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In the spirit of Chapter 2, this is an unsystematic treatment of scattered
topics which are related to topics discussed for reversible chains, but where
reversibility plays no essential role. Section 1 treats constructions of stop-
ping times with various optimality properties. Section 2 discusses random
spanning trees associated with Markov chains, the probabilistic elaboration
of “the matrix-tree theorem”. Section 3 discusses self-verifying algorithms
for sampling from a stationary distribution. Section 4 discusses “reversib-
lizations” of irreversible chains. Section 5 gives an example to show that the
nonasymptotic interpretation of relaxation time, so useful in the reversible
setting, may fail completely in the general case. At first sight these topics
may seem entirely unrelated, but we shall see a few subtle connections.

Throughout the chapter, our setting is a finite irreducible discrete-time
Markov chain (X)) with transition matrix P = (p;;).

1 Minimal constructions and mixing times

Chapter 4 Theorem yyy involved three mixing time parameters; 7 related to

(1)

variation distance to stationarity, 7; ’ related to “separation” from station-
arity, and 7'1(2) related to stationary times (see below). In Chapter 4 these
parameters were defined under worst-case initial distributions, and our fo-
cus was on “equivalence” of these parameters for reversible chains. Here

we discuss underlying “exact” results. Fix an initial distribution g. Then



associated with each notion of mixing, there is a corresponding construction
of a minimal random time 7', stated in Theorems 1 - 3 below.

xxx randomized stopping times

Call a stopping time T" a strong stationary time if

P, (X;=34T=1t)=mn;P,(T =1) for all j,¢ (1)

i.e. if X7 has distribution 7 and is independent of T'. Call a stopping time
T a stationary time if

P,(X7t =j)=m; for all j. (2)

Call a random time T a coupling time if we can construct a joint distribution
((Xt,Y:);t > 0) such that (X;) is the chain with initial distribution p, (Y;)
is the stationary chain, and X; = Y;,¢ > 7. (A coupling time need not be
a stopping time, even w.r.t. the joint process; this is the almost the only
instance of a random time which is not a stopping time that we encounter
in this book.)

Recall from yyy the notion of separation of 8 from 7:

sep(f) = min{u : 6; > (1 — u)7; Vj}.

Write sep ,(?) for the separation at time ¢ when the initial distribution was
e
sep,,(t) = min{u : P,(X; = j) > (1 — u)m; Vj}.

Similarly write vd,(t) for the variation distance from stationarity at time ¢:
1 .
vd,(t) = 52 |Pu(Xt = j) — .
J

Theorem 1 Let T be any strong stationary time for the pu-chain. Then
sep,,(t) < Pu(T >t) for all t > 0. (3)
Moreover there exists a minimal strong stationary time T for which
sep,,(t) = Pu(T >t) for all t > 0. (4)
Theorem 2 For any coupling time T,
vd,(t) < P,(T > t) for all t > 0.
Moreover there exists a minimal coupling time T for which

vd,(t) = P,(T > t) for all t > 0.



Theorem 3 For any stationary time T,

E,T > max(E£,1; — E;T5;). (5)
J

Moreover there exist mean-minimal stationary times T for which

E,T = m];LX(E;LTj — E.Tj). (6)
In each case, the first assertion is immediate from the definitions, and
the issue is to carry out a construction of the required 7. Despite the
similar appearance of the results, attempts to place them all in a common
framework have not been fruitful. We will prove Theorems 1 and 3 below,
and illustrate with examples. These two proofs involve only rather simple
“greedy” constructions. We won’t give the proof of Theorem 2 (the con-
struction is usually called the mazimal coupling: see Lindvall [25]) because
the construction is a little more elaborate and the existence of the minimal
coupling time is seldom useful, but on the other hand the coupling inequal-
ity in Theorem 2 will be used extensively in Chapter 14. In the context of
Theorems 1 and 2 the minimal times T are clearly unique in distribution,
but in Theorem 3 there will generically be many mean-minimal stationary
times T with different distributions.

