive, this does not quite fit into the framework of
Section 1.2, but everything is nonetheless easy to calculate. The stationary
distribution is given by

mo=¢q/(p+q), ™ =p/(p+q).

In discrete time, the eigenvalues are Ay = 1 and Ay = 1 — p — ¢, and in
the notation of Chapter 3, Section yyy for the spectral representation, the
matrix S has s117 = 1 —p, 890 = 1 — ¢, and 819 = 891 = (pq)l/2 with
normalized right eigenvectors

ur = [(a/(p+0)"%, 0/ (p+ @) )", wz = [(p/(0+0)'%, ~(a/(p+0) /"

The transition probabilities are given by

Po(Xi=1) = 1—P0(Xt:0):]%q[l—(l—p—q)”],
P(X;=0) = 1—P1(Xt:1):]%q[1—(1—p—q)”]

=1) = Po(X, = 0) = —L ~(pta)t
P(X;=1) = 1- =0)= ——[1 — P9l
O(t ) O(t ) p+q[ € ]
= = - _ 1 —(p+a)t
P(X;,=0) = 1-P(X;=1)= —[1 — e \PH?
1(15 ) 1(15 ) p+q[ € ]

in continuous time. It is routine to calculate FoTy; = 1/p, F1To = 1/¢q, and

d(t) = et d(t) = max(p/(p+ q), ¢/ (p+ q)) e P,



and then

max F;T; = max(EoTy, ErTo) = ————, 7" = Eoh + BTy = mv
i min(p, ¢) Pq
and
n=n=T2=T1.=1/(p+q).
Example 5 Biased random walk with reflecting barriers.
We consider the chain on {0,1,...,n — 1} with reflecting barriers at 0 and

n — 1 that at each unit of time moves distance 1 rightward with probability
p and distance 1 leftward with probability ¢ = 1 — p. Formally, the setting
is that of Section 1.2 with

i1 2(1-p") 2

where we assume p = p/q < 1 and all asymptotics developed for this example
are for fixed p and large n. If p # 1, there is by symmetry no loss of generality
in assuming p < 1, and the case p = 1 will be treated later in Example 8.

Specializing the results of Section 1.2 to the present example, one can
easily derive the asymptotic results

max BT ~ 7 ~ Ex Ty qy ~ 2~ /(1 = p)? (19)
ij
and, by use of (15),
1+p
~ —"n. 20
o~ T ," (20)
For 7., the maximizing ¢ in (18) equals (1 4 o(1))n/2, and this leads to

ro— (14 p)/(1=p). (21)

The spectral representation can be obtained using the orthogonal poly-
nomial techniques described in Karlin and Taylor [10] Chapter 10; see espe-
cially Section 5(b) there. The reader may verify that the eigenvalues of P
in discrete time are 1, —1, and, for m=1,...,n — 2,

1/2 mr

2
p cosf,,, where 8, =
14+p n—1



with (unnormalized) right eigenvector

i/ oy q L sin((i+ 1)0m)] _ B
p [2 cos(i0,,) — (1 p)—sin(ﬁm) , 0,...,n—1
In particular,
-1
B 2,01/2 T 14+p
T2 = |;l- 1—|—pCOS <n_1> %m (22)

The random walk has drift p—¢ = —(1—p)/(1+p) = —p. It is not hard
to show for fixed ¢ > 0 that the distances d,,(tn) and d,(tn) of Chapter 4 yyy
converge to 1 if { < p and to 0 if ¢t > p.

jij include details? In fact, the cutoff occurs at pun + cpnl/Q: cf. (e.g.)
Example 4.46 in [7]. Continue same paragraph:

In particular, )

—p
T~ 1t pn (23)

Example 6 The M/M/1 queue.

We consider the M/M/1/(n — 1) queue. Customers queue up at a facility
to wait for a single server (hence the “1”) and are handled according to a
“first come, first served” queuing discipline. The first “M” specifies that
the arrival point process is Markovian, i.e., a Poisson process with intensity
parameter A (say); likewise, the second “M” reflects our assumption that
the service times are exponential with parameter p (say). The parameter
n — 1 is the queue size limit; customers arriving when the queue is full are
turned away.

We have described a continuous-time birth-and-death process with con-
stant birth and death rates A and p, respectively. If A4+ pu = 1, this is nearly
the continuized biased random walk of Example 5, the only difference being
in the boundary behavior. In particular, one can check that the asymptotics
in (19)-(23) remain unchanged, where p = A/pu, called the traffic intensity,
remains fixed and n becomes large. For the M/M/1/(n — 1) queue, the sta-
tionary distribution is the conditional distribution of G — 1 given G < n,
where G has the Geometric(1 — p) distribution. The eigenvalues are 1 and,
form=1,...,n—1,

1/2 mm

2
P cos B,,, where now 6, =
1+p n

10



with (unnormalized) right eigenvector

2p~/2 , 1 sin((¢ 4+ 1)6,,)
0, /2 0, —1)——1 27m/
15, cos(ib,,) + (p/“cosb,, — 1) sin (O )

2 Special graphs

In this section we record results about some specific easy-to-analyze graphs.
As in Section 1.3, we focus on the parameters 7, g, Ty, T2, 7. discussed in
Chapter 4; orders of magnitudes of these parameters (in the asymptotic
setting discussed with each example) are summarized in terms of n, the
number of vertices, in the following table. A minor theme is that some of
the graphs are known or conjectured to be extremal for our parameters.
In the context of extremality we ignore the parameter 7 since its exact
definition is a little arbitrary.

jjj David: (1) Shall T add complete bipartite to table? (2) Please fill in
missing entries for torus.

Orders of magnitude of parameters [ = ©(entry)] for special graphs.

*

Example T To T Ty T,
7. cycle n? n? n? n? n
8. path n? n? n? n? n
9. complete graph n n 1 1 1
10. star n n 1 1 1
11. barbell n> n> n> n> n?
12. lollipop n3 n? n? n? n
13. necklace n? n? n? n? n
14. balanced r-tree nlogn | nlogn n n n
15. d-cube (d = log, n) n n dlogd | d d
16. dense regular graphs n n 1 1 1
17. d-dimensional torus
d=2 1337 nlogn | n*% | n?d| jjjrnt/d
d>3 J13? n n2/d | p2/d | j537nl/e
19. rook’s walk n n 1 1 1

In simpler cases we also record the ¢-step transition probabilities P;( X; =
j)in discrete and continuous time. In fact one could write out exact expres-
sions for P;(X; = j) and indeed for hitting time distributions in almost all

11



these examples, but complicated exact expressions are seldom very illumi-
nating.

qqq names of graphs vary—suggestions for “standard names” from read-
ers of drafts are welcome.

Example 7 The n-cycle.

This is just the graph0-1-2 .-~ (n—1) - 0 on n vertices. By rotational
symmetry, it is enough to give formulas for random walk started at 0. If
(X;) is random walk on (all) the integers, then X, = ¢(X,) is random walk
on the n-cycle, for

¢(1) = i mod n.

Thus results for the n-cycle can be deduced from results for the integers.
For instance,
EoT; = i(n —1) (24)

by Lemma 2, because this is the mean exit time from (7 — n,¢) for random
walk on the integers. We can now calculate

max E;T; = |n®/4]
i
™ = max(E;T; + E;T;) = 2|n*/4] (25)
ij
ro=n"'> ET; = (n*-1)/6 (26)
J

where for the final equality we used the formula

n 3 2

ZmQ—"—+"—+ﬁ
3 2 6

As at (9) and (10) we can get an expression for the distribution at time ¢
from the Binomial distribution (in discrete time) or the Poisson distribution
(in continuous time). The former is

t!
Po(Xi=1)= Z -2
Wt — |
7:27—t=1 mod n ‘](t ‘7)
A more useful expression is obtained from the spectral representation. The
n eigenvalues of the transition matrix are cos(2rm/n), 0 < m < n—1. That

is, 1 and (if n is even) —1 are simple eigenvalues, with respective normalized

12



cigenvectors ujg = 1/y/m and w; 5 = (=1)'/y/n (0 < i < n —1). The mul-
tiplicity of cos(2rm/n)is 2 for 0 < m < n/2; the corresponding normalized
eigenvectors are u;;, = \/2/ncos(2rim/n) and u; _, = \/2/nsin(2rim/n)
(0<i<n—1). Thus

Po(Xy=1)= % Z_: (cos(2nm/n))  cos(2mim/n),

m=0

a fact most easily derived using Fourier analysis.
jjj Cite Diaconis book [6]?7 Continue same paragraph:
So the relaxation time is

1 n?

. cos(27/n) T on?

