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Much of the theory of algorithms deals with algorithms on graphs; con-
versely, much of the last twenty years of graph theory research pays atten-
tion to algorithmic issues. Within these large fields random walks play a
comparatively small role, but they do enter in various quite interesting and
diverse ways, some of which are described in this chapter. One theme of
this chapter is properties of random walks on expander graphs, introduced
in sections 1.1 and 1.2. Some non-probabilistic properties of graphs can be
explained naturally (to a probabilist, anyway!) in terms of random walk:
see section 2. Section 3 reviews the general idea of randomized algorithms,
and in section 4 we treat a diverse sample of randomized algorithms based
on random walks. Section 5 describes the particular setting of approximate
counting, giving details of the case of self-avoiding walks. (xxx details not
written in this version).

For simplicity let’s work in the setting of regular graphs. Except where
otherwise stated, G is an n-vertex r-regular connected graph,

-1
Pow =T L, ) is an edge)

is the transition matrix for discrete-time random walk on G (so P = r='A
for the adjacency matrix A) and 1 = Ay > Ay > ... > A, > —1 are its
eigenvalues, and 7, = 1/(1 — Ag).



1 Expanders

1.1 Definitions

The Cheeger time constant 7. discussed in Chapter 4 section 5.1 (yyy 10/11/94
version) becomes, for a r-regular n-vertex graph,
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where £(A, A°) is the set of edges from a proper subset A of vertices to its
complement A°. Our version of Cheeger’s inequality is (Chapter 4 Corollary
37 and Theorem 40) (yyy 10/11/94 version)

T. <1y < 87'62. (1)

Definition. An ezpander family is a sequence G, of r-regular graphs (for
some fixed r > 2), with n — oo through some subsequence of integers, such
that
sup 7.(G,) < o0
n

or equivalently (by Cheeger’s inequality)

sup 72(G) < o0.

One informally says “expander” for a generic graph G, in the family. The
expander property is stronger than the rapid mizing property exemplified
by the d-cube (Chapter 5 Example 15) (yyy 4/23/96 version). None of the
examples in Chapter 5 is an expander family, and indeed there are no known
elementary examples. Certain random constructions of regular graphs yield
expanders: see Chapter 30 Proposition 1 (yyy 7/9/96 version). Explicit
constructions of expander families, in particular the celebrated Ramanujan
graphs, depend on group- and number-theoretic ideas outside our scope: see
the elegant monograph of Lubotzky [40].

Graph parameters like 7. are more commonly presented in inverted form
(i.e. like 1/7.) as coefficients of expansion such as

|E(A, A%)]
A r min(|A],|A?])

h = (2)



A more familiar version ([17] page 26) of Cheeger’s inequality in graph theory
becomes, on regular graphs,

h*/2 < 1— Ay < 2h. (3)

Since trivially 7. < 1/h < 27, the two versions agree up to factors of 2.
Inequalities involving coefficients of expansion are often called isoperimetric
inequalities. Expanders and isoperimetric inequalities have been studied
extensively in graph theory and the theory of algorithms, e.g. Chung [17]
Chapters 2 and 6, the conference proceedings [26], and the introduction of
Lubotzky [40].

One algorithmic motivation for Cheeger-type inequalities concerns com-
putational complexity of calculating parameters like 7. amd h. Using the
definition directly requires exponential (in n) time; but because eigenvalues
can be calculated in polynomial time, these general inequalities imply that
at least crude bounds can be computed in polynomial time.

1.2 Random walk on expanders

If we don’t pay attention to numerical constants, then general results about
reversible chains easily give us the orders of magnitude of other hitting and
mixing time parameters for random walks on expanders.

Theorem 1 For random walk on an expander family, as n — oo

1 = O(logn) (4)
n = O(n) (5)
™ = 0O(n) (6)

( (7)

sup F,C' = O(nlogn)

Proof. Recall the general inequality between 7 and 75 (Chapter 4 Lemma
23) (yyy 10/11/94 version), which on a regular graph becomes

71 < 12(1+ % logn). (8)

This immediately gives the upper bound 7 = O(logn). For the lower bound,
having bounded degree obviously implies that the diameter A of the graph
satisfies A = Q(logn). And since the mean distance between an initial
vertex v and the position X of the walk at a stopping time T is at most
ET, the definition of 71(2) implies d(v,w) < 27'1(2) for any pair of vertices,



that is 71(2) > A/2. This establishes (4). The general Markov chain fact
0 = Q(n) is Chapter 3 Proposition 14 (yyy 1/26/93 version). Chapter 4
Lemma 25 gives 79 < 2n7y5. Combining these and the obvious inequality
10 < 7°/2 establishes (5,6). Finally, the lower bound in (7) follows from
the general lower bound in Chapter 6 Theorem 31 (yyy 10/31/94 version),
while the upper bound follows from the upper bound on 7* combined with
Chapter 2 Theorem 36 (yyy 8/18/94 version). m

In many ways the important aspect of Theorem 1 is that 7-type mixing
times are of order logn. We spell out some implications below. These hold
for arbitrary regular graphs, though the virtue of expanders is that 5 is

bounded.

Proposition 2 There exists constants Ky, Ky such that the following in-
equalities hold on any regular graph.

(i) For each vertex v there exists a stopping time T, such that P,(X (T,) €
-) is uniform and F,T, < K172 logn.

(ii) For lazy random walk X, (with hold-probability 1/2)

PU()?t =w) > %(1 - 2%) for allt > jKymylogn and all vertices v, w.

Proof. Part (i) is just the definition of 7'1(2), combined with (8) and the fact
71(2) =0(n).

yyy relate (i) to Chapter 4 section 3.3 m

Repeated use of (i) shows that we can get independent samples from 7
by sampling at random times 13,75, 15, ... with E(T;41 —1;) < Kimylogn.
Alternatively, repeated use of (ii) shows that we can get almost indepen-
dent samples from 7 by examining the lazy chain at deterministic times, as
follows.