1.1 Strong stationary times

For any stopping time T, define
Hj(t):Pﬂ(Xt:j7T2t)7 Uj(t):PM(Xt:ij:t)- (7)
Clearly these vectors satisfy

0<o(t)<O(t), (6(t)—o(t)P=0(t+1)Vt; b= p. (8)
Conversely, given (6(t),o(t);t > 0) satisfying (8), we can construct a ran-
domized stopping time 7" satisfying (7) by declaring that P(T = t|X; =
5T > t, Xs,s < t) = 0;(t)/0;(t). The proofs of Theorems 1 and 3 use
different definitions of vectors satisfying (8).

Proof of Theorem 1. A particular sequence (6(t),o(t);¢ > 0) can be
specified inductively by (8) and

o(t)=rm,  where r = min8;(1)/7;. (9)
J



The associated stopping time satisfies
Pu(Xy=3,T =1) = 0(t) = ri7;

and so is a strong stationary time with P,(7 = ¢) = r;. One can now verify
inductively that

Pu(Xi €)= 0()+ PAT <t —1) -pi

and so the separation is

P (X:i=3j
sep, (1) =1 — mjin % =P,(T>t)—r = P,(T >1).
i

1.2 Stopping times attaining a specified distribution

For comparison with the other two results, we stated Theorem 3 in terms
of stopping times at which the stationary distribution is attained, but the
underlying result (amplified as Theorem 4) holds for an arbitrary target
distribution p. So fix p as well as the initial distribution u. Call a stopping
time T admissible if P,(X1 € ) = p. Write #(u, o) for the inf of E,T over
all admissible stopping times 7.

Theorem 4 (a) t(p,0) = max;(E,T; — E,T;).

(b) The “filling scheme” below defines an admissible stopping time such
that E,T = t(p,0).

(c) Any admissible stopping time T with the property

3 k such that P,(T < Ty) = 1. (10)

satisfies E,T = t(p,0).
Part (c) is rather remarkable, and can be rephrased as follows. Call a state
k with property (10) a halting state for the stopping time 7. In words, the
chain must stop if and when it hits a halting state. Then part (c) asserts
that, to verify that an admissible time T attains the minimum #(g,p), it
suffices to show that there exists some halting state. In the next section we
shall see this is very useful in simple examples.

Proof. The greedy construction used here is called a filling scheme.
Recall from (7) the definitions

0;(t)=P,( Xy =3T2>1), oi(t)=P(Xe=73T=1).



Write also ¥;(t) = Py(X1 = j,T < t). We now define (6(t),o(t);¢ > 0) and
the associated stopping time 7" inductively via (8) and

oj(t) = 0if X;(t —1) = p;
= 0 if X;(1 = 1)+ 6;(1) < p;
= p; — ¥;(t — 1) otherwise.

In words, we stop at the current state (7, say) provided our “quota” p; for
the chance of stopping at j has not yet been filled. Clearly

£5(t) < pj Vi V. (1)
We now claim that 7T satisfies property (10). To see this, consider
t; = min{t : X;(t) = p;} < o0.

Then (10) holds by construction for any k such that ¢; = max;¢; < co. In
particular, T < Ty < oo a.s. and then by (11) P,(X7 € -) = lim ¢ — coX(t) =
p. So T is an admissible stopping time.

Remark. Generically we expect t; = oo for exactly one state 7, though
other possibilities may occur, e.g. in the presence of symmetry.

Now consider an arbitrary admissible stopping time 7', and consider the
associated occupation measure x = (z;):

z; = F,(number of visits to j during times 0,1,...,7 —1).

We shall show
zj+pj =i+ zipij VJ. (12)

Indeed, by counting the number of visits during 0,1,...,7 — 1,7 in two
ways,

z; 4+ p; = pj + E,(number of visits to j during 1,2,...,7).
Chapter 2 Lemma yyy showed the (intuitively obvious) fact
z;p;; = E,( number of transitions ¢ — j starting before time 7T').
So summing over ¢,

E z;p;; = E,(number of visits to j during 1,2,...,7)

K3



and (12) follows.

Write x for the occupation measure associated with the stopping time
T produced by the filling scheme. By (10), ming 7 = 0. If x and x’ are
solutions of (12) then the difference d = x — x’ satisfies d = dP and so is a
multiple of the stationary distribution 7. In particular, if x is the occupation
measure for some arbitrary admissible time T, then

X > X, with equality iff mkin zr = 0.