As an aside, note that the eigentime identity (Chapter 3 yyy) gives the
curious identity

n? — 1

1 — cos(2mm/n)

n—1
m=1
whose n — oo limit is the well-known formula 0°_; m~2 = 72/6.

If n is even, the discrete-time random walk is periodic. This parity
problem vanishes in continuous time, for which we have the formula

Po(X (1) = % z__: t(1 — cos(2mrm/n))) cos(2mim/n). (27)

Turning to total variation convergence, we remain in continuous time
and consider the distance functions d,(t) and d,(t) of Chapter 4 yyy. The
reader familiar with the notion of weak convergence of random walks to
Brownian motion (on the circle, in this setting) will see immediately that

dp(tn?) — doo(t)

where the limit is “d for Brownian motion on the circle”, which can be
written as

doo(t) = 1= 2P((t'%2Z) mod 1 € (1/4,3/4))
where Z has the standard Normal distribution. So

T ~ cn?

13



for the constant ¢ such that du,(c) = e~!, whose numerical value ¢ = 0.063
has no real significance.
jij David: You got 0.054. Please check. Continue same paragraph:
Similarly

n(im?) = dealt) = 5 [ 1) = 1]

where f; is the density of (#'/27) mod 1.
As for 7., the sup in its definition is attained by some A of the form

[0,7— 1], so ' '
S(1-%) 1 |n? n
Te=max t—>=2- = — [ — | ~ —.
i 1/n n| 4 2

As remarked in Chapter 4 yyy, this provides a counter-example to reversing
inequalities in Theorem yyy. But if we consider max4(7(A)F,T4), the maz
is attained with A = [§ —an, T +an], say, where 0 < a < 1/2. By Lemma 2,
for s € (<h+a,3—a),

EL(f modl)nJTA ~ (% e ac) (% -« —|—$) n2,

and so

1

272 (1 1 AL _ a)3n2
EWTANn2/2 (——a—m)(i—a—l—x)d;c:w.

_ %—l—a
Thus

2
ij(ﬂ(A)E,TTA) ~ 7 0<iu<pl/2 — 3 T
consistent with Chapter 4 Open Problem yyy.

xxx level of detail for d results, here and later.

Remark. Parameters 7%, 7, 7y, and 75 are all @(n?) in this example, and
in Chapter 6 we’ll see that they are O(n?) over the class of regular graphs.
However, the exact maximum values over all n-vertex regular graphs (or the
constants ¢ in the ~ cn? asymptotics) are not known. See Chapter 6 for the
natural conjectures.

Example 8 The n-path.
This is just the graph 0 — 1 —2 — .- — (n — 1) on n vertices. If (X;) is

random walk on (all) the integers, then X; = ¢(X;) is random walk on the

14



n-path, for the “concertina” map

i ifimod2(n—1)<n-1
i) =
2(n—1)— (i mod 2(n—1)) otherwise.

Of course the stationary distribution is not quite uniform:

1
1<< —2' = MTp—-1 = 7 5 <-
L TR Y

T =

Again, results for the n-path can be deduced from results for the integers.
Using Lemma 2,

ETi=(G-i)(+i),0<i<j<n-—L. (28)

JFrom this, or from the more general results in Section 1.2, we obtain

max BT, = (n—1)> (29)
]
™ = max(ET; + E;T;) = 2(n—1)? (30)
g
1 , 1
o= kT = g(n-17+ ¢ (31)

J

We can also regard X; as being derived from random walk X; on the
(2n —2)-cycle via X; = min(Xy,2n —2 — X4). So we can deduce the spectral
representation from that in the previous example:

n—1
Pi(Xy=3) = /7 /7 > Mo timtjm
m=0
where, for 0 < m < n -1,
Am = cos(mm/(n — 1))
and
Uom = VTm;  Up—1m = / ﬂ-m(_l)m7
Uiy, = /2T cos(mim/(n—1)), 1<i<n—2.
In particular, the relaxation time is

B 1 2n?
~ 1—cos(n/(n—1)) w2’

T2

15



Furthermore, d,(t) = Egn_g(t) and d,(t) = da,_y(t) for all ¢, so

dn(1(2n)%) = doo (1)

dn(t(2n)?) — doo(t)

where the limits are those in the previous example. Thus 71 ~ e¢n?, where

¢ = 0.25 is 4 times the corresponding constant for the n-cycle.
xxx explain: BM on [0, 1] and circle described in Chapter 16.

It is easy to see that

N
1

n—2 if n is even

”Q;I—ﬁ if n is odd

In Section 3.2 we will see that the n-path attains the exact maximum

values of our parameters over all n-vertex trees.

Example 9 The complete

graph.

For the complete graph on n vertices, the t-step probabilities for the chain

started at ¢ can be calculated by considering the induced 2-state chain which

indicates whether or not the walk is at ¢. This gives, in discrete time,

Pi( X, =1)
Pi(X:=7)
and, in continuous time,

Pi(Xy = i)

It is clear that the hitting

particular

() ()

11 N\t
SR G B

_'_
3|~
—_
|
3| =
~
®
>
=l
/T\
3
2
—_
~—

1
n
1
n

(32)

(33)

time to j # ¢ has Geometric(1/(n — 1)) distri-
bution (in continuous time, Exponential(1/(n — 1)) distribution), and so in

ET;j=n—1,j#i.

16

(34)



Thus we can calculate the parameters

™= HIZ,?,LX(EjTi + ET;) = 2(n-1) (35)
HIZ,?XEZ'T]' = n—-1 (36)
o=n"" Z ET;, = (n—1)*/n. (37)
J
From (32) the discrete-time eigenvalues are Ay = A3 = --- = A, =
—1/(n —1). So the relaxation time is
T =(n—-1)/n. (38)

The total variation functions are

d(t):exp(— nt ), d.(t):nglexp<— nt ),

n—1 n—1
s0
T =(n-1)/n. (39)
It is easy to check
7. =(n—1)/n.

We have already proved (Chapter 3 yyy) that the complete graph attains
the exact minimum of 7*, max;; £;T;, 7y, and 79 over all n-vertex graphs.
The same holds for 7., by considering (in an arbitrary graph) a vertex of
minimum degree.

Example 10 The n-star.

This is the graph on n > 3 vertices {0,1,2,...,n — 1} with edges 0 — 1, 0 —
2,0-3,...,0 - (n—1). The stationary distribution is

To=1/2, m;, =1/(2(n—-1)), > 1.

In discrete time the walk is periodic. Starting from the leaf 1, the walk at
even times is simply independent and uniform on the leaves, so

Pl(XQtIi)Il/(TL—l)7 7/2 1

for t > 1. At odd times, the walk is at 0. Writing these {-step probabilities
as
1

Py(X,=i) = =T

1
(L (=D izny + 51+ (D)*D)gy, 121

17



we see that the discrete-time eigenvalues are Ag = ---=A,_1 =0, A\, = —1
and hence the relaxation time is

ngl.

The mean hitting times are
Ty =1
BT =2(n—1), j>2,
where the latter comes from the fact that 7 /2 has Geometric(1/(n—1)) dis-

tribution, using the “independent uniform on leaves at even times” property.
Then

E()Tl =2n — 3.
We can calculate the parameters
i maXZ']'(EZ'T]' + EjTZ') =4n -4 (40)
max;; 1T =2n —2 (41)
T = Y, EoTim; =n— 3. (42)
In continuous time we find
1 n— 2
P(X;=1) = —(1+e* —f
1(Xe=1) %n—1f et e
1 1
P(Xi=1) = ——(14+e?) - ——et i>1
1(Xi =) %n—U(+e s LR
P(X;=0) = (1-¢e%)
P(Xi=0) = 3(14e7%)
1
P(X;=1) = 1—e?
0( t ) 2(n _ 1)( e )
This leads to
- 1 n—2
d t) = —t d _ —2t t
(0 =™ d) = 50— 1
from which
T = 1
Clearly (isolate a leaf)
T.=1- _ .
2(n—1)

We shall see in Section 3.2 that the n-star attains the exact minimum of
our parameters over all n-vertex trees.
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Example 11 The barbell.

Here is a graph on n = 2my + mgy vertices (m; > 2, my > 0). Start with
two complete graphs on m; vertices. Distinguish vertices v; # vy, in one
graph (“the left bell”) and vertices vg # v, in the other graph (“the right
bell”). Then connect the graphs via a path vy, — wy —wy — -+ — Wy, — vR
containing my new vertices.

XXX picture

A point of the construction is that the mean time to go from a typical
point v; in the left bell to a typical point v, in the right bell is roughly m2ms.
To argue this informally, it takes mean time about my to hit vy; then there
is chance 1/my to hit wq, so it takes mean time about m% to hit wq; and
from w; there is chance about 1/my to hit the right bell before returning
into the left bell, so it takes mean time about m¥my to enter the right bell.

