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The maximal mean hitting time max; ; £;7} arises in many contexts. In
Chapter 5 we saw how to compute this in various simple examples, and the
discussion of 7* in Chapter 4 indicated general methods (in particular, the
electrical resistance story) for upper bounding this quantity. But what we’ve
done so far doesn’t answer questions like “how large can 7* be, for random
walk on a n-vertex graph”. Such questions are dealt with in this Chapter, in
parallel with a slightly different topic. The cover time for a n-state Markov
chain is the random time C' taken for the entire state-space I to be visited.
Formally,

C = maxTj.
J

It is sometimes mathematically nicer to work with the “cover-and-return”
time

Ct =min{t > C: X; = Xo}.
There are several reasons why cover times are interesting.

e Several applications involve cover times directly: graph connectivity
algorithms (section 8.2), universal traversal sequences (section 8.1),
the “white screen problem” (Chapter 1 yyy)

e There remains an interesting “computability” open question (section

8.3)

e In certain “critical” graphs, the uncovered subset at the time when
the graph is almost covered is believed to be “fractal” (see the Notes
on Chapter 7).



We are ultimately interested in random walks on unweighted graphs,
but some of the arguments have as their natural setting either reversible
Markov chains or general Markov chains, so we sometimes switch to those
settings. Results are almost all stated for discrete-time walks, but we occa-
sionally work with continuized chains in the proofs, or to avoid distracting
complications in statements of results. Results often can be simplified or
sharpened under extra symmetry conditions, but such results and examples
are deferred until Chapter 7.

xxx contents of chapter

1 The spanning tree argument

Except for Theorem 1, we consider in this section random walk on an n-
vertex unweighted graph. Results can be stated in terms of the number of
edges |&| of the graph, but to aid comparison with results involving minimal
or maximal degree it is helpful to state results in terms of average degree d:

d=—""; |€| = nd/2.

The argument for Theorem 1 goes back to Aleliunas et al [3]. Though
elementary, it can be considered the first (both historically and logically)
result which combines Markov chain theory with graph theory in a non-
trivial way.

Consider random walk on a weighted graph. Recall from Chapter 3 yyy
the edge-commute inequality: for an edge (v, z)

ET.+ E.T, w/w,;  (weighted) (1)

dn (unweighted). (2)
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One can alternatively derive these inequalities from the commute interpre-
tation of resistance (Chapter 3 yyy), since the resistance between z and v
is at most 1/wy,.

Theorem 1 For random walk on a weighted graph,

max F,CT < wmin Z 1/we
eET

where the min is over spanning trees 7. In the unweighted case

mthEUC+ < dn(n - 1).



Proof. Given a spanning tree 7 and a vertex v, there is a path » =
Vo, V1, ..., V2n—2 = v which traverses each edge of the tree once in each
direction, and in particular visits every vertex. So

2n—3

+
kO < Z EUJ TUJ+1
7=0

BZ(U,I‘)ET

Z w/we by (1)
eET

This gives the weighted case, and in the unweighted case w = dn and each
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spanning tree has >°__7 1/w. =n—1. O

Note that in the unweighted case, the bound is at most n(n—1)%. On the
barbell (Chapter 5 Example yyy) it is easy to see that min; £;C = Q(n?),
so the maximal values of any formalization of “mean cover time”, over n-
vertex graphs, is ©(n?). Results and conjectures on the optimal numerical
constants in the ©(n?) upper bounds are given in section 3.

Corollary 2 On an unweighted n-vertex tree, E,CF < 2(n—1)2%, with equal-
ity iff the tree is the n-path and v is a leaf.

Proof. The inequality follows from Theorem 1. On the n-path with leaves
v,z we have E,Cf = E,T,+ E,T, =2(n—1)% O

It is worth dissecting the proof of Theorem 1. Two different inequalities
are used in the proof. Inequality (2) is an equality iff the edge is essential,
so the second inequality in the proof is an equality iff the graph is a tree.
But the first inequality in the proof bounds Ct by the time to traverse a
spanning tree in a particular order, and is certainly not sharp on a general
tree, but only on a path. This explains Corollary 2. More importantly, these
remarks suggest that the bound dn(n—1) in Theorem 1 will be good iff there
is some fixed “essential path” in the graph, and the dominant contribution
to C'is from the time taken to traverse that path (as happens on the barbell).

There are a number of variations on the theme of Theorem 1, and we will
give two. The first (due to Zuckerman [30], whose proof we follow) provides
a nice illustration of probabilistic technique.

Proposition 3 Write C, for the time to cover all edges of an unweighted
graph, i.e. until each edge (v, w) has been traversed in each direction. Then

max F,C. < 11dn?.




Proof. Fix a vertex v and a time tg. Define “excursions”, starting and ending
at v, as follows. In each excursion, wait until all vertices have been visited,
then wait ¢y longer, then end the excursion at the next visit to v. Writing
S; for the time at which the #’th excursion ends, and N for the (random)
number of excursions required to cover each edge in each direction, we have

Sy = min{S; : 5; > C.}
and so by Wald’s identity (yyy refs)
E,C. < E,Sx = E,N % E,Sy. (3)

Clearly
FE,5 < E,C + tg + max F,, T, < tg+ 2max F;C.

To estimate the other factor, we shall first show
P,(N >2) < m?/t] (4)

where m = dn is the number of directed edges. Fix a directed edge (w,z),
say. By Chapter 3 Lemma yyy the mean time, starting at z, until (w,z) is
traversed equals m. So the chance, starting at z, that (w, z) is not traversed
before time tg is at most m/ty. So using the definition of excursion, the
chance that (v, w) is not traversed during the first excursion is at most
m/ty, so the chance it is not traversed during the first two excursions is at
most (m/tp)%. Since there are m directed edges, (4) follows.
Repeating the argument for (4) gives

3\ 7
PU(N>2j)s(%) FEL
0

and hence, assuming m? < t2,

2
E,N < ——.
~ 1 —m3/t}

Putting to = [2m>/?] gives E,N < 8/3. Substituting into (3),

max F,C, < ;([Qm?’/z} + 2max £,C).



Now Theorem 1 says max, F,C < m(n—1) <mn —1, so

8
max £,C., < §(2m3/2+2mn)

— ?m(ml/2 +n)
32

—mn

3
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establishing the Proposition. O

Another variant of Theorem 1, due to Kahn et al [24] (whose proof we
follow), uses a graph-theoretical lemma to produce a “good” spanning tree
in graphs of high degree.