Corollary 3 Fizjandletty > jKymlogn. Write (Yi,...,Yr) = (Xigs -y Xito)-
Then

P(YI :yh"'aYL:yL) 2 n_L(l_ 2%)7 Jor all Lyyi, ... yL
the variation distance between dist(Yy,...,Yr) and mx...x7 is at most L/27.

Examining the lazy chain at deterministic times means sampling the original
walk at random times, but at bounded random times. Thus we can get L
precisely independent samples using (i) in mean number K LT log n of steps,
but without a deterministic upper bound on the number of steps. Using
Corollary 3 we get almost independent samples (up to variation distance ¢)
in a number of steps deterministically bounded by Ky log(L /) log n.



1.3 Counter-example constructions

Constructions with expanders are often useful in providing counter-examples
to conjectures suggested by inspecting properties of random walk on the
elementary examples of graphs in Chapter 5. For example, consider upper
bounds on 7y in terms of 7, and n, in our setting of regular graphs. From

general results for reversible chains in Chapter 4 (10/11/94 version: Lemma
24 and below (9))

max(7z, £n_;1ﬁ) <o < (n—1)m.
The examples in Chapter 5 are consistent with a conjecture
70 =" O(max(n, 75) logn) 9)

where the logn term is needed for the 2-dimensional torus. We now outline
a counter-example.

Take m copies on the complete graph on m vertices. Distinguish one
vertex v; from each copy 7. Add edges to make the (v;) the vertices of a
r-regular expander. For this graph G, we have, as m — oo with fixed r,

n=m? = O(m’); 70 = O(m?)

contradicting conjecture (9). We leave the details to the reader: the key
point is that random walk on G, may be decomposed as random walk on
the expander, with successive steps in the expander separated by sojourns
of times ©(m?) within a clique.

2 Eigenvalues and graph theory

Our treatment of the relaxation time 75 in Chapter 4 emphasized prob-
abilistic interpretations in the broad setting of reversible Markov chains.
Specializing to random walk on unweighted graphs, there are a range of
non-probabilistic connections between eigenvalues of the adjacency matrix
and other graph-theoretic properties. Such spectral graph theory is the sub-
ject of Chung [17]: we shall just give a few results with clear probabilistic
interpretations.

2.1 Diameter of a graph

Implicit in the proof of Theorem 1 is that, on a regular graph, the diameter
A satisfies A = O(1) = O(mzlog n). By being a little careful we can produce
numerical constants.
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Proposition 4 A/2 < 2 .

Proof. The discrete analog 70 of variation threshold satisfies

rilise > A /2, (10)
because obviously
if d(v,w)=A and t < A/2 then ||P,(X; € ) — P,(X; € -)||=1. (11)
Chapter 4 Lemma 26 (yyy 10/11/94 version) specializes to
T{jisc < "1 + %logn
log 1/5

We can remove dependence on A, by the trick of introducing artificial holds.
(yyy tie up with Chapter 4 section 3.3). The chain with transition matrix
P == 01 + (1 — 0)P has eigenvalues X = 6 4 (1 — 6)A;. Choosing 6 =
(1 —A2)/(3 = Az), (this being the value making Ay = —X! in the worst case
6, = —1), we have

-‘ , B=max(Az, —A,). (12)

1+Ao _ ot v/ !
3_)\2 — ﬁ - >‘2 Z _/\n'

Since (10) still holds for the Markov chain P’, combining (10) and (12) with
(' establishes the Proposition.

2.2 Paths avoiding congestion

Upper bounding 7 via the distinguished paths technique (Chapter 4 section
4.3) (yyy 10/11/94 version) is a valuable theoreticial technique: the essence
is to choose paths which “avoid congestion”. In the opposite direction, one
can use upper bounds on mixing times to show existence of paths which
avoid congestion. Here’s the simplest result of this type. The first part
of the proof repeats an idea from Chapter 4 Lemma 21 (yyy new part of
Lemma to be added).

Proposition 5 Letv(1),v(2),...,v(n) be any ordering of the vertices 1,2, . ..

of a r-reqular graph. Then there exists, for each 1 < i < n, a path from 1 to
v(t) such that, writing N, for the number of times the directed edge (v, w)
is traversed in all the paths,

max N, < 7max (67'1(2)/7“, log n) .

(va)



So on an expander the bound is O(logn), using (4).

Proof. By definition of 7'1(2)7 for each vertex ¢ there is a segment of the
chain ¢ = X(gz),Xl(Z), .. .,X[(;i) such that FU; < 7'1(2) and X[(;i) has uniform
distribution. Take these segments independent as ¢ varies. Write va for
the (random) number of times that (v, w) is traversed by all these random
paths. By considering a uniform random start, by (yyy tie up with Chapter
2 Proposition 3)

LEN,, =L+ > Llpu.
k3

In particular, FN,, < 71(2)/7“ := k. By erasing loops we may contract each
path to a path in which no directed edge is traversed twice. For fixed (v, w)
let p; be the chance that (v, w) is traversed by the contracted path from
vertex i and let N/  be the total number of traversals. By independence of
paths as ¢ varies,

P(‘N{Ju} Z m)

INA

(sz) /m!  (expand the sum)

K™ /m! < (ek/m)™.

A

Choosing m = [3 max(ex, logn)] makes the bound less that 1/(2r?) and so

P (maXNéw > m) < 1/2.