The exact result, argued below, is

1

max E;T; = E,, T, = ml(ml—1)(7712—|—1)—|—(mg—}—1)2—|—4(ml—1)—|—4m2 + .
1] my

(43)

It is cleaner to consider asymptotics as
n— o0, m/n—a, my/n—1-2a
with 0 < @ < 1/2. Then

max BT, ~ o*(1-2a)n®
ij
3
~ Z—7 fora=1/3

where a = 1/3 is the asymptotic maximizer here and for the other parame-
ters below. Similarly

™ ~ 2a%(1 - 2a)n?
2 3
~ % for a = 1/3.
The stationary distribution 7 puts mass — 1/2 on each bell. Also, by (45)-
(47) below, E, T, = o(E,,T,,) uniformly for vertices v in the left bell and
BT, ~ BT, ~ a2(1 - 2a)n3 uniformly for vertices v in the right bell.

Hence | )
0= EU:WUEUZTU ~ §EUZTUT ~ §a2(1 — 2a)n?
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and so we have proved the “7y” part of

each of {rg, 71,72} ~ 1a*(1-2a)n’ (44)

3
~ §—4f0ra:1/3.

Consider the relaxation time 79. For the function ¢ defined to be +1 on the
left bell, —1 on the right bell and linear on the bar, the Dirichlet form gives

2 2

t.9)= (mg 4 1)(my(mq — 1) +my + 1) h a?(1 - 2a)n?’

Since the variance of g tends to 1, the extremal characterization of 75 shows
that %a2(1 - 2a)n3 is an asymptotic lower bound for 5. But in general 75 <
To, s0 having already proved (44) for 7o we must have the same asymptotics
for 75. Finally, without going into details, it is not hard to show that for
fixed £ > 0,
dy <1a2(1 - 2a)n3t) —e ' d, <1a2(1 — 2a)n3t) — le_t
2 2 2

from which the “m” assertion of (44) follows.

jij Proof? (It’s not so terrifically easy, either! How much do we want
to include?) I've (prior to writing this) carefully written out an argument
similar to the present one, also involving approximate exponentiality of a
hitting time distribution, for the balanced r-tree below. Here is a rough
sketch for the argument for d here; note that it uses results about the next
example (the lollipop). (The argument for d is similar.) The pair (v, v,)
of initial states achieves d(t) for every t (although the following can be
made to work without knowing this “obvious fact” a priori). Couple chains
starting in these states by having them move symmetrically in the obvious
fashion. Certainly these copies will couple by the time T the copy started
at vy has reached the center vertex w,,,/, of the bar. We claim that the
distribution of T is approximately exponential, and its expected value is
~ %m%mg ~ %a2(1 — 2a)n? by the first displayed result for the lollipop
example, with mgy changed to my/2 there. (In keeping with this observation,
I'll refer to the “half-stick” lollipop in the next paragraph.)

jij (cont.) To get approximate exponentiality for the distribution of
T, first argue easily that it’s approximately the same as that of T, for
the half-stick lollipop started in stationarity. But that distribution is, in
turn, approximately exponential by Chapter 3 Proposition yyy, since 75 =
©(n?) = o(n?) for the half-stick lollipop. m
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Proof of (43). The mean time in question is the sum of the following
mean times:

Ey Ty, =my — 1 (45)
E, Ty, =mi(my—1)(mg+1)+ (mg+ 1)? (46)
1
By Ty, = 3(my — 1) 4 47211 (47)
my

Here (45) is just the result (34) for the complete graph. And (46) is obtained
by summing over the edges of the “bar” the expression

Ey Ty, =mi(my—1)+2i4+1, i=0,...,my (48)

i1

obtained from the general formula for mean hitting time across an essential
edge of a graph (Lemma 1), where wg = vy, and wy,,41 = vgr. To argue (47),
we start with the 1-step recurrence

m1—2

1
EURTUT =1+ _Eu}m2 Tur + ExTvr
my

my

where z denotes a vertex of the right bell distinct from vr and »,. Now

FE Tur = ml(ml — 1) + 2m2 + 1 + EURTUT

Wmy

using the formula (48) for the mean passage time from w,,, to vg. Starting
from z, the time until a hit on either vg or v, has Geometric(2/(m; — 1))
distribution, and the two vertices are equally likely to be hit first. So

E,T,, = (my = 1)/2+ 3B, T,

The last three expressions give an equation for £, T, whose solution is (47).
And it is straightforward to check that F, T, does achieve the maximum,
using (45)—(47) to bound the general E;7;. =

It is straightforward to check

a’n?

2

Te
Example 12 The lollipop.

XXX picture
This is just the barbell without the right bell. That is, we start with a
complete graph on m; vertices and add my new vertices in a path. So there
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are n = my + mgy vertices, and w,,, is now a leaf. In this example, by (45)
and (46), with mg in place of my + 1, we have

max BT = B, Ty, = mi(my — )mg + (mp — 1) + m3.

L)

In the asymptotic setting with
n— oo,my/n— a,my/n—1—a

where 0 < a < 1, we have

max B;T; ~ o*(1—a)n® (49)
ij
4 3
~ % for a = 2/3,

where oo = 2/3 gives the asymptotic maximum.
Let us discuss the other parameters only briefly, in the asymptotic set-

ting. Clearly E,,, T,, = mj ~ (1 —a)?n* and it is not hard to check
By Ty = max BTy ~ (1 - a)’n?, (50)

whence

7 = max(E;T; + E;T;) = EyTw,, + Euw,, Ty, ~ a’(1 - a)n®.

L)

Because the stationary distribution puts mass ©(1/n) on the “bar”, (50) is
also enough to show that 7o = O(n?). So by the general inequalities between
our parameters, to show

each of {7y, 71,72} = O(n?) (51)

it is enough to show that 7 = Q(n?). But for the function g defined to be
0 on the “bell”, 1 at the end w,,, of the “bar,” and linear along the bar, a
brief calculation gives

E(g,9)=0(n"3), var g =0(n"")

so that 2 > (var »9)/&(g,9) = Q(n?), as required.
Finally, in the asymptotic setting it is straightforward to check that 7.
is achieved by A = {w1, ..., wy,}, giving

.~ 2(1 — a)n.
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Remark. The barbell and lollipop are the natural candidates for the n-
vertex graphs which maximize our parameters. The precise conjectures and
known results will be discussed in Chapter 6.

jij We need to put somewhere—Chapter 4 on 7.7 Chapter 6 on max
parameters over n-vertex graphs? in the barbell example?—the fact that
max 7. is attained, when n is even, by the barbell with my = 0, the max
value being (n?—2n+2)/8 ~ n?/8. Similarly, when n is odd, the maximizing
graph is formed by joining complete graphs on [n/2] and [n/2] vertices
respectively by a single edge, and the max value is easy to write down (I've
kept a record) but not so pretty; however, this value too is ~ n?/8, which
is probably all we want to say anyway. Here is the first draft of a proof:

For random walk on an unweighted graph, 7. is the maximum over
nonempty proper subsets A of the ratio

(deg A)(deg A%)
2E[(A, Ac)

(52)

where deg A is defined to be the sum of the degrees of vertices in A and
(A, A°) is the number of directed cut edges from A to A°.

jjj Perhaps it would be better for exposition to stick with undirected
edges and introduce factor 1/27?

Maximizing now over choice of graphs, the max in question is no larger
than the maximum M, over all choices of ny > 0, ny > 0, €1, ez, and €’
satisfying ny + no = n and 0 < ¢; < (7;) fori=1,2and 1 < €' < nyny, of
the ratio

(2e1 + €')(2e2 + €)
2(e1 + ex + €)e!

(We don’t claim equality because we don’t check that each n;-graph is con-
nected. But we’ll show that M is in fact achieved by the connected graph
claimed above.)

Simple calculus shows that the ratio (53) is (as one would expect) increas-
ing in e; and ez and decreasing in €’. Thus, for given nq, (53) is maximized
by considering complete graphs of size ny and ny = n —ny joined by a single
edge. Call the maximum value M(nq). If n is even, it is then easy to see
that M, is maximized by n; = n/2, giving M = (n? —2n+2)/8, as desired.

For the record, here are the slightly tricky details if n is odd. Write
v =n/2 and ny = v—y and put z = y%. A short calculation gives M(ny) =
1+g(z), where g(z) = [(a—2)(b—2)—1]/(22 +¢) with a = v%, b = (v — 1),
and ¢ = 2v(v—1)+2. Easy calculus shows that g is U-shaped over [0, ] and

(53)
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then that g(1/4) > g(v?). Thus M(n;) is maximized when n; = v — % =

n/2]. =

Example 13 The necklace.