Theorem 4 Writing d, = min, d,,
6dn?

&

max F,CT <
U

(5)
and so on a reqular graph
max £,CT < 6n”. (6)

To appreciate (6), consider

Example 5 Take an even number j > 2 cliques of size d > 3, distinguish
two vertices v;, v} in the i’th clique (for each 0 < 7 < j), remove the edges
(vi,v]) and add the edges ('vl'»,v( . This creates a (d — 1)-regular

i+1) mod j)
graph with n = jd vertices.

Arguing as in the barbell example (Chapter 5 yyy), as d — oo with j varying
arbitrarily,
d 52 n?
E,Ty~—Xdx =~ —.
g 2 TR

Thus the O(n?) bound in (6) can’t be improved, even as a bound for the
smaller quantity max, ., F,T,,. (Note that in the example, d/n < 1/2.
From the results in Chapter 5 Example yyy and Matthews’ method one
gets KC' = O(nlogn) for regular graphs with d/n bounded above 1/2.)
Here is the graph-theory lemma needed for the proof of Theorem 4.

Lemma 6 Let G be an n-vertex graph with minimal degree d,. There exists
a family of [d. /2| spanning forests F; such that

(i) Fach edge of G appears in at most 2 forests

(ii) Fach component of each forest has size at least [d./2].



Proof. Replace each edge (i,7) of the graph by two directed edges (i —
J), (j — t). Pick an arbitrary »; and construct a path v; — vy — ..., on
distinct vertices, stopping when the path cannot be extended. That is the
first stage of the construction of /7. For the second stage, pick a vertex vy,
not used in the first stage and construct a path v,41 — v442 — ...2, in
which no second-stage vertex is revisited, stopping when a first-stage vertex
is hit or when the path cannot be extended. Continue stages until all vertices
have been touched. This creates a directed spanning forest F;. Note that
all the neighbors of v, must be amongst {v1,...,v,-1}, and so the size of
the component of F; containing v; is at least dy 4+ 1, and similarly for the
other components of Fj.

Now delete from the graph all the directed edges used in F7. Inductively
construct forests F, F3,..., Fq,/2) in the same way. The same argument
shows that each component of F; has size at least d, + 2 — 7, because at a
“stopping” vertex v at most 2 — 1 of the directed edges out of v were used
in previous forests.

Proof of Theorem 4. Write m for the number of (undirected) edges. For
an edge e = (v,z) write b, = E, T, + F,T,. Chapter 3 Lemma yyy says
Y..be =2m(n —1). Now consider the [d./2] forests F; given by Lemma 6.
Since each edge appears in at most two forests,

Z Z b. §22be < 4mmn,
1 eeF; €

and so there exists a forest F with )" cpb. < 4mn/[d./2] < 8mn/d,.
But each component of I has size at least [d./2], so I has at most 2n/d.,
components. So to extend F' to a tree 7 requires adding at most 2n/d, — 1
edges (e;), and for each edge e we have b, < 2m by (2). This creates a
spanning tree 7 with 3°__7 b < 12mn/d,. As in the proof of Theorem 1,
this is an upper bound for E,C*.

2 Simple examples of cover times

There are a few (and only a few) examples where one can study EC by
bare-hands exact calculations. Write h,, for the harmonic sum

hy, = Zi_l ~ logn. (7)
=1

(a) The coupon collector’s problem. Many textbooks discuss this clas-
sical problem, which involves C for the chain (X;¢ > 0) whose values are



independent and uniform on an n-element set, i.e. random walk on the
complete graph with self-loops. Write (cf. the proof of Matthews’ method,
Chapter 2 yyy) C™ for the first time at which m distinct vertices have been
visited. Then each step following time C™ has chance (n — m)/n to hit a
new vertex, so F(C™*! — C™) = n/(n —m), and so

n—1
EC =" E(C™ = C™) = nhy,_;. (8)

m=1

(By symmetry, F,C is the same for each initial vertex, so we just write
EC) It is also a textbook exercise (e.g. [17] p. 124) to obtain the limit
distribution

n ' (C - nlogn) < ¢ (9)

where £ has the extreme value distribution
P <z)=exp(—€e7), —o0 <z < 00. (10)

We won’t go into the elementary derivations of results like (9) here, because
in Chapter 7 yyy we give more general results.

(b) The complete graph. The analysis of C' for random walk on the
complete graph (i.e. without self-loops) is just a trivial variation of the
analysis above. Each step following time C"™ has chance (n —m)/(n—1) to
hit a new vertex, so

EC =(n—1)h, ~nlogn. (11)

And the distribution limit (9) still holds. Because E, T}, = n — 1 for w # v,
we also have

ECT=EC+ (n—1)=(n—1)(1+ hy_y) ~ nlogn. (12)

(c) The n-star (Chapter 5 Fzample yyy). Here the visits to the leaves
(every second step) are exactly i.i.d., so we can directly apply the coupon
collector’s problem. For instance, writing v for the central vertex and ! for
a leaf,

EC = 2(n—1)h,—3~2nlogn
E,Ct = 1+ EC+1=2(n—1)h,_1 ~2nlogn

and C'/2 satisfies (9). Though we won’t give the details, it turns out that a
clever inductive argument shows these are the minima over all trees.



Proposition 7 (Brightwell - Winkler [7]) On an n-vertex tree,

min F,C > 2(n — 1)h,_2
min B,CT > 2(n — 1)h,_;.

(d) The n-cycle. Random walk on the n-cycle is also easy to study.
At time C"™ the walk has visited m distinct vertices, and the set of visited
vertices must form an interval [j, j+m — 1], say, where we add modulo n. At
time C™ the walk is at one of the endpoints of that interval, and C™+! —C™
is the time until the first of {j — 1,7 + m} is visited, which by Chapter 5
yvyy has expectation 1 X m. So

n—1 n—1
1
EC=Y E(C™-Cm)=)i= gr(n—1).
m=1 =1

There is also an expression for the limit distribution (see Notes).
The n-cycle also has an unexpected property. Let V denote the last
vertex to be hit. Then

Po(V=v) = Po(Ty—1 < Tos1)Poci(Tys1 < Ty)
+P0(TU+1 < Tv—l)Pv—I—l(Tv—l < Tv)
n—(v+1) 1 v—1 1

n—2 n—1 n—2n-1
1

n—1

In other words, the n-cycle has the property

For any initial vertex vg, the last-visited vertex V is uniform on
the states excluding wg.