Since E,T = 3; z;, we have established parts (b) and (c) of the theorem,
and
tHp,0) = E z;.

To prove (a), choose a state k such that z; = 0, that is such that T < Ty.
Then E,Ty = E, T+ E, Ty, and hence #(y,0) < max;(E,T;— E,T;). But for
any admissible stopping time T and any state j

E,T; < BT + E,T;
giving the reverse inequality #(y, o) > max;(E,T; — E,T;). O

Corollary 5 The minimal strong stationary time has mean t(u, ™), i.e. is
mean-minimal amongst all not-necessarily-strong stationary times, iff there
exists a state k such that

P (X;=k)/mp = mjin P,(X;=7)/m; Vi

Proof. From the construction of the minimal strong stationary time, this is
the condition for k to be a halting state.

1.3 Examples
Example 6 Patterns in coin-tossing.

Recall Chapter 2 Example yyy: (X;) is the chain on the set {H,T'}" of n-
tuples ¢ = (41,...,%,). Start at some arbitrary initial state j = (j1,...,Jn)-
Here the deterministic stopping time “T’ = n” is a strong stationary time.
Now a state k = (ki,...,k,) will be a halting state provided it does not
overlap j, that is provided there is no 1 < w < n such that (jy,...,Jn) =
(k1,...,kptu—1). But the number of overlapping states is at most 1 =
24224 ...427 1 =27 _ 1, so there exists a non-overlapping state, i.e. a
halting state. So ET attains the minimum (= n) of #(j, 7) over all stationary
times (and not just over all strong stationary times).



Example 7 Top-to-random card shuffling.

Consider the following scheme for shuffling an n-card deck: the top card is
removed, and inserted in one of the n possible positions, chosen uniformly at
random. Start in some arbitrary order. Let T be the first time that the card
which was originally second-from-bottom has reached the top of the deck.
Then it is not hard to show (Diaconis [15] p. 177) that 7'+ 1 is a strong
stationary time. Now any configuration in which the originally-bottom card
is the top card will be a halting state, and so T" 4+ 1 is mean-minimal over
all stationary times. Here E(T +1) =1+ Y., 2 = n(h, — 1).

Example 8 The winning streak chain.

In a series of games which you win or lose independently with chance 0 <
c<1,let X, be your current “winning streak”,i.e. the number of games won
since your last loss. For fixed n, the truncated process X; = min( Xy, n — 1)
is the Markov chain on states {0,1,2,...,n—1} with transition probabilities

p(i,0)=1—¢, p(i,min(i+1,n—1))=¢c; 0<i<n—-1
and stationary distribution
T = (1 —c)ci, 0<i<n—2; m,_q=c""L

We present this chain, started at 0, as an example where it is easy to see there
are different mean-minimal stationary times T. We’ll leave the simplest
construction until last — can you guess it now? First consider Ty, where .J
has the stationary distribution. This is a stationary time, and n — 1 is a
halting state, so it is mean-minimal. Now it is easy to show

1

1
FoT; = S 1<73<n-1.
0t (1—c¢)cd ¢ =I="

(Slick proof: in the not-truncated chain, Chapter 2 Lemma yyy says
1 = E;( number of visits to j before Ty) = 7;(E;To + EoT;) = m;(1/(1 —
¢) + EoT;).) So

Tn-1 1 —mg

f(O,ﬂ'):EOTJ:Zﬂ'jEOTj:n—Q—I—(1_C)Cn_1— T =n—1.
i1

Here is another stopping time T which is easily checked to attain the station-
ary distribution, for the chain started at 0. With chance 1 — ¢ stop at time



0. Otherwise, run the chain until either hitting n — 1 (in which case, stop)
or returning to 0. In the latter case, the return to 0 occurs as a transition
to 0 from some state M > 0. Continue until first hitting M + 1, then stop.
Again n — 1 is a halting state, so this stationary time also is mean-minimal.
Of course, the simplest construction is the deterministic time T = n — 1.
This is a strong stationary time (the winning streak chain is a function of
the patterns in coin tossing chain), and again n — 1 is clearly a halting state.
Thus ¢(0,7) = n — 1 without needing the calculation above.