[Sv]

This graph, pictured below, is 3-regular with n = 4m + 2 vertices, consisting
of m subgraphs linked in a line, the two end subgraphs being different from
the intervening ones. This is an artificial graph designed to mimic the n-
path while being regular, and this construction (or some similar one) is the
natural candidate for the n-vertex graph which asymptotically maximizes
our parameters over regular graphs.

a b

M
C

This example affords a nice illustration of use of the commute interpre-
tation of resistance. Applying voltage 1 at vertex a and voltage 0 at e, a
brief calculation gives the potentials at intervening vertices as

m — 2 repeats

g(b) = 4/7, g(c) =5/, g(d) = 4/7

and gives the effective resistance r,. = 7/8. Since the effective resistance
between f and g equals 1, we see the maximal effective resistance is

Tah:%+(2m—3)—|—%:2m—

INSH

So
™ = E, 0+ EyvT, =3 x (dm + 2) x <2m——

One could do elementary exact calculations of other parameters, but it is
simpler to get asymptotics from the Brownian motion limit, which implies
that the asymptotic ratio of each parameter (excluding 7.) in this example
and the n-path is the same for each parameter. So

n2 3n2

O~ —/—, T~ .
4’ 272
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jij T haven’t checked this carefully, and I also have abstained from writing
anything further about .

Finally, it is clear that 7. ~ 3n/4, achieved by breaking a “link” between
“beads” in the middle of the necklace.

Example 14 The balanced r-tree.

Take r > 2 and 2 > 1. The balanced r-tree is the rooted tree where all leaves
are at distance h from the root, where the root has degree r, and where the
other internal vertices have degree r + 1. Call h the height of the tree. For
h =1 we have the (r + 1)-star, and for » = 2 we have the balanced binary
tree. The number of vertices is

n:l—l—r—l—’rQ—l—---—l—rh:(r}LH—1)/(7‘—1).

The chain X induced (in the sense of Chapter 4 Section yyy) by the
function
f(i) = h — (distance from i to the root)

is random walk on {0, ..., h}, biased towards 0, with reflecting barriers, as
in Example 5 with

p=1/r
In fact, the transition probabilities for X can be expressed in terms of X

as follows. Given vertices v; and vy with f(v1) = fi and f(ve) = fo,
the paths [root,v1] and [root, vg] intersect in the path [root,vs], say, with

f(vs)=f3 > fV fo. Then

h
Pv1 (Xt = 4?]2) = Z Pf1 <01215a§t XS — m)Xt — f2> ,r—(m—fQ)‘
A SsS

m=

As a special case, suppose that v; is on the path from the root to vg; in
this case v3 = v1. Using the essential edge lemma (or Theorem 20 below)
we can calculate

By, Ty =2(r = )72 (e —p A —2(r — 1) (f1 = f2) = (A = f2),
Ey Ty, =2(n—1)(fi = f2) — Ey,To, . (54)

Using this special case we can deduce the general formula for mean hitting
times. Indeed, £, T,, = E,, Ty, + F,,T,,, which leads to

FuTuy = 2n—D)(fs— fa) 4 2r — )72 — o)
2(r =107 o= A1) = (f2 = ). (55)
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The maximum value 2h(n — 1) is attained when v, and vy are leaves and v3

is the root. So
™ = max F,T, = 2(n — 1)h. (56)

D=

(The 7* part is simpler via (88) below.) Another special case is that, for a
leaf v,

EyTrooe = 2(r = D)72(#" 1 —p) = 20(r = 1)  —h ~ 20/(r — 1), (57)

ErootTy = 2(n — 1)h — EyTroor ~ 2nh (58)

where asymptotics are as h — oo for fixed r. Since FiootTy is decreasing in
f(w), it follows that

To = ZﬂwErootTw < (14 o(1))2nh.

On the other hand, we claim 79 > (14 o(1))2nh, so that
To ~ 2nh.

To sketch the proof, given a vertex w, let v be a leaf such that w lies on
the path from v to the root. Then

ErootTuJ = rootTv - EwTv7

and £,T, < 2(n — 1)f(w) by (54). But the stationary distribution puts
nearly all its mass on vertices w with f(w) of constant order, and n = o(nh).
We claim next that

T~ T~ 2n/(r—1).

Since 15 < 7, it is enough to show

n < (1 o(1) 2 (59)
and o
Proof of (59). Put
. = 2n
"Tr—1



for brevity. We begin the proof by recalling the results (22) and (19) for the
induced walk X:

5 (r+1)
T2 = 473 13’
(ri/z —1)2
. 2rhtt
FE:Ty ~ ~ 1y. 61
"1y (61
By Proposition yyy of Chapter 3,
A Ty 1
sup |Pz(Th > t) —exp | — - < — = 0O(n =o(1). 62
1p P27 > 1) p( E%Th) < =0T = o). (@)

For X started at 0, let S be a stopping time at which the chain has exactly
the stationary distribution. Then, for 0 < s < ¢,

Po(Th > t) < Po(§ > 8) + Pa(Ty > t — s).

Since %1(2) = O(h) = O(logn) by (23), we can arrange to have EoS =
O(logn). Fixing € > 0 and choosing ¢ = (1+¢)t, and (say) s = (logn)?, (62)
and (61) in conjunction with Markov’s inequality yield

(1+ €)t, — (logn)?

Po(Tp, > (1 +e)t,) = exp|— BT,
+0((logn)~") + O(n™")
— e~ (1te)

Returning to the continuous-time walk on the tree, for n sufficiently large
we have
Py(Troot > (14 tn) < Po(T), > (14 6)t,) < et

for every vertex v. Now a simple coupling argument (jjj spell out details?:
Couple the induced walks and the tree-walks will agree when the induced
walk starting farther from the origin has reached the origin) shows that

Jn((l + e)t,) < e !

for all large n. Hence 7 < (1 + ¢€)t,, for all large n, and (59) follows. m
Proof of (60).
jjj [This requires further exposition in both Chapters 3 and 4-1. In Chap-
ter 3, it needs to be made clear that one of the inequalities having to do with
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CM hitting time distributions says precisely that £, T4 > E;T4/n(A°) >
E;Ty4. In Chapter 4-1 (2/96 version), it needs to be noted that Lemma 2(a)
(concerning 73 for the joining of two copies of a graph) extends to the joining
of any finite number of copies.]

Let G denote a balanced r-tree of height h. Let G” denote a balanced
r-tree of height h —1 with root y and construct a tree G’ from G” by adding
an edge from y to an additional vertex z. We can construct G by joining r
copies of G’ at the vertex z, which becomes the root of G. Let 7’ and ="
denote the respective stationary distributions for the random walks on G’
and G”, and use the notation 7’ and T”, respectively, for hitting times on
these graphs. By Chapter 4 jjj,

Ty = B T! (63)

where o' is the quasistationary distribution on G’ associated with the hitting
time T7. By Chapter 3 jjj, the expectation (63) is no smaller than E./T7,
which by the collapsing principle equals

T(G") (BT + B,TY) = 7(G") (B T) + B,T2)

But it is easy to see that this last quantity equals (1 + o(1))E,T,, which is
asymptotically equivalent to 2n/(r — 1) by (61). =

JFrom the discussion at the beginning of Section 3.1, it follows that 7.
is achieved at any of the r subtrees of the root. This gives

2rh —r—1)2r" =1) 2n

c 2r(rh — 1) ~

An extension of the balanced r-tree example is treated in Section 2.1
below.

Example 15 The d-cube.

This is a graph with vertex-set T = {0,1}% and hence with n = 27 vertices.
Write 1 = (41, ...,1q) for a vertex, and write |[i—j| = 3_, |ix — ju|- Then (i,])
is an edge if and only if [i—j| = 1, and in general |i—j| is the graph-distance
between 1 and j. Thus discrete-time random walk proceeds at each step by
choosing a coordinate at random and changing its parity.

It is easier to use the continuized walk X(t) = (X1(?),..., X4(?)), because
the component processes (X,(?)) are independent as u varies, and each is
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in fact just the continuous-time random walk on the 2-path with transition
rate 1/d. This follows from an elementary fact about the superposition of
(marked) Poisson processes.