Obviously the complete graph has the same property, by symmetry. Lovasz
and Winkler [25] gave a short but ingenious proof that these are the only
graphs with that property, a result rediscovered in [22].

3 More upper bounds

We remain in the setting of random walk on an unweighted graph. Theorems
1 and 4 show that the mean cover times, and hence mean hitting times,



are O(n?) on irregular graphs and O(n?) on regular graphs, and examples
such as the barbell and the n-cycle show these bounds are the right order
of magnitude. Quite a lot of attention has been paid to sharpening the
constants in such bounds. We will not go into details, but will merely
record a very simple argument in section 3.1 and the best known results in
section 3.2.

3.1 Simple upper bounds for mean hitting times
Obviously max;(E;T; + E;T;) < E;CT, so maximizing over i gives

™ < max E,CT (13)
and the results of section 1 imply upper bounds on 7*. But implicit in earlier

results is a direct bound on 7*. The edge-commute inequality implies that,
for arbitrary v,z at distance A(v,z),

BT, + E,T, < dnA(v,7) (14)
and hence
Corollary 8 7 < dnA, where A is the diameter of the graph.

It is interesting to compare the implications of Corollary 8 with what can
be deduced from (13) and the results of section 1. To bound A in terms of
n alone, we have A < n — 1, and then Corollary 8 gives the same bound
7* < dn(n — 1) as follows from Theorem 1. On the other hand, the very
simple graph-theoretic Lemma 10 gives (with Corollary 8) the following
bound, which removes a factor of 2 from the bound implied by Theorem 4.

Corollary 9 7 < % and so on a reqular graph T < 3n?.
Lemma 10 A < 3n/d,.

Proof. Consider a path vg,v1,...,va, where vertices vy and va are distance
A apart. Write A; for the set of neighbors of v;. Then A; and A; must be
disjoint when |j — 7| > 3. So a given vertex can be in at most 3 of the A’s,
giving the final inequality of

A A
(A+1)de <D dyy =D A] < 3n. O



3.2 Known and conjectured upper bounds

Here we record results without giving proofs. Write max for the maximum
over n-vertex graphs. The next result is the only case where the exact
extremal graph is known.

Theorem 11 (Brightwell-Winkler [8]) max max, , 1 is attained by
the lollipop (Chapter 5 Fxample yyy) with my = |(2n 4+ 1)/3], taking z to
be the leaf.

Note that the implied asymptotic behavior is

max max F, T, ~ ﬁn?’. (15)

Further asymptotic results are given by
Theorem 12 (Feige [20, 18])
4 3

maxmﬁxEUC"" ~ g (16)
. +_ 3 3

max min £,C7 ~ 77" (17)
. 2 3

max min F,C' ~ —n (18)
v 27

The value in (16) is asymptotically attained on the lollipop, as in Theorem
11. Note that (15) and (16) imply the same 4n>/27 behavior for interme-
diate quantities such as 7* and max, F,C. The values in (17) and (18)
are asymptotically attained by the graph consisting of a n/3-path with a
2n/3-clique attached at the middle of the path.

The corresponding results for 79 and 7 are not known. We have 1 <
7o < min, F,C, the latter inequality from the random target lemma, and so
(18) implies

maxry and maxry; < (22—7 + o(1))n®. (19)

But a natural guess is that the asymptotic behavior is that of the barbell,
giving the values below.

Open Problem 13 Prove the conjectures

max 7y ~ —n3, max 1, ~ —n°.
54 54

10



For regular graphs, none of the asymptotic values are known exactly.
A natural candidate for extremality is the necklace graph (Chapter 5 yyy),
where the time parameters are asymptotically 3/4 times the parameters
for the n-path. So the next conjecture uses the numerical values from the
necklace graph.

Open Problem 14 Prove the conjectures that, over the class of regular
n-vertex graphs

3
max max F;T; ~ “n?
6] 4
3

max 77 ~ 5712

3
max max F,CT ~ 5712
v

15
max max F,C ~ —n?
v 16
3

max min F,C ~ an
v

1

max 7o ~ ZRZ

2
max Ty ~ —n
272

The best bounds known are those implied by the following result.
Theorem 15 (Feige [18]) On a d-regular graph,

max F,C < 2n?
v

mSLXEUC;" < 2n? (1 + dl_l_;f)z)) < 13n%/6.

4 Short-time bounds

It turns out that the bound “7* < 3n? on a regular graph” given by Corol-
lary 9 can be used to obtain bounds concerning the short-time behavior of
random walks. Such bounds, and their applications, are the focus of this sec-
tion. We haven’t attempted to optimize numerical constants (e.g. Theorem
15 implies that 7* < 13n%/6 on regular graphs). More elaborate arguments
(see Notes) can be used to improve constants and to deal with the irregular
case, but we’ll restrict attention to the regular case for simplicity.

Write N;(t) for the number of visits to 7 before time ¢, i.e. during [0,¢—1].

11



Proposition 16 Consider random walk on an m-vertex regular graph G.
Let A be a proper subset of vertices and let 1 € A.

(i) ETae < 4]A%

(ZZ) EZ'ZVZ'(TAc) < 5|A|

(iii) E;N;(t) < 5t/2, 0 < t < 5n?.

(iv) Pe(T; < 1) > &= min(t'/2 n).

Remarks. For part (i) we give a slightly fussy argument repeating ingredients
of the proof of Corollary 9, since these are needed for (ii). The point of (iv)
is to get a bound for t € F,T;. On the n-cycle, it can be shown that the
probability in question really is @(min(tlﬂ/n, 1)), uniformly in n and ¢.