Remark. One could alternatively use Corollary 5 to show that the strong
stationary times in Examples 6 and 7 are mean-minimal stationary times.
The previous examples are atypical: here is a more typical example in which
the hypothesis of Corollary 5 is not satisfied and so no mean-optimal sta-
tionary time is a strong stationary time.

Example 9 zzz needs a name!

Chapter 2 Example yyy can be rewritten as follows. Let (U;) be independent
uniform on {0,1,...,n—1} and let (A;) be independent events with P(A;) =
a. Define a chain X on {0,1,...,n — 1} by

Xt-}—l = LTH_l on Ag
= X;+ 1 mod n on A;.

The stationary distribution is the uniform distribution. Take Xy = 0.

Clearly T = min{t : A; occurs } is a strong stationary time, and ET =

1/(1—a), and it is easy to see that 7" is the minimal strong stationary time.

But T is not a mean-minimal stationary time. The occupation measure

x associated with 7" is such that min; z; = 2,1 = a1l 4 g2l 4 =

a"1/(1 — a™), and so the occupation measure x associated with a mean-
1 a1

L . . . - an—l — B
minimal stationary time is X = x — 1=an s and so ¢(0,7) = e — 1=a7"

2 Markov chains and spanning trees

2.1 General Chains and Directed Weighted Graphs

Let’s jump into the details and defer the discussion until later. Consider
a finite irreducible discrete-time Markov chain (X,,) with transition matrix
P = (puw), and note we are not assuming reversibility. We can identify P
with a weighted directed graph, which has (for each (v, w) with p,, > 0)



a directed edge (v,w) with weight p,,. A directed spanning tree t is a
spanning tree with one vertex distinguished as the root, and with each edge
e = (v, w) of t regarded as being directed towards the root. Write 7 for the
set of directed spanning trees. For t € 7 define

pt)= [I Pow

(vyw)et

Normalizing gives a probability distribution p on 7:

p(t)
plt)= =Y
Zt/eT p(t/)
Now fix n and consider the stationary Markov chain (X, : —co < m < n)

run from time minus infinity to time n. We now use the chain to construct a
random directed spanning tree T,,. The root of T,, is X,,. For each v # X,
there was a final time, L, say, before n that the chain visited v:

Ly, =max{m < n: X, =v}.
Define T, to consist of the directed edges

(’U = XLm?XL'u‘}‘l)? v % Xn

So the edges of T,, are the last-exit edges from each vertex (other than the
root X,,). It is easy to check that T, is a directed spanning tree.

Now consider what happens as n changes. Clearly the process (T, :
—00 < m < ) is a stationary Markov chain on 7, with a certain transition
matrix Q = (q(t,t")), say. The figure below indicates a typical transition
t — t’. Here t was constructed by the chain finishing at its root v, and t’ is
the new tree obtained when the chain makes a transition v — w.

N N
N

|
| T



Theorem 10 (The Markov chain tree theorem) The stationary distri-
bution of (T,) is p.

Proof. Fix a directed spanning tree t'. We have to verify

>_alt)a(t.t') = p(t"). (13)
t

Write w for the root of t'. For each vertex z # w there is a tree t, con-
structed from t’ by adding an edge (w,z) and then deleting from the result-
ing cycle the edge (v, w) (say, for some v = v(z)) leading into w. For z = w
set v(z) = z. It is easy to see that the only possible transitions into t’ are
from the trees t,, and that

ﬁ(t/) = p 7 q(tl‘7t/) = pvw-

Thus the left side of (13) becomes

St )a(ter ) = () Y pus = A(E).

O

The underlying chain X,, can be recovered from the tree-valued chain
T, via X,, = root(T,), so we can recover the stationary distribution of X
from the stationary distribution of T, as follows.

Corollary 11 (The Markov chain tree formula) For each vertex v de-

fine
rv)= > p(b).
t: v=r00l(t)
AW
OV )

Then  is the stationary distribution of the original chain (X,,).

See the Notes for comments on this classical result.