Thus, in continuous time,

Tt .y
P(X(t)=)) = H §<1+(_1)|2u—1u|e—2t/d)]

u=1
_ g (1 B e—2t/d)|i_j| (1 n e—2t/d) d_“_j" (64)

By expanding the right side, we see that the continuous-time eigenvalues are
: e d
A = 2k/d with multiplicity E k=0,1,...,d. (65)

(Of course, this is just the general fact that the eigenvalues of a d-fold
product of continuous-time chains are

Ay 4+ -+ Xij;1 <dp,.n,ig < n) (66)

where (A\;;1 < ¢ < n) are the eigenvalues of the marginal chain.)
In particular,

By the eigentime identity (Chapter 3 yyy)

1 d& (d)
T0 = -— = — k_
m>2 Am 2 k=1 k
=211 4+ d7 1+ 0(d7?)), (68)

the asymptotics being easy analysis.
From (64) it is also straightforward to derive the discrete-time ¢-step
transition probabilities:

d t — TR
e ) o () ()

r

Starting the walk at 0, let Y; = |X(¢)|. Then Y is the birth-and-death
chain on states {0,1,...,d} with transition rates (transition probabilities,
in discrete time)

d—1 i .
Giit1 =~ Gi-1 = o) 0<:<d.



xxx box picture

This is the Fhrenfest urn model mentioned in many textbooks. In our
terminology we may regard Y as random walk on the weighted linear graph
(Section 1.2) with weights

d—1
w; = ( ), w = 24,
1 —1

In particular, writing 7% for hitting times for Y, symmetry and (13) give

d
1,y 1 _ 1
57 = S(BoTy + EfTy) = BTy =271 ) =
=1 \i—1

On the d-cube, it is “obvious” that FgoTj is maximized by j = 1, and this
can be verified by observing in (64) that Po(X(¢) = j) is minimized by j = 1,
and hence Zg; is minimized by j = 1, so we can apply Chapter 2 yyy. Thus

~ 241+ 1/d+0(1/d%). (69)

1 i1
—7* = max B;T; = EgTy = 247!
2 2

The asymptotics are the same as in (68). In fact it is easy to use (64) to
show

Zi=2""ng=1+d"+0(d7?)
Zz = O(d™?) uniformly over [i — j| > 2
and then by Chapter 2 yyy
BTy = 2%(1+ d=' + 0(d™?%)) uniformly over [i — j| > 2.

Since
14 EIT(}/ = E0T1Y + Engj =w/wy = 24,

it follows that
BTy =2 —1if [i—j| = L.

xxx refrain from write out exact EjTj—refs
To discuss total variation convergence, we have by symmetry (and writ-
ing d to distinguish from dimension d)

d(t) = [[Po(X(1) € ) — P1(X(t) € )|

d(?) = [[Po(X(?) € -) = 7(-)]l-
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Following Diaconis et al [8] we shall sketch an argument leading to
d(%dlogd—l—sd) —>L(8)EP(|Z| < %6_25) ,—00 < 8§ < 00 (70)
where Z has the standard Normal distribution. This implies
1 ~ 3dlogd. (71)

For the discrete-time walk made aperiodic by incorporating chance 1/(d+1)
of holding, (70) and (71) remain true, though rigorous proof seems compli-
cated: see [8].

Fix u, and consider j = j(u) such that |j| — d/2 ~ ud'/?/2. Using
1 —exp(—6) ~ § — 36% as § — 0 in (64), we can calculate for t = t(d) =
%dlogd + sd with s fixed that

—4s
27 Py(X(t) = j) — exp (_e 5~ ue_%) .
Note the limit is > 1 when u < ug(s) = —e~%%/2. Now

d(1) = 3 S 1Po(X(1) = §) - 27 ~ SO (Po(X (1) = §) ~ 27
J

where the second sum is over j(u) with u < ug(s). But from (64) we can
write this sum as

P (B (31— d=2e2)) < liCuo())) - P (B (3) < li(uo(s))])

where B(p) denotes a Binomial(d, p) random variable. By the Normal ap-
proximation to Binomial, this converges to

P(Z < ~ug(s)) ~ P(Z < uo(s)

as stated.
As an aside, symmetry and Chapter 4 yyy give

To < FoTy < 71(2) + 79

and so the difference EgTy — 79 is O(dlogd), which is much smaller than
what the series expansions (68) and (69) imply.
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The fact that the “half-cube” A ={i € 1: iy = 0}, yielding
.= d/2,

achieves the sup in the definition of 7. can be proved using a slightly tricky
induction argument. However, the result follows immediately from (67)
together with the general inequality 75 > 7..

Example 16 Dense reqular graphs.

Consider an r-regular n-vertex graph with r > n/2. Of course here we are
considering a class of graphs rather than a specific example. The calculations
below show that these graphs necessarily mimic the complete graph (as far
as smallness of the random walk parameters is concerned) in the asymptotic
setting r/n — ¢ > 1/2.

The basic fact is that, for any pair ¢, 7 of vertices, there must be at least
2r — n other vertices k such that i — k — j is a path. To prove this, let ay
(resp., az) be the number of vertices k # 4,7 such that exactly 1 (resp., 2)
of the edges (k,17),(k,j) exist. Then a1 4+ az < n — 2 by counting vertices,
and a; + 2ay > 2(r — 1) by counting edges, and these inequalities imply
ag > 2r — n.

Thus, by Thompson’s principle (Chapter 3, yyy) the effective resistance
ri; < ﬁ and so the commute interpretation of resistance implies

2rn 2en

* <L ~ . 72
g ~2r—n 2¢—1 ( )

A simple “greedy coupling” argument (Chapter 14, Example yyy) shows

r c
7 < ~ .
2r—n 2¢c—1

(73)

This is also a bound on 79 and on 7., because 7. < 79 < 71 always, and special
case 2 below shows that this bound on 7. cannot be improved asymptotically
(nor hence can the bound on 7 or 7). Because E,T; < nr, for regular
graphs (Chapter 3 yyy), we get

nr
E.T, < .
T = or—m
This implies
nr cn
T0 < ~

~2r—nmn 2¢c—1
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which also follows from (72) and 79 < 7*/2. We can also argue, in the
notation of Chapter 4 yyy, that

nr cn

HIZ,?XEZ'T]' < 7'1(2) + m]chXEﬂTj < 64_617'1 +nm < (14 0(1))27“ — "~ 51

Special case 1. The orders of magnitude may change for ¢ = 1/2. Take
two complete (n/2)-graphs, break one edge in each (say edges (v1,v2) and
(w1, wy)) and add edges (v1,w1) and (vg, ws). This gives an n-vertex ((n/2)—
1)-regular graph for which all our parameters are O(n?).

jij T haven’t checked this.

Special case 2. Can the bound 7, < r/(2r—n) ~ ¢/(2c—1) be asymptoti-
cally improved? Eric Ordentlicht has provided the following natural counter-
example. Again start with two (n/2)-complete graphs on vertices (v;) and
(w;). Now add the edges (v;, w;) for which 0 < (j—7) mod (n/2) < r—(n/2).
This gives an n-vertex r-regular graph. By considering the set A consisting
of the vertices v;, a brief calculation gives

r c
TCZ ~ .
2r—n+ 2 2¢c—1

Example 17 The d-dimensional torus ZZ .

The torus is the set of d-dimensional integers i = (i1,...,74) modulo m,
considered in the natural way as a 2d-regular graph on n = m?
is much simpler to work with the random walk in continuous time, X(t) =
(X1(t),..., X4(t)), because its component processes (X, (?)) are independent
as u varies; and each is just continuous-time random walk on the m-cycle,
slowed down by a factor 1/d. Thus we can immediately write the time-¢
transition probabilities for X in terms of the corresponding probabilities
po,;(t) for continuous-time random walk on the m-cycle (see Example 7
above) as

vertices. It

d
poj(t) =TT rou(t/d).
u=1
Since the eigenvalues on the m-cycle are (1 — cos(27k/m),0 < k < m — 1),
by (66) the eigenvalues of X are

1 d
Alkrkg) = p Z(l — cos(2mk,/m)), 0 < k, <m — 1.

" u=1
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In particular, we see that the relaxation time satisfies

dm?  dn?/?
To NN — — ——
27 on? 27?2
where here and below asymptotics are as m — oo for fixed d. This relaxation
time could more simply be derived from the N-cycle result via the general
“product chain” result of Chapter 4 yyy. But writing out all the eigenvalues

enables us to use the eigentime identity.

To = Z i E L/ Ak, oka)
" ka

(the sum excluding (0,...,0)), and hence
70 ~ meRy (74)

where ) ) |
m= ), TS coszray)) "

provided the integral converges. The reader who is a calculus whiz will see
that in fact Ry < oo for d > 3 only, but this is seen more easily in the
alternative approach of Chapter 15, Section yyy.

xxx more stuff: connection to transience, recurrent potential, etc

xxxX new copy from lectures

XXX Ty, Te

jij David: I will let you develop the rest of this example. Note that 7
is considered very briefly in Chapter 15, eq. (17) in 3/6/96 version. Here
are a few comments for 7.. First suppose that m > 2 is even and d > 2.
Presumably, 7. is achieved by the following half-torus:

A={i=(iy,...,1q) € Z% : 0 <ig < m/2}.
In the notation of (52) observe
€] = dn, degA =dn, degA®=dn, (A,A%) =2m’! =2n/m,

whence

T(A) = %nl/d.