Proof of Proposition 16. Choose a vertex b € A° at minimum distance
from 4, and let ¢ = 4g,%1,...,%;,%;41 = b be a minimum-length path. Let G*
be the subgraph on vertex-set A, and let G** be the subgraph on vertex-set
A together with all the neighbors of 7;. Write superscripts * and ** for the
random walks on G* and G**. Then

E; T4 < E;TH: = EZ'T;; + EZ'] 5%

The inequality holds because we can specify the walk on G in terms of the
walk on G** with possibly extra chances of jumping to A° at each step (this
is a routine stochastic comparison argument, written out as an example in
Chapter 14 yyy). The equality holds because the only routes in G** from i
to A° are via ¢;, by the minimum-length assumption. Now write £, &*, £
for the edge-sets. Using the commute interpretation of resistance,

ETT <2187 (20)

Writing ¢ > 1 for the number of neighbors of ¢; in A°, the effective resistance
in G** between ¢; and A° is 1/¢, so the commute interpretation of resistance
give the first equality in

1 E*
B, The =218 - 1= 2u +1<218+1< AP
q q
The neighbors of i, #1,...,7;_1 are all in A, so the proof of Lemma 10 implies
Jj < 3[Al/d (21)

where d is the degree of GG. Since 2|*| < d| A, the bound in (20) is at most
3]A|%, and part (i) follows.

12



For part (ii), by the electrical network analogy (Chapter 3 yyy) the
quantity in question equals

1

— - = W; .7Ac Id .,AC 22

where (7, A°) is the effective resistance in G between 7 and A°. Clearly this
effective resistance is at most the distance (j 4+ 1, in the argument above)
from ¢ to A°, which by (21) is at most 3|A[/d + 1. Thus the quantity (22)
is at most 3|A| 4 d, establishing the desired result in the case d < 2|A|. If
d > 2| A| then there are at least d —|A| edges from i to A°, so r(7, A°) < =

—[4]
and the quantity (22) is at most d—Lw <2 < 5|Al.

For part (iii), fix a state ¢ and an integer time t. Write N;(¢) for the
number of visits to i before time ¢, i.e. during times {0,1,...,Z —1}. Then
t
— = FE.Ni(t) < Pr(T; < t)E;Ni(1) (23)
n

the inequality by conditioning on T;. Now choose real s such that ns > t.
Since y; E;N;(t) = t, the set
A={j: E;N;(t) > s}
has |A] < t/s < n, so part (ii) implies
EiNi(Tse) < 5t/s. (24)
Now by regularity we can rewrite A as {j : £;N;(t) > s}, and so by condi-

tioning on T4c
E’Z'IVZ'(t) < EZ'IVZ'(TAc) + s.

Setting s = v/5¢ and combining with (24) gives (iii). The bound in (iv) now
follows from (iii) and (23).

4.1 Covering by multiple walks

The first application is a variant of work of Broder et al [10] discussed further
in section 8.2.

Proposition 17 On a regular n-vertex graph, consider K independent ran-
dom walks, each started at a uniform random vertex. Let C1K] be the time
until every vertex has been hit by some walk. Then

25 4 o(1))n?log* n

E [I(] < (
s K?

as n — oo with K > 6logn.

13



Remarks. The point is the 1%2 dependence on K. On the n-cycle, for K ~ en
it can be shown that initially the largest gap between adjacent walkers is
O(logn) and that ECIK] = @(log? n), so in this respect the bound is sharp.
Of course, for K < logn the bound would be no improvement over Theorem

4.
Proof. As usual write T; for the hitting time on i for a single walk, and
write TZ»[B] for the first time ¢ is visited by some walk. Then
PATI > 1) = (P > 1)

(1— P(T; < )"
exp(—K Pr(T; < t))

Ktl/?
eXp — 5n

by Proposition 16 (iii), provided ¢ < n?. So

IN

IN

) ) ~11/2
P(C 2 1) < 3T PT 2 1) < mexp (— i ) , t <t

hn
The bound becomes 1 for #5 = 215{752 log2 n. So
ECT = N pctF >y
i=1

hn

n2-1 S -
< Ttol 4+ Y mexp |- + > P >
t=n?2

t=[to]+1
= [to] + 51+ 52, say,

(25)

and the issue is to show that S; and S are o(fg). To handle S, split the set
of K walks into subsets of sizes K — 1 and 1. By independence, for ¢ > n?

we have P(CK] > 1) < P(CIE=1 > »2)P(CM > ). Then

99 P(C[K_l] > nQ)EC[l] by summing over ¢
nexp(—(K — 1)/5)-6n* by (25) and Theorem 4

= o(tp) using the hypothesis K > 6logn.

<
<

To bound 57 we start with a calculus exercise: for u > 1

/ exp(—ac1/2) de = / 2y exp(—y) dy by putting z = y?

2

14



IN

0 ~1
/ exp(— (u ) y) dy , using % < exp(% -1)

2u? exp(—u)
u—1

The sum S7 is bounded by the corresponding integral over [tg,o0) and
the obvious calculation, whose details we omit, bounds this integral by

2to/(logn — 1).
4.2 Bounding point probabilities

Our second application is to universal bounds on point probabilities. A quite
different universal bound will be given in Chapter yyy.

Proposition 18 For continuous-time random walk on a reqular n-vertex
graph,

P(X;=j) < 5t_1/2 t <n?
1 K4 —1 9
< —4+ —exp|—= ,t2>2mn
n n Koyn?

where K1 and K9 are absolute constants.

In discrete time one can get essentially the same result, but with the bounds
multiplied by 2, though we shall not give details (see Notes).
Proof. P;(X; = 1) is decreasing in ?, so

13
Pi(X;=1) < t_l/ Pi(X, = i)ds = t7 E;Ny(t) < 5712
0

where the last inequality is Proposition 16 (iii), whose proof is unchanged in
continuous time, and which holds for ¢ < n%. This gives the first inequality
when ¢ = 7, and the general case follows from Chapter 3 yyy.

For the second inequality, recall the definition of separation s(t) from
Chapter 4 yyy. Given a vertex ¢ and a time ¢, there exists a probability
distribution € such that

X, €)= (1—s(t)m + s(1)8.

Then for u > 0,

Pi(Xipw = j) — % = (1) <P9(Xu =) - 1) .



Thus, defining ¢(?) = max; ; (PZ'(Xt =j)— %), we have proved

alt +u) < s(t)g(w); tu> 0. (26)

Now ¢(n?) < 4/n by the first inequality of the Proposition, and 8(7'1(1)) =e !

by definition of Tl(l) in Chapter 4 yyy, so by iterating (26) we have

q(n? + mTl(l)) < % e, m>1. (27)

But by Chapter 4 yyy we have 7'1(1) < Kr7* for an absolute constant K,

(1)

and then by Corollary 9 we have 7; ' < 3Kn?. The desired inequality now
follows from (27).