(va)

Now repeat the entire construction to define another copy (Yt(i), 0<t<V))

of chain segments with traversal counts N//,. Since X[(}i) and Y‘SL,U(Z)) have the
same uniform distribution, for each 7 we can construct the chain segments
jointly such that Xl(}i) = Y‘,(;(Z)). Concatenating paths gives a (non-Markov)
random path from ¢ to v(¢). Then

P (maXNéw + N/, > Qm) <1

v

and so paths with the maximum < 2m — 1 must exist. m

Broder et al. [13] give a more elaborate algorithm for constructing edge-
disjoint paths between specified pairs {(a;, b;),1 < ¢ < k}) of distinct vertices
on an expander, for k = n'=°(1), The essential idea is to first pick a set S of
4k vertices at random, then use a greedy algorithm to construct (as in the



proof above) paths from each @; and b; to some a; and 132 in .S, then for each
i construct a bundle of random walk paths from @; to b;, and finally show
that one path may be selected from each bundle so that the set of paths is
edge-disjoint.

3 Randomized algorithms

3.1 Background

Here we give some background for the mathematician with no knowledge
of the theory of algorithms. Typically there are many different possible
algorithms for a particular problem; the theory of algorithms seeks “optimal”
algorithms according to some notion of “cost”. Cost is usually “time”,
i.e. number of computational steps, but sometimes involves criteria such
as (storage) space or simplicity of coding. The phrase randomized algorithm
refers to settings where the problem itself does not involve randomness but
where randomness is introduced into the running of the algorithm. Why this
is useful is best seen by example; the textbook of Motwani and Raghavan [41]
provides a comprehensive range of examples and classifications of types of
problems where randomized algorithms have proved useful. We give three
standard examples below (not using Markov chains) and then proceed to
talk about algorithms using random walks on graphs.

Example 6 Statistical sampling.

Consider a population of n individuals. Suppose we wish to know the pro-
portion ¢ of the population with some attribute, i.e. who answer “Yes” to
some Yes/No question. To calculate ¢ exactly we need to question all n
individuals. But if we can sample uniformly at random from the popula-
tion, then we can estimate ¢ approximately and can bound the size of error
in probability. To do this, we sample independently k£ random individuals,
question them, and calculate the empirical proportion ¢ of Yes answers. Use
¢ as our estimate of ¢, and theory gives error probabilities

P(1g—ql > 2(q(1 - 9)"*k7?) ~ 5%.

Such 95% confidence intervals are discussed in every freshman statistics
course. Classical statististical sampling is conceptually a bit different from
algorithms, in that the “cost” k here refers to real-world costs of interviewing
human individuals (or experimenting on individual rats or whatever) rather



than to computational cost. However, the key insight in the formula above
is that, for prescribed allowable error e, the cost of this simple random
sampling is O(¢72) and this cost does not depend on the “problem size”
(i.e. population size) n. The next example is a slightly more subtle use of
sampling in a slightly more algorithmic context.

Example 7 Size of a union of sets.

It’s fun to say this as a word problem in the spirit of Chapter 1. Suppose
your new cyberpunk novel has been rejected by all publishers, so you have
published it privately, and seek to sell copies by mailing advertizements to
individuals. So you need to buy mailing lists (from e.g. magazines and
specialist bookshops catering to science fiction). Your problem is that such
mailing lists might have much overlap. So before buying L lists Ay,..., Af,
(where A; is a set of |A4;| names and addresses) you would like to know
roughly the size |U; A;| of their union. How can you do this without knowing
what the sets A; are (the vendors won’t give them to you for free)? Statistical
sampling can be used here. Suppose the vendors will allow you to randomly
sample a few names (so you can check accuracy) and will allow you to
“probe” whether a few specified names are on their list. Then you can
sample £ times from each list, and for each sampled name X;; probe the
other lists to count the number m(X;;) > 1 of lists containing that name.
Consider the identity

|U; Ail = ZlAil < | AT Y 1/moa)

aEA;

= >_lAil (/M)

where M; is the number of lists containing a uniform random name from
A;. You can estimate F(1/M;) by k™! Z;?:l 1/m(X;;), and the error has

standard deviation < k~'/2, and the resulting estimate of | U; A;| has error

iO((Z |A:2/ k)Y = +0 (k2L max |A;]).

As in the previous example, the key point is that the cost of “approximately
counting” U; A; to within a small relative error does not depend on the size
of the sets.

Example 8 Solovay-Strassen test of primality [}3].



We can’t improve on the concise description given by Babai [10].

Let » > 1 be an odd integer. Call an integer w a Solovay-
Strassen witness (of compositeness of n) if 1 < w < n —1 and
cither g.c.d.(w,n) > 1 or w»™1/2 £ (%) mod n, where (%) is
the Jacobi symbol (computed via quadratic reciprocity as easily
as g.c.d.’s are computed via Euclid’s algorithm). Note that no
S-S witness exists if n is prime. On the other hand (this is
the theorem) if n is composite, then at least half of the integers
1,2,...,n — 1 are S-S witnesses.

Suppose now that we want to decide whether or not a given
odd 200-digit integer n is prime. Pick k integers wy, ..., wy inde-
pendently at random from {1,2,...,n— 1}. If any one of the w;
turns out to be a witness, we know that n is composite. If none
of them are, let us conclude that n is prime. Here we may err,
but for any n, the probability that we draw the wrong conclu-
sion is at most € = 27F. Setting & = 500 is perfectly realistic, so
we shall have proven the mathematical statement “n is prime”
beyond the shade of doubt.