[By Example 15 (the d-cube) this last result is also true for m = 2, and (for
even m > 2) it is by Example 7 (the n-cycle) also true for d = 1.] If we have
correctly conjectured the maximizing A, then

Te = %nl/d if m is even,
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and presumably(?7)
7. ~ dpt/d

[

in any case.
Example 18 Chess moves.

Here is a classic homework problem for an undergraduate Markov chains
course.

Start a knight at a corner square of an otherwise-empty chess-
board. Move the knight at random, by choosing uniformly from
the legal knight-moves at each step. What is the mean number
of moves until the knight returns to the starting square?

It’s a good question, because if you don’t know Markov chain theory it looks
too messy to do by hand, whereas using Markov chain theory it becomes very
simple. The knight is performing random walk on a graph (the 64 squares
are the vertices, and the possible knight-moves are the edges). It is not hard
to check that the graph is connected, so by the elementary Chapter 3 yyy
for a corner square v the mean return time is

I 2/g

B, TH=—
v Ty d,

= [€],

and by drawing a sketch in the margin the reader can count the number of
edges |€| to be 168.

Other chess pieces—queen, king, rook—define different graphs (the bish-
op’s is of course not connected, and the pawn’s not undirected). One might
expect that the conventional ordering of the “strength” of the pieces as
(queen, rook, knight, king) is reflected in parameters 79 and 72 (jjj how
about the other taus?) being increasing in this ordering. The reader is
invited to perform the computations. (jjj: an undergraduate project?) We
have done so only for the rook’s move, treated in the next example.

The computations for the queen, knight, and king are simplified if the
walks are made on a toroidal chessboard. (There is no difference for the
rook.)

jij Chess on a bagel, anyone? Continue same paragraph:

Then Fourier analysis (see Diaconis [6]) on the abelian group ZZ (with
m = 8) can be brought to bear, and the eigenvalues are easy to compute.

35



We omit the details, but the results for (queen, rook, knight, king) are
asymptotically

0 = (mZ—I—%m—l—()(l),mZ—I—m—I—O(l)7
3371+ 0(1))cknightm2 logm, 3jj7(1 + 0(1))ckinng log m)
Ty o~ (%, 2, Lym? %mQ)

) 572 ? 37

as m — 0o, in conformance with our expectations, and numerically

70 = (65.04,67.38, 69.74, 79.36)
7 = (1.29,1.75, 1.55, 4.55)

for m = 8. The only surprise is the inverted 7, ordering for (rook, knight).
Example 19 Rook’s random walk on an m-by-m chessboard.

jij Do we want to do this also on a d-dimensional grid? We need to
mention how this is a serious example, used with Metropolis for sampling
from log concave distributions; reference is [2]7 [3]?

Number the rows and columns of the chessboard each 0 through m — 1
in arbitrary fashion, and denote the square of the chessboard at row #; and
column i3 by i = (41, ?2). In continuous time, the rook’s random walk (X(?))
is the product of two continuous-time random walks on the complete graph
K,, on m vertices, each run at rate 1/2. Thus (cf. Example 9)

A0 =3) = T[54 (b~ &) e (5msy)] . )

u=1

which can be expanded to get the discrete-time multistep transition proba-
bilities, if desired. We recall that the eigenvalues for discrete-time random
walk on K, are 1 with multiplicity 1 and —1/(m—1) with multiplicity m—1.
It follows [recall (66)] that the eigenvalues for the continuous-time rook’s
walk are

m m
20m—1)" m—1

0, with resp. multiplicities 1, 2(m — 1), (m — 1)%.

In particular,
2(m —1
T2 = (Tn )7 (77)

m
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which equals 1.75 for m = 8 and converges to 2 as m grows. Applying the
eigentime identity, a brief calculation gives
—1)2 3
pyo o mtd) (79)

m

which equals 67.375 for m = 8 and m? + m + O(1) for m large.

Starting the walk X at 0 = (0,0), let Y (¢) denote the Hamming distance
H(X(t),0) of X(t) from 0, i.e., the number of coordinates (0, 1, or 2) in
which X(¢) differs from 0. Then Y is a birth-and-death chain with transition

rates
1 1 1

=1 =— == =
Go1 > 1o 2(m — 1)’ 12 2’ q21 —
This is useful for computing mean hitting times. Of course
BTy = 0if H(i,j) = 0.
Since
14 EyTY = EgTY + EyTY = m?,
it follows that
BTy =m? — 1if H(i,j) = 1.
Finally, it is clear that EyT) = m — 1, so that
EoTY = EyTY + ExTY = m? + m — 2,
whence
BTy =m? +m—2if H(i,j) = 2.
These calculations show

lrx = max FiTy = m?+m -2,

1

(3]

which equals 70 for m = 8, and they provide another proof of (78).
From (76) it is easy to derive

b (o 2)on (i) 2)on(525)

and thence
_ — 1/2 _
T = o ! In{1- (1 - e_lim(m 2)) +In (m 1) ,
m (m—1)2 m— 2
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which rounds to 2.54 for m = 8 and converges to —2In(1 — (1 — e~ 1)1/2) =
3.17 as m becomes large.
Any set A of the form {(i1,43) : 4, € J} with either u =1 or u =2 and
J a nonempty proper subset of {0,...,m — 1} achieves the value
m—1

=2—-.
m

TC
A direct proof is messy, but this follows immediately from the general in-
equality 7. < 72, (77), and a brief calculation that the indicated A indeed
gives the indicated value.

xxx other examples left to reader? complete bipartite; ladders

jij Note: I've worked these out and have handwritten notes. How much
do we want to include, if at all? (I could at least put the results in the

table.)

2.1 Biased walk on a balanced tree

Consider again the balanced r-tree setup of Example 14. Fix a parameter
0 < A < co. We now consider biased random walk (X¢) on the tree, where
from each non-leaf vertex other than the root the transition goes to the
parent with probability A/(A+7)and to each child with probability 1/(A+7).
As in Example 14 (the case A = 1), the chain X induced by the function

f(i) = h — (distance from i to the root)

is (biased) reflecting random walk on {0, ..., h} with respective probabilities
A/(A+7) and 7/(A 4 r) of moving to the right and left from any ¢ # 0, h;

the ratio of these two transition probabilities is

p=Ar.

The stationary distribution # for X is a modified geometric:

1 1 ifm=20
Tm=—=x13 (14+p)p™ ! f1<m<h-1
v ph=1 ifm=nh
where
AN {2(1—ph)/(1—p) ifp#1
w =2 p =

2h if p=1.
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Since the stationary distribution 7 for X is assigns the same probability to
each of the r"*=/(*) vertices v with a given value of f(v), a brief calculation
shows that m,py, = A (¥ /i@rh for any edge (v = child,z = parent) in the
tree. In the same notation, it follows that X is random walk on the balanced
r-tree with edge weights w,, = Af(¥) and total weight w = Y vz Woz = wrh,

The distribution & concentrates near the root-level if p < 1 and near the
leaves-level if p > 1; it is nearly uniform on the h levels if p = 1. On the
other hand, the weight assigned by the distribution 7 to an individual vertex
v is a decreasing function of f(v) (thus favoring vertices near the leaves) if
A <1 (e, p < 1/r)and is an increasing function (thus favoring vertices
near the root) if A > 1; it is uniform on the vertices in the unbiased case
A= 1.

The mean hitting time calculations of Example 14 can all be extended
to the biased case. For example, for A # 1 the general formula (55) becomes

[using the same notation as at (55)]

E,T, = wrh% +2(p = 1) <p—(f2+1) _ p_(th))
=207 =) o= 1) = (fo— Fr) (79)
if p#£1 and
BT, =t TN e g

ATl -1
if p = 1. The maximum value is attained when »; and vy are leaves and w3
is the root. Soif A # 1,

AR 1

v,x 211 ) (80)

The orders of magnitude for all of the 7-parameters (with r and A, and
hence p, fixed as h, and hence n, becomes large) are summarized on a
case-by-case basis in the next table. Following are some of the highlights
in deriving these results; the details, and derivation of exact formulas and
more detailed asymptotic results, are left to the reader.