Theorem 10 and the definition of Ty come close to specifying an algo-
rithm for constructing a random spanning tree with distribution p. Of course
the notion of running the chain from time —oo until time 0 doesn’t sound
very algorithmic, but we can rephrase this notion using time-reversal. Re-
garding the stationary distribution 7 as known, the time-reversed chain X*
has transition matrix p¥,, = T, pwy /7. Here is the restatement of Theorem
10 in terms of the time-reversed chain.

10



Corollary 12 Let (X} : 0 < m < () be the time-reversed chain, run until
the cover time C. Define T to be the directed spanning tree with root Xo and
with edges (v = X1,, X1,-1), v # Xo. If Xo has distribution 7 then T has
distribution p. If Xo is deterministically vy, say, then T has distribution p
conditioned on being rooted at vgp.

Thus T consists of the edges by which each vertex is first visited, directed
backwards.

For a reversible chain, we can of course use the chain itself in Corollary
12 above, in place of the time-reversed chain. If the chain is random walk
on a unweighted graph G, then

1
o(t) =d t(t —
ptt) = dtvoot(t) TT 575
where d(v) is the degree of v in G. So p, restricted to the set of spanning
trees with specified root vg, is uniform on that set. In this setting, Corollary
12 specializes as follows.

Corollary 13 Let (X,, : 0 < m < C) be random walk on an unweighted
graph G, started at vy and run until the cover time C. Define T to be the
directed spanning tree with root vy and with edges (v = X1,, X1,-1), v # v0.
Then T is uniform on the set of all directed spanning trees of G' rooted at
0.

We can rephrase this. If we just want “plain” spanning trees without a root
and directions, then the T above, regarded as a plain spanning tree, is uni-
form on the set of all plain spanning trees. On the other hand, if we want a
rooted spanning tree which is uniform on all such trees without prespecified
root, the simplest procedure is to construct T as in Corollary 13 with de-
terministic start vg, and at the end re-root T at a uniform random vertex.
(This is slightly subtle — we could alternatively start with X uniform, which
is typically not the stationary distribution 7.)

Using the bounds on cover time developed in Chapter 6, we now have
an algorithm for generating a uniform spanning tree of a n-vertex graph in
O(n?) steps (and O(n?) steps on a regular graph). No other known algorithm
achieves these bounds.

2.2 Electrical network theory

The ideas in this subsection (and much more) are treated in a long but very
readable survey paper by Pemantle [30], which we encourage the interested

11



reader to consult. As observed above, in the reversible setting we have the
obvious simplification that we can construct uniform spanning trees using
the chain itself. Deeper results can be found using the electrical network
analogy. Consider random walk on a weighted graph . The random span-
ning tree T constructed by Corollary 12, interpreted as a “plain” spanning
tree, has distribution

p(t)=c H W

ect

where ¢ is the normalizing constant. If an edge e is essential, it must be
in every spanning tree, so P(e € T) = 1. If the edge is inessential, the
probability will be strictly between 0 and 1. Intuitively, P(e € T) should
provide a measure of “how nearly essential e is”. This should remind the
reader of the inessential edge inequality (yyy). Interpreting the weighted
graph as an electrical network where an edge e = (v, z) has resistance 1/w.,
the effective resistance r,, between v and z satisfies

Ty < 1/wy, with equality iff (v, 2) is essential
Proposition 14 For each edge (v,z),
P((v,2) € T) = WypTys-

Note that in a n-vertex graph, T has exactly n — 1 edges, so Proposition 14
implies Foster’s theorem (Chapter 3 yyy)

E WypTor = N — 1.

edges (v,x)

Proof. Consider the random walk started at » and run until the time
U of the first return to v after the first visit to z. Let p be the chance
that Xyy_y = =z, i.e. that the return to z is along the edge (z,v). We can
calculate p in two ways. In terms of random walk started at z, p is the
chance that the first visit to v is from z, and so by Corollary 12 (applied to
the walk started at ) p = P((z,v) € T). On the other hand, consider the
walk started at » and let S be the first time that the walk traverses (z,v)
in that direction. Then

ES=FEU/p.
But by yyy and yyy
ES =w/wy,, EU = wry,;

and hence p = wy; 7y, as required. O
The next result indicates the usefulness of the electrical network analogy.