4.3 A cat and mouse game

Here we reconsider the cat and mouse game discussed in Chapter 4 sec-
tion yyy. Recall that the cat performs continuous-time random walk on a
n-vertex graph, and the mouse moves according to some arbitrary determin-
istic strategy. Let M be the first meeting time, and let m* be the maximum
of EM over all pairs of initial vertices and all strategies for the mouse.

Proposition 19 On a reqular graph, m* < K N? for some absolute constant

Proof. The proof relies on Proposition 18, whose conclusion implies there
exists a constant K such that

+ KtV 0<t < oo.

3|

p(t) = max pu(t) <

Consider running the process forever. The point is that, regardless of the
initial positions, the chance that the cat and mouse are “together” (i.e. at
the same vertex) at time u is at most p*(u). So in the case where the cat
starts with the (uniform) stationary distribution,

P( together at time s ) = / f(u)P( together at time s|M = u) du
0

where f is the density function of M

| (s = wpda

Lpm<s) +& / Fu)(s — u)2du.
0

n

IN

IN
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So

3|~

t
= / P( together at time s ) ds by stationarity
0

1 t t 13

< —/ P(M < s)ds —I—K/ f(u)du/ (s —u)~"/2ds
n Jo 0 u
t o1t - [ 1/2

- Ll —/ P(M > s)d.s+21x/ Flu)(t = u)2du
n n Jo 0
t 1

< — — —Emin(M,t) 4+ 2K1/2,
n n

Rearranging, Emin(M,t) < 2Knt'/2. Writing o = (4Kn)?, Markov’s in-
equality gives P(M < tg) > 1/2. This inequality assumes the cat starts
with the stationary distribution. When it starts at some arbitrary vertex,
we may use the definition of separation s(u) (recall Chapter 4 yyy) to see

P(M < u+1ty) > (1 —s(u))/2. Then by iteration, EM < 21(%20)) So
(1)

appealing to the definition of 7 7,

- 2 (1)
m” < 1_6_1(t0+T1 )
But results from Chapter 4 and this chapter show 7'1(1) = O(7*) = O(n?),
establishing the Proposition.

5 Hitting time bounds and connectivity

The results so far in this chapter may be misleading in that upper bounds ac-
commodating extremal graphs are rather uninformative for “typical” graphs.
For a family of n-vertex graphs with n — oo, consider the property

™ = O(n). (28)

(in this order-of-magnitude discussion, 7* is equivalent to max, . F,1%).
Recalling from Chapter 3 yyy that 7 > 2(n — 1), we see that (28) is
equivalent to 7* = ©(n). By Matthews’ method (repeated as Theorem
26 below), (28) implies £C' = O(nlogn), and then by Theorem 31 we have
EC = O(nlogn). Thus understanding when (28) holds is fundamental to
understanding order-of-magnitude questions about cover times. But sur-
prisingly, this question has not been studied very carefully. An instructive
example in the d-dimensional torus (Chapter 5 Example yyy), where (28)
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holds iff d > 3. This example, and other examples of vertex-transitive graphs
satisfying (28) discussed in Chapter 8, suggest that (28) is frequently true.
More concretely, the torus example suggests that the following condition
(“the isoperimetric property in 2 + ¢ dimensions”) may be sufficient.

Open Problem 20 Show that for real 1/2 < v < 1 and é > 0, there exists
a constant K. s with the following property. Let G be a regular n-vertex
graph such that, for any subset A of vertices with |A| < n/2, there exist at
least 8| A|" edges between A and A°. Then t* < K. s n.

The v = 1 case is implicit in results from previous chapters. Chapter 3 yyy
gave the bound max; ; £;7; < 2max; E,;T;, and Chapter 3 yyy gave the
bound E,T; < 79/m;. This gives the first assertion below, and the second
follows from Cheeger’s inequality.

Corollary 21 On a regular graph,

max F, T, < 2nrmy < 16n7’3.
U,r

Thus the “expander” property that 72 = O(1), or equivalently that 7. =
O(1), is sufficient for (28), and the latter is the 7 = 1 case of Open Problem
20.

5.1 Edge-connectivity

At the other end of the spectrum from expanders, we can consider graphs
satisfying only a little more than connectivity.

xxx more details in proofs — see Fill’s comments.

Recall that a graph is r-edge-connected if for each proper subset A of
vertices there are at least r edges linking A with A°. By a variant of Menger’s
theorem (e.g. [13] Theorem 5.11), for each pair (a,b) of vertices in such a
graph, there exist r paths (a = v}, 0!, v5, .. .,'ani =b),i=1,...,r for which
the edges ('v;-, 'v;+1) are all distinct.

Proposition 22 For a r-edge-connected graph,

T2
o ()

(1)

2

where © is defined by
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i(i+1) G+ 1)(E+2)
2 7 2 '

P(+) is linear on

Note ¥(r) ~ V2r. So for a d-regular, d-edge-connected graph, the bound
becomes ~ 21/2d=1/2p? for large d, improving on the bound from Corollary
9. Also, the Proposition improves on the bound implied by Chapter 4 yyy
in this setting.

Proof. Given vertices a, b, construct a unit flow from a to b by putting
flow 1/7 along each of the r paths (a = v}, v%, v, .. .,‘vfm = b). By Chapter
3 Theorem yyy

E,Ty + EyT, < dn(1/r)*M

where M = ). m,; is the total number of edges in the r paths. So the
issue is bounding M. Consider the digraph of all edges (v},'v;+1). If this
digraph contained a directed cycle, we could eliminate the edges on that
cycle, and still create r paths from a to b using the remaining edges. So we
may assume the digraph is acyclic, which implies we can label the vertices
as a = 1,2,3,...,n = b in such a way that each edge (j,k) has & > j. So
the desired result follows from

Lemma 23 In a digraph on vertices {1,2,...,n} consisting of r paths 1 =

vy < v < vh < .. -V, = n and where all edges are distinct, the total number
of edges is at most ny(r).
Proof.

xxx give proof and picture.

Example 24 Take vertices {0,1,...,n — 1} and edges (i, + u mod n) for
all 7and all 1 < u < k.