3.2 Overview of randomized algorithms using random walks
or Markov chains

Our focus is of course on randomized algorithms using random walks or
Markov chains. We will loosely divide these into three categories. Markov
chain Monte Carlo seeks to simulate a random sample from a (usually non-
uniform) given probability distribution on a given set. This is the central
topic of Chapter 11. In section 4 below we give a selection of miscellaneous
graph algorithms. Into this category also falls the idea (Chapter 6 section
8.2) (yyy 10/31/94 version; details to be written) of using random walk as a
“undirected graph connectivity” algorithm, and the idea (end of section 2.2)
of using random walk paths as an ingredient in constructing edge-disjoint
paths in an expander graph. A third, intermediate category is the specific
topic of approximate counting via Markov chains, to be discussed in section

5.
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4 Miscellaneous graph algorithms

4.1 Amplification of randomness

In practice, Monte Carlo simulations are done using deterministic pseudo-
random number generators. Ideally one would prefer some physical device
which generated “truly random” bits. Presumably any such physical random
number generator would be rather slow compared to the speed of arithmeti-
cal calculations. This thinking has led to an area of theory in which the cost
of a randomized algorithm is taken to be the number of truly random bits
used.

Recall the Solovay-Strassen test of primality in Example 8. Philosoph-
ically, there is something unsettling about using a deterministic pseudo-
random number generator in this context, so we regard this as a prototype
example where one might want to use a hypothetical source of truly random
bits. To pick a uniform random integer from {1,2,...,n} requires about
log, n random bits, so the cost of the algorithm as presented above is about
klogyn = (logy 1/¢) (logy n) bits, where ¢ is the prescribed allowable error
probability. But one can use the existence of explicit expanders and results
like Lemma 12 to devise an algorithm which requires fewer truly random
bits. Suppose we have a n-vertex r-regular expander, and label the vertices
{1,2,...,n}. To simulate a uniform random starting vertex and ¢ steps of
the random walk requires about logy n + ¢ log, r bits. The chance that such
a walk never hits the set A of witnesses is, by Lemma 12, at most exp(—%).
To make this chance < ¢ we take t = 27, log(1/¢), and the cost becomes
logy n + 2713 (logy ) log(1/e). Thus granted the existence of expanders on
which we can efficiently list neighbors of any specified vertex in order to sim-
ulate the random walk, the method of simulating (dependent) integers (w;)
via the random walk (instead of independently) reduces the number of truly
random bits required from O((logn) x (log1/¢e)) to O(max(logn, log1/e)).

The idea of using random walks on expanders for such algorithmic pur-
poses is due to Ajtai et al [2]. Following Impagliazzo and Zuckerman [29]
one can abstract the idea to rather general randomized algorithms. Suppose
we are given a randomized algorithm, intended to show whether an object
x € X has a property P by outputting “Yes” or “No”, and that for each z
the algorithm is correct with probability > 2/3 and uses at most b random
bits. Formally, the algorithm is a function A : X x {0,1}> — {Yes,No} such
that

if z € P then 27°|{i € {0,1}": A(z,1) = YES}| > 2/3

11



if ¢ P then 27°1{i € {0,1}": A(z,i) = YES}| < 1/3

where P C X is the subset of all objects possessing the property. To make
the probability of incorrect classification be < ¢ we may simply repeat the
algorithm m times, where m = ©(log1/¢) is chosen to make

P(Binomial(m,2/3) < m/2) < ¢,

and output Yes or No according to the majority of the m individual outputs.
This requires bm = ©(blog1/e) random bits. But instead we may take
{0, 1} as the vertices of a degree-r expander, and simulate a uniform random
starting vertex and m steps of random walk on the expander, using about
b+ mlog, r random bits. For each of the m + 1 vertices of {0,1}° visited by
the walk (Y;,0 < i < m), compute A(z,Y;), and output Yes or No according
to the majority of the m + 1 individual outputs. The error probability is at
most

Nmt1(B
m];u(P7r (ﬁ(l) —-n(B) > %)

where Ny, 11(B) is the number of visits to B by the walk (Y;,0 < i < m).
By the large deviation bound for occupation measures (Theorem 11, yyy to
be moved to other chapter) this error probability is at most

(14 e1m/72) exp(—cam/T2)

for constants ¢; and ¢;. To reduce this below € requires m = 0(7; log(1/¢)).
Thus the existence of (bounded-degree) expanders implies that the number
of random bits required is only

b+ mlog, r = O(max(b, log1/e))

compared to O(blog(1/¢)) using independent sampling.

4.2 Using random walk to define an objective function

In Chapter 6 section 8.2 (yyy currently at end of this Chapter; to be moved)
we gave a standard use of the probabilistic method Here is a less standard
use, from Aldous [4], where we use the sample path of a random walk to
make a construction.

Consider a function h defined on the vertices of a n-vertex graph G.
Constrain h to have no local minima except the global minimum (for sim-
plicity, suppose the values of h are distinct). We seek algorithms to find

12



the vertex v at which A(v) is minimized. Any deterministic “descent” al-
gorithm will work, but it might work slowly. Could there be some more
sophisticated algorithm which always works quickly? One idea is multi-start
descent. Pick n'/? vertices uniformly at random; from these, choose the
vertex with minimum h-value, and follow the greedy descent algorithm. On
a degree-d graph, the mean time is O(dnlﬂ). Now specialize to the case
where (G is the d-cube. One can give examples where single-start (from a
uniform random start) descent has mean time Q(2(1=9)9), so from a worst-
case mean-time viewpoint, multi-start is better. The next theorem shows
that (again from a worst-case mean-time viewpoint), one cannot essentially
improve on multi-start descent. Consider random walk on the d-cube started
at a uniform random vertex U and let H(v) be the first hitting time on v.
Then H is a random function satisfying the constraint, minimized at v = U,
but

Theorem 9 ([3]) Every algorithm for locating U by examining values H (v)
requires examining a mean number Q(Qdﬂ_e) of vertices.