Orders of magnitude of parameters [ = O(entry)]
for A-biased walk on a balanced r-tree of height 2 (p = A/7).
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Value of p T To T Ty T,

p<1/r p~ p7 T 7 ph
p=1/r (= Example 14) | nh | nh | n n n

I/r<p<1 n n | p7h|ph|ph
p=1 nh n h

p>1 n n h 1 1

For 9 = Y, TuFroot T we have 79 < F ootTieas. If p < 1/7, this bound
is tight:
2p~"
T A P);
(L=p)*(1=2)
for p > 1/r a more careful calculation is required.
If p < 1, then the same arguments as for the unbiased case (p = 1/r)

To ~ E rootﬂeaf ~

show
T~ 1y~ 207 D (1= p)2

In this case it is not hard to show that
—h
T.=0(p"")
as well. If p = 1, then it is not hard to show that

mn=0(h), T.~2(1- l)h

r

with 7, achieved at a branch of the root (excluding the root), and so
T2 = @(h)

as well. If p > 1, then since X has positive drift equal to (p—1)/(p + 1), it
follows that

Ty~ P
The value 7, is achieved by isolating a leaf, giving
e — 1,
and so, by the inequalities 7. < 75 < 872 of Chapter 4, Section yyy,
T = 0(1)

as well.
jijj Limiting value of 75 when p > 1 is that of 7 for biased infinite tree?
Namely?
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3 Trees

For random walk on a finite tree, we can develop explicit formulas for means
and variances of first passage times, and for distributions of first hitting
places. We shall only treat the unweighted case, but the formulas can be
extended to the weighted case without difficulty.

xxx notation below —change w to z 7 Used 1, j, v, w, z haphazardly for
vertices.

In this section we’ll write r, for the degree of a vertex v, and d(v, )
for the distance between » and z. On a tree we may unambiguously write
[v,z] for the path from v to z. Given vertices j,vy,v2,... in a tree, the
intersection of the paths [7,v1], [J,v2],... is a (maybe trivial) path; write
d(j,v1 Avg A--+) > 0 for the length of this intersection path.

On an n-vertex tree, the random walk’s stationary distribution is

Ty

2(n—1)

Ty =

Recall from the beginning of this chapter that an edge (v, z) of a graph
is essential if its removal would disconnect the graph into two components
A(v,z) and A(z,v), say, containing v and z respectively. Obviously, in a
tree every edge is essential, so we get a lot of mileage out of the essential
edge lemma (Lemma 1).

Theorem 20 Consider discrete-time random walk on an n-vertex tree.
For each edge (1, j),

ET; =2|A(4,5)| -1 (81)
EZ'T]‘ + EjTZ' = 2(n — 1). (82)
For arbitrary 1, 7,
BTy = —d(i,5)+ 2> d(j,inv) =D ryd(j,iAv) (83)
ET; + E;T; = Q(n — 1)d(z,]) (84)
For each edge (1, j),
var;1; = —ET; + Z Z ryTw(2d(j, v AN w) — 1). (85)

vEA(,5) wEA(L,])
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For arbitrary 1, 7,

var,T; = —E;T; + ZZTurwd(j, iANvAw)[2d(F, v Aw) —d(F, i AvAw).
(86)

Remarks. 1. There are several equivalent expressions for the sums above:
we chose the most symmetric-looking ones. We’ve written sums over ver-
tices, but one could rephrase in terms of sums over edges.

2. In continuous time, the terms “—F;T;” disappear from the variance
formulas—see xxx.

Proof of Theorem 20. Equations (81) and (82) are rephrasings of (3)
and (4) from the essential edge lemma. Equation (84) and the first equality
in (83) follow from (82) and (81) by summing over the edges in the path
[7,j]. Note alternatively that (84) can be regarded as a consequence of the
commute interpretation of resistance, since the effective resistance between
i and j is d(7,7). To get the second equality in (83),consider the following
deterministic identity (whose proof is obvious), relating sums over vertices
to sums over edges.

Lemma 21 Let f be a function on the vertices of a tree, and let j be a
distinguished vertex. Then

d_ref(v) =Y (Flv)+ f(v7))

v#j
where v* is the first vertex (other than v) in the path [v, j].
To apply to (83), note
d(j,inv™) = d(j,iAnv)ifv & ][i,]]
= d(j,inv)—1ifv € [i,j], v # 7.

The equality in Lemma 21 now becomes the equality in (83).
We prove (85) below. To derive (86) from it, sum over the edges in the
path [7,7] = (1 = i0,%1,..., %, = J) to obtain

var Ty = =BT+ Y > > (2d(igr, v Aw) — 1) (87)
v w i

where ", denotes the sum over all 0 < [ < m — 1 for which A(7;,7141)
contains both » and w. Given vertices v and w, there exist unique smallest
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values of p and ¢ so that v € A(%,,ip41) and w € A(ig, ig41). If p # ¢, then
the sum }~; in (87) equals

S Qi) = 1) = 3 @41~ (V) - 1)
I=pVq I=pvq

= (m—(pVq)?=d*(j,vAw)
= d(j,iANvAw)[2d(F,v Aw) —d(F, i AvAw)],

as required by (86). If p = ¢, then the sum }_; in (87) equals

m—1

> (2d(ir41,7p) + 2d(ip, v A w) — 1)

I=p
which again equals d(j,i A v A w) [2d(j,v A w) — d(j,i A v A w)] by a similar
calculation.

So it remains to prove (85), for which we may suppose, as in the proof
of Lemma 1, that 7 is a leaf. By considering the first step from j to 7 we
have

Varoj' = var;1;.

Now yyy of Chapter 2 gives a general expression for VaI’]’Tf in terms of
E;T;, and in the present setting this becomes

V&LI’jTj+ =2(n—-1)—(2(n—-1))*+ ZQTUEUT]'-

Using the second equality in (83), we may rewrite the sum as
Z Z TyTw2d(J, v A w).
vE] wE]

Also,
dry=2n-1)-1.

vt

Combining these expressions gives

var;T; = —(2n — 3) + Z Z ryrw(2d(j, v A w) — 1).
vEj wE]

But by (81), £;1; =2n—3. =
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3.1 Parameters for trees

Here we discuss the five parameters of Chapter 4. Obviously by (84)
™ =2(n—-1)A (88)

where A is the diameter of the tree. As for 7., it is clear that the sup in its
definition is attained by A(v,w) for some edge (v, w). Note that

W(A(‘U,‘w)) — % (89)

This leads to

2|A(v,w)|—1 2|A(w,v)|-1

r, = max 2(n—1) - 2(n—1)
() -1
A A, w)|[A(w, v)| - 2n + 1
= . 90
(o) 2(n — 1) (90)

Obviously the maz is attained by an edge for which |A(v,w)]| is as close as
possible to n/2. This is one of several notions of “centrality” of vertices
and edges which arise in our discussion—see Buckley and Harary [5] for a
treatment of centrality in the general graph context, and for the standard
graph-theoretic terminology.

Proposition 22 On an n-vertezx tree,

- %+ 3 [|A v, 0)l|A(w,0) = 5——— (|A(v, w)l? + IA(wyv)IQ)]

2(n—1
(o) (n—1)
where 37, .,y denotes the sum over all undirected edges (v, w).

Proof. Using the formula for the stationary distribution, for each ¢

ZTJET

n—l

Appealing to Lemma 21 (with ¢ as the distinguished vertex)

To = ﬁ;(?EiTj — a(%]))
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where a(7,7) = 0 and a(7, j) = E;T;, where (j, z) is the first edge of the path
[7,7]. Taking the (unweighted) average over 7,

o = m ;;(QEZ'T]' = a(i, J)).

Each term E;T; is the sum of terms £, T, along the edges (v, w) of the path
[7,j]. Counting how many times a directed edge (v, w) appears,
1
To = mE(QM(UaW)HA(wa‘UN — [A(v, w) [) E, Ty,

where we sum over directed edges (v, w). Changing to a sum over undirected
edges, using £, T, + E,T, =2(n — 1) and FE, T, = 2|A(v,w)| — 1, gives

2u(n—1)r = 3" 1A, w)[|A(w,0)2(n— 1)
(va)
—[A(v, w)|(2|A(v, w)[ - 1)
—[A(w, 0)|(2|A(w, v)] = 1)].
This simplifies to the assertion of the Proposition. m
For 71 we content ourselves with a result “up to equivalence”.

Proposition 23 There exist constants K1, K9 < oo such that
— minmax £;T; < 7 < Kyminmax £;T;.
Ki « i g

Of course the expectations can be computed by (83).

Proof. We work with the parameter

7'1(3) = HZI»‘E}XZ k| Ty — Ei Ty
’ k

which we know is equivalent to 71. Write

o = min max F;T;.
i

Fix an ¢ attaining the minimum. For arbitrary 7 we have (the first equality
uses the random target lemma, cf. the proof of Chapter 4 Lemma yyy)

SN omklEiTe — BTy = 2 mp(ETe — EiTy)*
k k
< 2 Z'/TkEjTi because E]'Tk < E]‘TZ' + ET.
k
< 20
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(3)

and so 777’ < 4o.