This example highlights the “slack” in Proposition 22. Regard x as large
and fixed, and n — oo. Random walk on this graph is classical random
walk (i.e. sums of independent steps) on the n-cycle, where the steps have

variance 0% = %2221 u?, and it is easy to see
N n/2)*
75 = 2E0T 2y ~ ( ;2) = 0(n?/k?).

This is the bound Proposition 22 would give if the graph were ©(x?)-edge-
connected. And for a “typical” subset A such as an interval of length greater
than « there are indeed Q(x?%) edges crossing the boundary of A. But by con-
sidering a singleton A we see that the graph is really only 2x-edge-connected,
and Proposition 22 gives only the weaker O(n?/x'/?) bound.
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xxx tie up with similar discussion of 75 and connectivity being affected
by small sets; better than bound using 7. only.

5.2 Equivalence of mean cover time parameters

Returning to the order-of-magnitude discussion at the start of section 5, let
us record the simple equivalence result. Recall (cf. Chapter 4 yyy) we call
parameters equivalent if their ratios are bounded by absolute constants.

Lemma 25 The parameters max; F;CT, E.Ct, min; £;Ct, max; E;C and
E.C are equivalent for reversible chains, but min; F;C is not equivalent to
these.

Proof. Of the five parameters asserted to be equivalent, it is clear that
max; F;C is the largest, and that either min; E;C* or E,C is the smallest,
so it suffices to prove

max E,Ct <4E,.C (29)
max F;Ct < 3min E,CT. (30)
7 7

Inequality (30) holds by concatenating three “cover-and-return” cycles start-
ing at ¢ and considering the first hitting time on 7 in the first and third cycles.
In more detail, write

I'(s) = min{u > s: (X;: s <t < u) covers all states}.

For the chain started at ¢ write C*+ = I'(C*) and C**t+ = I'(C*1). Since
T; < C* we have I'(T;) < C*T*. So the chain started at time 7; has covered
all states and returned to j by time C*t*++ implying £;Ct < ECHT+ =
3E;C™. Tor inequality (29), recall the random target lemma: the mean time
to hit a m-random state V equals 19, regardless of the initial distribution.
The inequality

ECY <o+ E.C+ 1o+ ELT;

follows from the four-step construction:

(i) Start the chain at ¢ and run until hitting a 7-random vertex V' at time
Ty;

(ii) continue until time I'(7y);

(iii) continue until hitting an independent w-random vertex V';

(iv) continue until hitting 7.

But FE,T; < E.C, and then by the random target lemma 7o < F,C, so (29)
follows.
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For the final assertion, on the lollipop graph (Chapter 5 Example yyy)
one has min; F;,C = ©(n?) while the other quantities are ©(n?). One can
also give examples on regular graphs (see Notes).

6 Lower bounds

6.1 Matthews’ method

We restate Matthews’ method (Chapter 2 yyy) as follows. The upper bound
is widely useful: we have already used it several times in this chapter, and
will use it several more times in the sequel.

Theorem 26 For a general Markov chain,

max £,C < h,_; max E;T;.
v 27]

And for any subset A of states,

muin E,C > hjg—1 iij{n}geA ET;.

In Chapter 2 we proved the lower bound in the case where A was the entire
state space, but the result for general A follows by the same proof, taking
the J’s to be a uniform random ordering of the states in A. One obvious
motivation for the more general formulation comes from the case of trees,
where for a leaf [ we have min; £,T; = 1, so the lower bound with A being
the entire state space would be just h,_1. We now illustrate use of the more
general formulation.

6.2 Balanced trees

We are accustomed to finding that problems on trees are simpler than prob-
lems on general graphs, so it is a little surprising to discover that one
of the graphs where studying the mean cover time is difficult is the bal-
anced r-tree of height H (Chapter 5 Example yyy). Recall this tree has
n = (rf+1 —1)/(r — 1) vertices, and that (by the commute interpretation
of resistance)

E;T; = 2m(n — 1) for leaves (4, j) distance 2m apart.
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Now clearly F;T; is maximized by some pair of leaves, so max; ; ;T =
2H(n —1). Theorem 26 gives

max F,C <2H(n—1)h,—1 ~2Hnlogn.
To get a lower bound, consider the set S,, of r¥1=™ vertices at depth
H 4+ 1—m, and let A,, be a set of leaves consisting of one descendant of

each element of 5,,. The elements of A,, are at least 2m apart, so applying
the lower bound in Theorem 26

min £,C > max2m(n—1) kb rt1-m

~ 2nlogr maxm(H — m)
1
~ §H2nlog T.

It turns out that this lower bound is asymptotically off by a factor of 4,
while the upper bound is asymptotically correct.

Theorem 27 ([1]) On the balanced r-tree, as H — oo for arbitrary starting
vertez,
2H2rH+ 1 og r

EC ~2Hnlogn ~
r—1

Improving the lower bound to obtain this result is not easy. The natural
approach (used in [1]) is to seek a recursion for the cover time distribution
CH+Y) in terms of CH), But the appropriate recursion is rather subtle
(we invite the reader to try to find it!) so we won’t give the statement or
analysis of the recursion here.

6.3 A resistance lower bound

Our use of the commute interpretation of resistance has so far been only to
obtain upper bounds on commute times. One can also use “shorting” ideas
to obtain lower bounds, and here is a very simple implementation of that
idea.

Lemma 28 The effective resistance between r(v,z) between vertices v and
x in a weighted graph satisfies

1

r(v,z)

—_

S wU,;L‘ —I_ 1 1

Wy — Wy, x Wy — Wy, z
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In particular, on an unweighted graph

r(v,z) > d;—;dix__f if (v,z) is an edge
1 1

and on an unweighted d-regular graph

2
r(v,z) > P if (v,z) is an edge
2
> p if not .

So on an unweighted d-regular n-vertex graph,

2d
ET.+ ET, > y +n1 if (v,z) is an edge
> 2n if not .

Proof. We need only prove the first assertion, since the others follow by
specialization and by the commute interpretation of resistance. Let A be
the set of vertices which are neighbors of either v or z, but exclude v and =
themselves from A. Short the vertices of A together, to form a single vertex
a. In the shorted graph, the only way current can flow from v to z is directly
v — z or indirectly as v — @ — z. So, using ’ to denote the shorted graph,
the effective resistance r/(v,z) in the shorted graph satisfies

1 rog 1
= W —_—— .
’ v, 1 1
(v, x
(v, 2) w,, T w,
! _ ! _ ! _ : :
Now wy, ,, = Wey, Wy, = Wy — Wy and Wy = Wy — Wy g Since shorting

decreases resistance, 7'(v,z) < r(v,z), establishing the first inequality.