The argument is simple in outline. As a preliminary calculation, consider
random walk on the d-cube of length ty = O(2%/27%), started at 0, and let
L, be the time of the last visit to v, with L, = 0 if v is not visited. Then

EL, < f:tpo(X(t) =v) = 0(1) (13)

t=1

where the O(1) bound holds because the worst-case v for the sum is v = 0
and, switching to continuous time,

J

Now consider an algorithm which has evaluated H(v),..., H(v,) and
write tg = min;<,, H(v;) = H(v*) say. It does no harm to suppose ty =
O(2%2-#). Conditional on the information revealed by H(vy),..., H(vy),
the distribution of the walk (X (#);0 <t < tg) is specified by
(a) take a random walk from a uniform random start U, and condition on
X (tg) = v*;

(b) condition further on the walk not hitting {v;} before time #g.
The key point, which of course is technically hard to deal with, is that the
conditioning in (b) has little effect. If we ignore the conditioning in (b), then

9d/2

tPo(X(t) = 0) dt:/ t

2d/2 1+ e—2t/d
0

d
) dt = 0(1).

13



by reversing time we see that the random variables (H (v*) — H(v))™ have
the same distribution as the random variables L, (up to vertex relabeling).
So whatever vertex v the algorithm chooses to evaluate next, inequality (13)
shows that the mean improvement E(H (v*) — H(v))" in objective value is
O(1), and so it takes Q(2%/2-%) steps to reduce the objective value from
24/2=¢ 10 0.

4.3 Embedding trees into the d-cube

Consider again the d-cube I = {0,1}? with Hamming distance d(i,j). Let
B be the vertices of a M-vertex binary tree. For an embedding, i.e. an
arbitrary function p : B — I, define

load = max {v e B:p(v)=1i}|
ie

dilation edges E?J?i}) of B d(p(v), p(w)).
How can we choose an embedding which makes both load and dilation small?
This was studied by Bhatt and Cai [11], as a toy model for parallel com-
putation. In the model I represents the set of processors, B represents the
set of tasks being done at a particular time, the tree structure indicating
tasks being split into sub-tasks. To assign tasks to processors, we desire
no one processor to have many tasks (small load) and we desire processors
working on tasks and their sub-tasks to be close (small dilation) to facil-
itate communication. As the computation proceeds the tree will undergo
local changes, as tasks are completed and new tasks started and split into
sub-tasks, and we desire to be able to update the embedding “locally” in
response to local changes in the tree. Bhatt and Cai [11] investigated the
natural random walk embedding, where the root of B is embedded at 0, and
recursively each child w of v is embedded at the vertex p(w) found at step L
(for even L) of a random walk started at p(v). So by construction, dilation
< L, and the mathematical issue is to estimate load. As before, the de-
tails are technically complicated, but let us outline one calculation. Clearly
load = Q(max(1, M/2%), so we would like the mean number of vertices of
B embedded at any particular vertex i to be O(max(1, M/29)). In bound-
ing this mean, because ppi(t) < poo(t) for even ¢t (Chapter 7 Corollary 3)
(yyvy 1/31/94 version) we see that the worst-case i is 0, and then because
poo(t) is decreasing in ¢ we see that the worst-case M-vertex binary tree is

14



a maximally balanced tree. Thus we want

log, M

> 2poo(kL) = O(max(1, M/27)). (14)
k=0

From the analysis of random walk on the d-cube (Chapter 5 Example 15)
(yvy 4/23/96 version) one can show

poo(klogd) = O(max(d=*,27%), uniformly in k,d > 1.

It follows that (14) holds if we take L = [logd].

Of course to bound the load we need to consider the maximally-loaded
vertex, rather than a typical vertex. Considering M = 2¢ for definiteness, if
the M vertices were assigned independently and uniformly, the mean load
at a typical Veltex would be 1 and classical arguments show the maximal
load would be @( 7). We have shown that with tree-embedding the mean
load at a typical Vertex is O(1), so analogously one can show the maximal
load is O(d/logd). However, [11] shows that by locally redistributing tasks
assigned to the same processor, one can reduce the maximal load to O(1)
while maintaining the dilation at O(logd).

4.4 Comparing on-line and off-line algorithms

Here we describe work of Coppersmith et al [19]. As in Chapter 3 section 2
(yvy 9/2/94 version) consider a weighted graph on n vertices, but now write
the edge-weights as ¢;; = ¢;; > 0 and regard them as a matrix C of costs.
Let P be the transition matrix of an irreducible Markov chain whose only
transitions are along edges of the graph. For each i and j let m(i, j) be the
mean cost of the random walk from 7 to j, when traversing an edge (v, w)
incurs cost ¢,,,. Define the stretch s(P,C) to be the smallest s such that

there exists a < oo such that, for arbitrary vg, vy, ..., vg
- k-1
Z (03, 0i41) <A+ S Y vy - (15)
=0 =0

Note that ¢(P, C) is invariant under scaling of C.

Proposition 10 ([19]) (a) s(P,C) > n — 1.
(b) If P is reversible and C is the matriz of mean commute times E;T;+
E;T; then s(P,C)=n — 1.
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(¢) For any cost matriz C there exists a reversible transition matriz P
with matriz C of mean commute times such that, for some constant «,

cij < ot
Cij = 61452']‘ when Dij > 0.
So from (b) and invariance under scaling, s(P,C) =n — 1.

We shall prove (a) and (b), which are just variations of the standard theory
of mean hitting times developed in Chapters 2 and 3. The proof of part
(c) involves “convex programming” and is rather outside our scope. The
algorithmic interpretations are also rather too lengthy to give in detail, but
are easy to say in outline. Imagine a problem where it is required to pick a
minimum-cost path, where the cost of a path consists of costs of traversing
edges, together with extra costs and constraints. There is some optimal off-
line solution, which may be hard to calculate. In such a problem, one may
be able to use Proposition 10(c) to show that the algorithm which simply
picks a random sample path (with transition matrix P from (c)) has mean
cost not more than » — 1 times the cost of the optimal path.