For the converse, it is elementary that we can find a vertex ¢ such that
the size (n*, say) of the largest branch from ¢ satisfies n* < n/2. (This is
another notion of “centrality”. To be precise, we are excluding ¢ itself from
the branch.) Fix this ¢, and consider the j which maximizes F;T;, so that
E;T; > o by definition. Let B denote the set of vertices in the branch from
¢ which contains 7. Then

ET, = E;T; + BTy, k€ B°

and so

> ST m BT — BTy > n(BYET: > n(B%)o.
k

But by (89) n(B) = 22%3;__11) < £, so we have shown 71(3) >0/2. m
We do not know whether 75 has a simple expression “up to equivalence”
analogous to Proposition 23. It is natural to apply the “distinguished paths”

bound (Chapter 4 yyy). This gives the inequality

Ty < 2(n—1)ma))< Z Z Temyd(z,y)

(@, z€A(v,w) yeA(w,v)

= 2(n—1max (7(A(v, w))E [d(o, V) veaww)]

7 (A(w,0)) E [d(, V) veawmy))

where V' has the stationary distribution © and where we got the equality
by writing d(z,y) = d(v,y) + d(v,z). The edge attaining the maz gives yet
another notion of “centrality.”

xxx further remarks on 7.

3.2 Extremal trees

It is natural to think of the n-path (Example 8) and the n-star (Example 10)
as being “extremal” amongst all n-vertex trees. The proposition below con-
firms that the values of 7, max; ; F;T;, 19, T2, and 7. in those examples are
the exact extremal values (minimal for the star, maximal for the path).

Proposition 24 For any n-vertex tree with n > 3,

(a) 4n—1) < * <2(n—1)?
(b) 2(n — 1) < max; ; B;T; < (n—1)?
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<719<(2n% —4n + 3)/6.

(d)1 <79 <(1-cos(r/(n—1)))"L.

(&) 1 - gy < 7o < Mgy

Proof. (a) is obvious from (88), because A varies between 2 for the n-
star and (n — 1) for the n-path. The lower bound in (b) follows from the
lower bound in (a). For the upper bound in (b), consider some path ¢ =
V0, V1,...,04 = J in the tree, where plainly d < (n—1). Now |A(v4-1,v4)| <
n — 1 and so

|A(vd—i, vd—it1)] < n — 1 for all

because the left side decreases by at least 1 as ¢ increases. So

d—1
ET; = Y E, Ty,
m=0

d-1
- Z_: (2| A(Vys vmg1)] — 1) by (81)
d-1

E(Q(m—l—n—d)— 1)

m=0

IN

n—1

< Y o(2-1)

I=1
= (n— 1)2.

To prove (c), it is enough to show that the sum in Proposition 22 is min-
imized by the m-star and maximized by the n-path. For each undirected
edge (v, w), let

b(v,w) = min(|A(v, w)|,|A(w,v)|) < n/2.

Let b = (b1, b3, ...,b,-1) be the non-decreasing rearrangement of these val-
ues b(v,w). The summands in Proposition 22 are of the form

1

m(GQ +(n —a)?)

a(n —a) —

with a ranging over the b;.
One can check that this quantity is an increasing function of @ < n/2.
Thus it is enough to show that the vector b on an arbitrary n-tree dominates
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coordinatewise the vector b for the n-star and is dominated by the vector b
for the n-path. The former is obvious, since on the n-star b = (1,1,...,1).
The latter needs a little work. On the n-path b = (1,1,2,2,3,3,...). So we
must prove that in any n-tree

b < V—I—l

J for all . (91)

Consider a rooted tree on m vertices. Breaking an edge e gives two
components; let a(e) be the size of the component not containing the root.
Let (ay,as,...) be the non-decreasing rearrangement of (a(e)). For an m-

path rooted at one leaf, (a1,az,...) = (1,2,3,...). We assert this is extremal,
in that for any rooted tree

a; < i for all 4. (92)

This fact can be proved by an obvious induction on m, growing trees by
adding leaves.

Now consider an unrooted tree, and let b be as above. There exists some
vertex v, of degree r > 2, such that each of the r branches from » has size
(excluding v) at most n/2. Consider these branches as trees rooted at v,
apply (92), and it is easy to deduce (91).

For (d), the lower bound is easy. Iix a leaf v and let w be its neighbor.
We want to apply the extremal characterization (Chapter 3 yyy) of 2 to
the function

g(v)=1—m, —Ty,g(w) =0,g(-) = —m, elsewhere.
For this function, ) 7,¢(z) =0,
l9,9) = m(1 = 7y = mu)* + (1 = 71y — my)7,
and by considering transitions out of w
£(g,9) = mo(1 =y = m0)* + (W0 — )7,

Since m,, < 1/2 we have [g,¢9] > £(g,¢) and hence 72 > [g,9]/E(g,9) > 1.

qqq Anyone have a short proof of upper bound in (d)?

Finally, (e) is clear from (90). =

Other extremal questions. Several other extremal questions have been
studied. Results on cover time are given in Chapter 6. Yaron [20] shows
that for leaves [ the mean hitting time F,T; is maximal on the n-path and
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minimal on the n-star. (He actually studies the variance of return times,
but Chapter 2 yyy permits the rephrasing.) Finally, if we are interested in
the mean hitting time F,.T4 or the hitting place distribution, we can reduce
to the case where A is the set L of leaves, and then set up recursively-
solvable equations for h(i) = F;T7, or for f(i) = Pi(T4 = T;) for fixed [ € L.
An elementary treatment of such ideas is in Pearce [18], who essentially
proved that (on n-vertex trees) max, .77, is minimized by the n-star and
maximized by the n-path.

4 Notes on Chapter 5

Most of the material seems pretty straightforward, so we will give references
sparingly.

Introduction. The essential edge lemma is one of those oft-rediscovered
results which defies attribution.

Section 1.2. One can of course use the essential edge lemma to derive the
formula for mean hitting times in the general birth-and-death process. This
approach seems more elegant than the usual textbook derivation. Although
we are fans of martingale methods, we didn’t use them in Proposition 3(b),
because to define the right martingale requires one to know the answer
beforehand!

For a birth-and-death chain the spectral representation involves orthog-
onal polynomials. This theory was developed by Karlin and McGregor in
the 1950s, and is summarized in Chapter 8 of Anderson [1]. It enables
one to write down explicit formulas for P;(X; = j) in special cases. But
it is less clear how to gain qualitative insight, or inequalities valid over all
birth-and-death chains, from this approach.

An alternative approach which is more useful for our purposes is based
on Siegmund duality (see e.g. [1] Section 7.4). Associated with a birth-and-
death process (X;) is another birth-and-death process (Y;) which is “dual”
in the sense that

Pi(X¢ < j) = Pi(Yy > i) for all i, 7,1

and whose transition rates have a simple specification in terms of those of

(X¢). It is easy to see that 7 for (X;) is equivalent to max; F;Ty, for (V3),

for which there is an explicit formula. This gives an alternative to (16).
Section 2.
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That the barbell is a good candidate for an “extremal” graph with re-
spect to random walk properties was realized by Landau and Odlyzko [12],
who computed the asymptotics of 75, and by Mazo [14], who computed the
asymptotics of the unweighted average of (£;1};4,j € I), which in this exam-
ple is asymptotically our 7. Note we were able to give a one-line argument
for the asymptotics of 75 by relying on the general fact 7, < 7.

Formulas for quantities associated with random walk on the d-cube and
with the Ehrenfest urn model have been repeatedly rediscovered, and we
certainly haven’t given all the known results. Bingham [4] has an extensive
bibliography. Palacios [17] uses the simple “resistance” argument used in
the text, and notes that the same argument can be used on the Platonic
graphs. Different methods of computing FgT; lead to formulas looking
different from our (69), for instance

d
EgTy = dY 27/ [11], eq. (4.27)
=1

D (‘f") [4].

1<j<d jodd \

Similarly, one can get different-looking expressions for 5. Wilf [19] lists 54
identities involving binomial coefficients—it would be amusing to see how
many could be derived by calculating a random walk on the d-cube quantity
in two different ways!

Comparing our treatment of dense regular graphs (Example 16) with
that in [16] should convince the reader of the value of general theory.

Section 3. An early reference to formulas for the mean and variance
of hitting times on a tree (Theorem 20) is Moon [15], who used less intu-
itive generating function arguments. The formulas for the mean have been
repeatedly rediscovered.

Of course there are many other questions we can ask about random walk
on trees. Some issues treated later are

xxx list.

xxx more sophisticated ideas in Lyons [13].
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