6.4 General lower bounds

Chapter 3 yyy shows that, over the class of random walks on n-vertex graphs
or the larger class of reversible chains on n states, various mean hitting
time parameters are minimized on the complete graph. So it is natural to
anticipate a similar result for cover time parameters. But the next example
shows that some care is required in formulating conjectures.
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Example 29 Take the complete graph on n vertices, and add an edge (v,[)
to a new leaf [.

Since random walk on the complete graph has mean cover time (n —1)h,_1,
random walk on the enlarged graph has

EC=14+(n—-1)h,_14+2u

where p is the mean number of returns to [ before covering. Now after each
visit to v, the walk has chance 1/n to visit [ on the next step, and so the
mean number of visits to [ before visiting some other vertex of the complete
graph equals 1/(n — 1). We may therefore write y in terms of expectations
for random walk on the complete graph as

1
po= 1Ev( number of visits to v before (')
TI/ j—

1
= 1EU( number of visits to v before C*)
n J—
1 1
= 1 —E,C* by Chapter 2 Proposition yyy
n—1mn

_ 1t by (12).
n

This establishes an expression for £;C, which (after a brief calculation) can

be rewritten as 9 .
EC = nh, — (1__> <hn——>.
n n

Now random walk on the complete (n 4 1)-graph has mean cover time nh,,,
so F;C is smaller in our example than in the complete graph.

The example motivates the following as the natural “exact extremal
conjecture”.

Open Problem 30 Prove that, for any reversible chain on n states,
E,TC Z (n - l)hn_l
(the value for random walk on the complete graph).

The related asymptotic question was open for many years, and was finally
proved by Feige [19].
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Theorem 31 For random walk on an unweighted n-vertex graph,
min £,C > ¢,
v

where ¢, ~ nlogn as n — .

The proof is an intricate mixture of many of the techniques we have already

described.

7 Distributional aspects

In many examples one can apply the following result to show that hitting
time distributions become exponential as the size of state space increases.

Corollary 32 Let 1,7 be arbitrary states in a sequence of reversible Markov
chains.
(i) If E;T;/1y — oo then

T,
Pr (Eqr]Tj >m) —e 7, 0< 2 <00

(i7) If £T;/m — oo and E;T; > (1 — o(1))E,T; then ET;/E;T; — 1 and

T,
P; (EZ%] >£C) —e 7, 0< 2 < o0

Proof. In continuous time, assertion (i) is immediate from Chapter 3 Propo-
sition yyy. The result in discrete time now holds by continuization: if
T; is the hitting time in discrete time and 77 in continuous time, then
E.T! = E,T; and T] — T; is order \/E,T;. Tor (ii) we have (cf. Chap-
ter 4 section yyy) 1; < U; + T7 where T; is the hitting time started at

i, T is the hitting time started from stationarity, and F;U; < 7'1(2). So
ET; < ET* + O(71), and the hypotheses of (ii) force ET;/ET? — 1 and
force the limit distribution of 7;/ET; to be the same as the limit distribu-
tion of T / ET?, which is the exponential distribution by (i) and the relation
< 7.0

In the complete graph example, C' has mean ~ nlogn and s.d. O(n),
so that C/EC — 1 in distribution, although the convergence is slow. The
next result shows this “concentration” result holds whenever the mean cover
time is essentially larger than the maximal mean hitting time.
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Theorem 33 ([2]) For states i in a sequence of (not necessarily reversible)
Markov chains,

v

e

ifEiC/T*eoothenPi(‘ —1‘>5)—>0,5>0.

The proof is too long to reproduce.

8 Algorithmic aspects

Many of the mathematical results in this chapter arose originally from algo-
rithmic questions, so let me briefly describe the questions and their relation
to the mathematical results.

8.1 Universal traversal sequences

This was one motivation for the seminal paper [3]. Consider an n-vertex d-
regular graph G, with a distinguished vertex vy, and where for each vertex v
the edges at v are labeled as 1,2,...,d in some way — it is not required that
the labels be the same at both ends of an edge. Now consider a sequence
i=(i1,42,...,i) € {1,...,d}". The sequence defines a deterministic walk
(z;) on the vertices of G via

o = Vg

(z;-1,z;) is the edge at z;_; labeled 7;.
Say 11is a traversal sequence for G if the walk (z; : 0 < i < L) visits every
vertex of G. Say 1is a universal traversal sequence if it is a traversal sequence
for every graph G in the set G, 4 of edge-labeled graphs with distinguished
vertices.

Proposition 34 (Aleliunas et al [3]) There exists a universal traversal
sequence of length (6e + o(1))dn®log(nd) as n — oo with d varying arbitrar-
ily.

Proof. 1t is enough to show that a uniform random sequence of that length
has non-zero chance to be a universal traversal sequence. But for such a
random sequence, the induced walk on a fixed G is just simple random walk
on the vertices of G. Writing ¢y = [6en?], Theorem 4 implies

E,C  6n?
'~ < — < ¢! for all initial »
to to

PU(C > to) <
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and so inductively (cf. Chapter 2 section yyy)
P, (C > Kty) < e X, K > 1 integer .
Thus by taking K sufficiently large that
e_K|gn7d| <1

there is non-zero chance that the induced walk on every G covers before
time Kty. The crude bound |G, 4] < (nd)™ means we may take K =
[ndlog(nd)].

8.2 Graph connectivity algorithms

Another motivation for the seminal paper [3] was the time-space tradeoff in
algorithms for determining connectivity in graphs. Here is a highly informal
presentation, illustrated by the two Mathematician graphs. The vertices are
all mathematicians (living or dead). In the first graph, there is an edge be-
tween two mathematicians if they have written a joint paper; in the second,
there is an edge if they have written two or more joint papers. A well known
Folk Theorem asserts that the first graph has a giant component containing
most famous mathematicians; a lesser known and more cynical Folk The-
orem asserts that the second graph doesn’t. Suppose we actually want to
answer a question of that type — specifically, take two mathematicians (say,
the reader and Paul Erdos) and ask if they are in the same component of
the first graph. Suppose we have a database which, given a mathematician’s
name, will tell us information about their papers and in particular will list
all their co-authors.

xxx continue story
Broder et al [10]

8.3 A computational question

Consider the question of getting a numerical value for E;C (up to error factor
1 t ¢, for fixed ¢) for random walk on a n-vertex graph. Using Theorem 1
it’s clear we can do this by Monte Carlo simulation in O(n®) steps.

xxx technically, using s.d./mean bounded by submultiplicitivity.