Proof. Write 7 for the stationary distribution of P. Write m™ (v, v) for
the mean cost of an excursion from v to v, and write ¢ = >, >, ToPuvw Cow-
Then m™* (v, v) = ¢/, by the ergodic argument (Chapter 2 Lemma 30) (yyy
8/18/94 version). and so

nc = Zﬂ-v’rn’—}_ (’U, ’U)
= Z Ty vaw(cv,w + m(lw7 U))
= E—Fzzﬂ'upvwm(wvv)‘

In other words,

ZZ TwPuwvm (v, w) = (n — 1)e. (16)

v

Now apply the definition (15) of s(P,C) to the sequence of states visited
by the stationary time-reversed chain P*; by considering the mean of each

step,
Z Z TuPpwm(v, w) < s(P, C) ZZ oD Conw- (17)
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But the left sides of (16) and (17) are equal by definition of P*, and the
sum in the right of (17) equals ¢ by symmetry of C, establishing (a). For
(b), first note that the definition (15) of stretch is equivalent to

2 M (Vi Vig1)
Zi CU¢7U¢+1

where o denotes a cycle (vy,va,...,0m,v1). Write t(v,w) = E,/ . Fix
a cycle o and write u = 3, t(v;, vi41) for the mean time to complete the
cyclic tour. By the ergodic argument (Chapter 2 Lemma 30) (yyy 8/18/94
version). the mean number of traversals of an edge (v, w) during the tour is
UTy Py, and hence the ratio in (18) can be written as

t Vi, U
Z:Z:CA Z Z Ty Pow Cow - (19)
Vi Vi1 v

Now the hypothesis of (b) is that P is reversible and ¢, = t(v, w) +t(w, v).
So the second term of (19) equals 2(n — 1) by Chapter 3 Lemma 6 (yyy
9/2/94 version) and the first term equals 1/2 by the cyclic tour property
Chapter 3 Lemma 1 (yyy 9/2/94 version). So for each cycle o the ratio in
(18) equals n — 1, establishing (b).

s(P,C) = max (18)

5 Approximate counting via Markov chains

For a finite set .5, there is a close connection between

(a) having an explicit formula for the size |S]|

(b) having a bounded-time algorithm for generating a uniform random
element of S.
As an elementary illustration, we all know that there are n! permutations of
n objects. From a proof of this fact, we could write down an explicit 1 — 1
mapping f between the set of permutations and theset A = {(aq1,ag,...,a,) :
1 < a; < i}. Then we could simulate a uniform random permutation by
first simulating a uniform random element a of A and then computing f(a).
Conversely, given an algorithm which was guaranteed to produce a uniform
random permutation after k(n) calls to a random number generator, we
could (in principle) analyze the working of the algorithm in order to calcu-
late the chance p of getting the identity permutation. Then we can say that
number of permutations equals 1/p.

A more subtle observation is that, in certain settings, having an algo-
rithm for generating an approzimately uniform random element of S can
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be used to estimate approzimately the size |S|. The idea is to estimate
successive ratios by sampling. Suppose we can relate S to smaller sets

S=S5,251-1D...25 D25 (20)

where [S1| is known, the ratios p; := |S;4+1|/|Si| are bounded away from 0,
and where we can sample uniformly from each S;. Then take £ uniform

random samples from each S; and find the sample proportion W; which fall
into S;_;. Because |S| = |S1| TTZ, |S:|/|Si-1], we use

L
N =15 [[w!
1=2

as an estimate of |S|. To study its accuracy, it is simpler to consider |S|/N =
L, W;/pi. Clearly E(|S|/N) =1, and we can calculate the variance by

L .
var <|€|> = var H%
N i—o Pi

L

= H(l—}—var (Wi/pi)) -1
222

= H(H%) - 1.

The simplest case is where we know a theoretical lower bound p, for the p;.
Then by taking k = O(¢7?L/p.) we get

var (lg) < exp(pfk) - 1=0(Y.

1

In other words, with a total number
Lk =0("%L%/p.) (21)

of random samples, we can statistically estimate |S| to within a factor 1 +
Ofe).

The conceptual point of invoking intermediate sets S; is that the overall
ratio |S1|/|S| may be exponentially small in some size parameter, so that
trying to estimate this ratio directly by sampling from .S would involve order
|S|/|S1], 1.e. exponentially many, samples. If we can specify the intermediate
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sets with ratios p; bounded away from 0 and 1 then L = O(log(|S]|/|S1])) and
so the number of samples required in (21) depends on log(|S|/|S1]) instead
of |51/151]-

The discussion so far has not involved Markov chains. From our view-
point, the interesting setting is where we cannot directly get uniform ran-
dom samples from a typical 5;, but instead need to use Markov chain Monte
Carlo. That is, on each S; we set up a reversible Markov chain with uniform
stationary distribution (i.e. a chain whose transition matrix is symmetric
in the sense p,, = puw) Assume we have a bound 71 on the 7 -values of
all these chains. Then as a small modification of Corollary 3, one can get
m samples from the combined chains whose joint distribution is close (in
variation distance) to the the distribution of independent samples from the
uniform distributions in O(rym log m) steps. As above, if we can specify the
intermediate sets with ratios p; bounded away from 0 and 1 then we need
m = O(e~%log?(|S|/|S1])) samples, and so (ignoring dependence on ¢) the
total number of steps in all the chains is O(ry log?t?()(|S]/]S4]).

In summary, to implement this method of approximate counting via
Markov chains, one needs

e a way to specify the intermediate sets (20)

e a way to specify Markov chains on the S; whose mixing times can be
rigorously bounded.

Two particular examples have been studied in detail, and historically these
examples provided major impetus for the development of technical tools to
estimate mixing times. Though the details are too technical for this book,
we outline these examples in the next two sections, and then consider in
detail the setting of self-avoiding walks.

5.1 Volume of a convex set

Given a closed convex set K in R?, for large d, how can we algorithmically
calculate the volume of K7 Regard K as being described by an oracle, that
is for any z € R? we can determine in one step whether or not z € K.
Perhaps surprisingly, there is no known deterministic algorithm which finds
vol(K) approximately (i.e. to within a factor 1 £¢) in a polynomial in d
number of steps. But this problem is amenable to “approximate counting
via Markov chains” technique. This line of research was initiated by Dyer
et al [24, 25] who produced an algorithm requiring O(d23+°(1)) steps. A
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long sequence of papers (see the Notes) studied variants of both the Markov
chains and the analytic techniques in order to reduce the polynomial degree.
Currently the best bound is O(d>+°(), due to Kannan et al [35].

To outline the procedure in this example, suppose we know B(1) C
K C B(r), where B(r) is the ball of radius » = r(d). (It turns out that
one can transform any convex set into one satisfying these constraints with
r = 0(d®?).) We specify an increasing sequence of convex subsets

B(l) = I(O C Krl c...C I(L =K

by setting K; := B(2"/?) N K. This makes the ratios of successive volumes
bounded by 2 and requires L = O(dlogd) intermediate sets. So the issue
is to design and analyze a chain on a typical convex set K; whose station-
ary distribution is uniform. Various Markov chains have been used: simple
random walk on a fine discrete lattice restricted to K, or spherically sym-
metric walks. The analysis of the chains has used Cheeger inequalities for
chains and the refinement of classical isoperimetric inequalities for convex
sets. Recent work of Bubley et al [15] has successfully introduced coupling
methods, and it is a challenging problem to refine these coupling methods.
There is a suggestive analogy with theoretical study of Brownian motion in
a convex set — see Chapter 13 section 1.3 (yyy 7/29/99 version).

5.2 Matchings in a graph

For a finite, not necessarily regular, graph Gy let M(Gyg) be the set of all
matchings in G, where a matching M is a subset of edges such that no vertex
is in more than one edge of M. Suppose we want to count | M (Gy)| (for the
harder setting of counting perfect matchings see the Notes). Enumerate the
edges of Gg as ey, €g,...,€er, where L is the number of edges of Gy. Write
G; for the graph G with edges eq,...,¢; deleted. A matching of G; can be
identified with a matching of G;_; which does not contain e;, so we can
write

M(Gr-1) C M(Gr—2) C...C M(Gy) C M(Gy).
Since G',—1 has one edge, we know |[M(G_1)| = 2. The ratio |[M(G41)|/|M(G))]

is the probability that a uniform random matching of G; does not contain
the edge e;41. So the issue is to design and analyze a chain on a typical
set M(G;) of matchings whose stationary distribution is uniform. Here is a
natural such chain. From a matching My, pick a uniform random edge e of
G, and construct a new matching M; from My and e as follows.
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If e € My then set My = Mg \ {e}.

If neither end-vertex of e is in an edge of My then set My = My U {e}.

If exactly one end-vertex of e is in an edge (e’ say) of My then set
M1 = {6} U MO \ {6/}.
This construction (the idea goes back to Broder [12]) yields a chain with
symmetric transition matrix, because each possible transition has chance
1/L. An elegant analysis by Jerrum and Sinclair [32], outlined in Jerrum
[30] section 5.1, used the distinguished paths technique to prove that on a
n-vertex L-edge graph

o = O(Ln).

Since the number of matchings can be bounded crudely by n!,

7 = O(rzlogn!) = O(Ln?logn). (22)

5.3 Simulating self-avoiding walks

xxx to be written
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6 Notes on Chapter 9

Section 1.1. Modern interest in expanders and their algorithmic uses goes
back to the early 1980s, e.g. their use in parallel sorting networks by Ajtai
et al [1], and was increased by Alon’s [5] graph-theoretic formulation of
Cheeger’s inequality. The conference proceedings [26] provides an overview.

Edge-expansion, measured by parameters like & at (2), is more relevant
to random walk than vertex-expansion. Walters [45] compares definitions.
What we call “expander” is often called bounded-degree expander.

Section 1.2. Ajtai et al [2], studying the “amplification of randomness”
problems in section 4.1, was perhaps the first explicit use of random walk
on expanders. In Theorem 1, the upper bounds on 7* and EC go back to
Chandra et al [16].

Section 1.3. With the failure of conjecture (9), the next natural conjec-
ture is: on a r-regular graph

70 =" O(max(n, 7)) max(logn,7)).

It’s not clear whether such conjectures are worth pursuing.

Section 2. More classical accounts of spectral graph theory are in Cvetkovic
et al [21, 20].

On a not-necessarily-regular graph, Chung [17] studies the eigenvalues
of the matrix £ defined by

Lyw = 1, w=w
= —(dyd,)""/? for an edge (v, w) (23)
= 0 else.

In the regular case, — L is the )-matrix of transition rates for the continuous-
time random walk, and so Chung’s eigenvalues are identical to our continuous-
time eigenvalues. In the non-regular case there is no simple probabilistic in-
terpretation of £ and hence no simple probabilistic interpretation of results
involving the relaxation time 1/\; associated with L.

Section 2.1. Chung [17] Chapter 3 gives more detailed results about di-
ameter and eigenvalues. One can slightly sharpen the argument for Propo-
sition 4 by using (11) and the analog of Chapter 4 Lemma 26 (yyy 10/11/94
version) in which the threshold for 7{*¢ is set at 1 —e. Such arguments give
bounds closer to that of [17] Corollary 3.2: if G is not complete then

A< "bg(n - 1)-‘ .