Open Problem 35 Can F;C be deterministically calculated in a polyno-
mial (in ») number of steps?
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It’s clear one can compute mean hitting times on a n-step chain in polynomial
time, but to set up the computation of F;C as a hitting-time problem one has
to incorporate the subset of already-visited states into the “current state”,
and thus work with hitting times for a n x 2"~ !-state chain.

9 Notes on Chapter 6

Attributions for what I regard as the main ideas were given in the text.
The literature contains a number of corollaries or variations of these ideas,
some of which I’ve used without attribution, and many of which I haven’t
mentioned at all. A number of these ideas can be found in Zuckerman
[29, 31], Palacios [27, 26] and the Ph.D. thesis of Sbihi [28], as well as papers
cited elsewhere.

Section 1. The conference proceedings paper [3] proving Theorem 1
was not widely known, or at least its implications not realized, for some
years. Several papers subsequently appeared proving results which are con-
sequences (either obvious, or via the general relations of Chapter 4) of The-
orem 1. I will spare their authors embarrassment by not listing them all
here!

The spanning tree argument shows, writing b. for the mean commute
time across an edge e, that

max F,CtT < min Z be.
SET

Coppersmith et al [15] give a deeper study and show that the right side is
bounded between v and 10v/3, where

() ()

The upper bound is obtained by considering a random spanning tree, cf.
Chapter yyy.

Section 2. The calculations in these examples, and the uniformity prop-
erty of V on the n-cycle, are essentially classical. For the cover time C, on
the n-cycle there is a non-degenerate limit distribution n=2C,, 2 . From
the viewpoint of weak convergence (Chapter yyy), C is just the cover time
for Brownian motion on the circle of unit circumference, and its distribution
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is known as part of a large family of known distributions for maximal-like
statistics of Brownian motion: Imhof [23] eq. (2.4) gives the density as

[ 2
12— — m
fo(t) = 2327 =1/24=3/2 m§:1(—1) Im? eXp(—g).

Sbihi [28] gives a direct derivation of a different representation of fc.

Section 4. Use of Lemma 10 in the random walk context goes back at
least to Flatto et al [21].

Barnes and Feige [5] give a more extensive treatment of short-time
bounds in the irregular setting, and their applications to covering with mul-
tiple walks (cf. Proposition 17 and section 8.2). They also give bounds on
the mean time taken to cover u different edges or v different vertices — their
bound for the latter becomes O(v%logv) on regular graphs.

Proposition 18 implies that on an infinite regular graph P;(X; = j) <
Kt=/2. Carlen et al [11] Theorem 5.14 prove this as a corollary of results
using more sophisticated machinery. Our argument shows the result is fairly
elementary. In discrete time the analog of the first inequality can be proved
using the “CM proxy” property than P;(Xg; = 1)+ Pi( X241 = @) is decreas-
ing, but the analog of the second inequality requires different arguments
because we cannot exploit the Tl(l) inequalities.

Section 5. Variations on Corollary 21 are given in Broder and Karlin [9]
and Chandra et al. [12].

Upper bounds on mean hitting times imply upper bounds on the relax-
ation time 75 via the general inequalities 7 < 79 < %T*. In most concrete
examples these bounds are too crude to be useful, but in “extremal” settings
these bounds are essentially as good as results seeking to bound 7 directly.
For instance, in the setting of a d-regular r-edge-connected graph, a direct
bound (Chapter 4 Proposition yyy) gives

d dn?
T L ———— ~ ——.

= 4rsin? 7 T2p

Up to the numerical constant, the same bound is obtained from Proposition
22 and the general inequality 75 < 7%/2.

xxx contrast with potential and Cheeger-like arguments ?

To sketch an example of a regular graph where min; F;C' has a different
order than max; F;C, make a regular m; 4+ mo-vertex graph from a mq-
vertex graph with mean cover time ©(m;logm,) and a mgy-vertex graph
(such as the necklace) with mean cover time ©(m3), for suitable values
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of the m’s. Starting from a typical vertex of the former, the mean cover
time is ©(mqlogmy + mimg + m%) whereas starting from the unattached
end of the necklace the mean cover time is @(mqlogm; + m2). Taking
my log my + m3) = o(mymy) gives the desired example.

Section 6. The “subset” version of Matthews’ lower bound (Theorem 26)
and its application to trees were noted by Zuckerman [31], Sbihi [28] and
others. As well as giving a lower bound for balanced trees, these authors give
several lower bounds for more general trees satisfying various constraints (cf.
the unconstrained result, Proposition 7). As an illustration, Devroye - Shihi
[16] show that on a tree

(14 o(1))nlog*n
2log(d* — 1)

H%]in E,C > if d* = mUaXdU = pol),

I believe that the recursion set-up in [1] can be used to prove Open
Problem 35 on trees, but I haven’t thought carefully about it.

The “shorting” lower bound, Lemma 28, was apparently first exploited
by Coppersmith et al [15].

Section 7. Corollary 32 encompasses a number of exponential limit re-
sults proved in the literature by ad hoc calculations in particular examples.

Section 8.1. Proposition 34 is one of the neatest instances of “Erdos’s
Probabilistic Method in Combinatorics”, though surprisingly it isn’t in the
recent book [4] on that subject. Constructing explicit universal traversal
sequences is a hard open problem: see Borodin et al [6] for a survey.

Section 8.2. See [10] for a more careful discussion of the issues. The
alert reader of our example will have noticed the subtle implication that the
reader has written fewer papers than Paul Erdos, otherwise (why?) it would
be preferable to do the random walk in the other direction.

Miscellaneous. Condon and Hernek [14] study cover times in the follow-
ing setting. The edges of a graph are colored, a sequence (¢;) of colors is
prespecified and the “random walk” at step t picks an edge uniformly at
random from the color-¢; edges at the current vertex.
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