3— o
log T
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Section 2.2. Chung [17] section 4.4 analyzes a somewhat related routing
problem. Broder et al [14] analyze a dynamic version of path selection in
expanders.

Section 3.1. Example 7 (union of sets) and the more general DNF count-
ing problem were studied systematically by Karp et al [36]; see also [41]
section 11.2.

The Solovay-Strassen test of primality depends on a certain property of
the Jacobi symbol: see [41] section 14.6 for a proof of this property.

Section 4.1. Several other uses of random walks on expanders can be
found in Ajtai et al [2], Cohen and Wigderson [18], Impagliazzo and Zuck-
erman [29].

Section 4.4. Tetali [44] discussions extensions of parts (a,b) of Proposi-
tion 10 to nonsymmetric cost matrices.

Section 5. More extensive treatments of approximate counting are in
Sinclair [42] and Motwani and Raghavan [41] Chapter 12.

Jerrum et al [33] formalize a notion of self-reducibility and show that,
under this condition, approximate counting can be performed in polynomial
time iff approximately uniform sampling can. See Sinclair [42] section 1.4
for a nice exposition.

Abstractly, we are studying randomized algorithms which produce a ran-
dom estimate a(d) of a numerical quantity a(d) (where d measures the “size”
of the problem) together with a rigorous bound of the form

P((1 = )a(d) < a(d) < (1 +€)a(d) > 1 - 4.

Such a scheme is a FPRAS (fully polynomial randomized approximation
scheme) if the cost of the algorithm is bounded by a polynomial in d, 1/¢
and log1/§. Here the conclusion involving log1/4 is what emerges from
proofs using large deviation techniques.

Section 5.1. Other papers on the volume problem and the related prob-
lem of sampling from a log-concave distribution are Lovasz and Simonovits
[38], Applegate and Kannan [8], Dyer and Frieze [23], Lovdsz and Simonovits
[39] and Frieze et al [27].

Section 5.2. In the background is the problem of approximating the

permanent
perA = Z H Aio (i)

o =1
of a m X n non-negative matrix, where the sum is over all permutations o.
When A is the adjacency matrix of a n + n bipartite graph, per(A) is the
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number of perfect matchings. Approximate counting of perfect matchings
is in principle similar to approximate counting of all matchings; one seeks
to use the chain in section 5.2 restricted to M; U M;_q, where M; is the
set of matchings with exactly ¢ edges. But successful analysis of this chain
requires that we have a dense graph, with minimum degree > n/2. Jer-
rum and Sinclair [31] gave the first analysis, using the Cheeger inequality
and estimating expansion via distinguished paths. Sinclair [42] Chapter 3
and Motwani and Raghavan [41] Chapter 11 give more detailed expositions.
Subsequently it was realized that using the distinguished paths technique
directly to bound 75 was more efficient. A more general setting is to seek to
sample from the non-uniform distribution on matchings M

7 (M) o AMI

for a parameter A > 1. The distinguished paths technique [32, 30] giving
(22) works in this setting to give

71 = O(Ln*Xlog(n))).
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7 Material belonging in other chapters

7.1 Large deviation bounds

yvyy Somewhere in the book we need to discuss the results on explicit large
deviation bounds for occupation measure / empirical averages: [28, 22, 34,
37]. In section 4.1 we used the following bound from Gillman [28] Theorem
2.1.

Theorem 11

P,(N,(B)/n —w(B)>7v) < (1 + %) IZ,uf/m exp (_237_;) .

7.2 The probabilistic method in combinatorics

yyy This is to be moved to Chapter 6, where we do the “universal traversal
sequences” example.

Suppose one wants to show the existence of a combinatorial object with
specified properties. The most natural way is to give an explicit construc-
tion of an example. There are a variety of settings where, instead of a
giving an explicit construction, it is easier to argue that a randomly-chosen
object has a non-zero chance of having the required properties. The mono-
graph by Alon and Spencer [7] is devoted to this topic, under the name the
probabilistic method. One use of this method is below. Two more example
occur later in the book: random construction of expander graphs (Chapter
30 Proposition 1) (yyy 7/9/96 version), and the random construction of an
objective function in an optimization problem (Chapter 9 section 4.2) (yyy
this version).

7.3 Move to Chapter 4 section 6.5

(yyy 10/11/94 version) Combining Corollary 31 with (62) gives the contin-
uous time result below. Recasting the underlying theory in discrete time
establishes the discrete-time version.

Lemma 12

(continuous time) Pr(Ta > t)
(discrete time) Pr(T4 > t)

xp(—tm(A)/1), t >0

<e
<(1- F(A)/Tg)t7 t>0.
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Notes on this section. In studying bounds on T4 such as Lemma 12 we
usually have in mind that 7(A) is small. One is sometimes interested in exit
times from a set A with 7(A) small, i.e. hitting times on A° where 7(A°)
is near 1. In this setting one can replace inequalities using 75 or 7. (which
parameters involve the whole chain) by inequalities involving analogous pa-
rameters for the chain restricted to A and its boundary. See Babai [9] for
uses of such bounds.

On several occasions we have remarked that for most properties of ran-
dom walk, the possibility of an eigenvalue near —1 (i.e. an almost-bipartite
graph) is irrelevant. An obvious exception arises when we consider lower
bounds for P,(T4 > t) in terms of |A|, because in a bipartite graph with
bipartition {A, A°} we have P(T4 > 1) = 0. It turns out (Alon et al
[6] Proposition 2.4) that a corresponding lower bound holds in terms of

Tw =1/ +1).

P.(Tsy>t) > (max((), 1- ﬂ))t.

NTn
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