12



Proposition 15 For any two edges e; # e3,

P(€1 €T,e; € T) < P(61 € T)P(€2 € T)
Proof. Consider the “shorted” graph G®"™ in which the end-vertices (z1,22)
of e; are shorted into a single vertex =, with edge-weights wy, = Wy, +Wsyy.

The natural 1 — 1 correspondence t — t U {e;} between spanning trees of

Gshort short to

and spanning trees of G containing e; maps the distribution p
the conditional distribution p(-|e; € T). So, writing T*h°" for the random

spanning tree associated with Gshert,

P(ey € T*P™) = P(ey € Tley € T).
But, setting e; = (21, 22), Proposition 14 shows

hort hort
Pleg € T) = w,, ., v 0, Plea € T) = Wy 2722,

z122 7

short

St < 122—2, and the result follows.

By Rayleigh’s monotonicity principle, r

3 Self-verifying algorithms for sampling from a
stationary distribution

To start with an analogy, we can in principle compute a mean hitting time
E;T; from the transition matrix P, but we could alternatively estimate ;T
by “pure simulation”: simulate m times the chain started at ¢ and run until
hitting j, and then (roughly speaking) the empirical average of these m
hitting times will be (1 £ O(m~Y2))E;T;. In particular, for fixed ¢ we
can (roughly speaking) estimate E;7; to within a factor (1 +¢) in O(£;T;)
steps. Analogously, consider some notion of mixing time 7 (say 7 or 7o,
in the reversible setting). The focus in this book has been on theoretical
methods for bounding 7 in terms of P, and of theoretical consequences of
such bounds. But can we bound 7 by pure simulation? More importantly,
in the practical context of Markov chain Monte Carlo, can we devise a “self-
verifying” algorithm which produces an approximately-stationary sample
from a chain in O(7) steps without having prior knowledge of 77

xxx tie up with MCMC discussion.

To say things a little more carefully, a “pure simulation” algorithm is
one in which the transition matrix P is unknown to the algorithm. Instead,
there is a list of the states, and at each step the algorithm can obtain, for any

13



state 7, a sample from the jump distribution p(i,-), independent of previous
samples.

In the MCMC context we typically have an exponentially large state
space and seek polynomial-time estimates. The next lemma (which we leave
to the reader to state and prove more precisely) shows that no pure simula-
tion algorithm can guarantee to do this.

Lemma 16 Consider a pure simulation algorithm which, given any irre-
ducible n-state chain, eventually outputs a random state whose distribution
is guaranteed to be within ¢ of the stationary distribution in variation dis-
tance. Then the algorithm must take Q(n) steps for every P.

Outline of proof. If there is a state k£ with the property that 1 — p(k, k) is
extremely small, then the stationary distribution will be almost concentrated
on k; an algorithm which has some chance of terminating without sampling
a step from every state cannot possibly guarantee that no unvisited state k
has this property. O

3.1 Exact sampling via the Markov chain tree theorem

Lovasz and Winkler [27] observed that the Markov chain tree theorem (The-
orem 10) could be used to give a “pure simulation” algorithm for generating
exactly from the stationary distribution of an arbitrary n-state chain. The
algorithm takes

O(r n*logn) (14)

steps, where 7;" is the mixing time parameter defined as the smallest ¢ such
that

1
Pi( Xy, =j)> 37 foralli,je€l, o>t (15)

where U, denotes a random time uniform on {0,1,...,0 — 1}, independent
of the chain.

xxx tie up with Chapter 4 discussion and [26].

The following two facts are the mathematical ingredients of the algo-
rithm. We quote as Lemma 17(a) a result of Ross [33] (see also [10] Theorem
XIV.37); part (b) is an immediate consequence.

Lemma 17 (a) Let w be a probability distribution on I and let (F;;i € 1) be
independent with distribution w. Fizx j, and consider the digraph with edges
{(i, F;) : © # j}. Then with probability (exactly) 7;, the digraph is a tree
with edges directed toward the root j.

14



(b) So if j is first chosen uniformly at random from I, then the probability
above is exactly 1/n.

As the second ingredient, observe that the Markov chain tree formula (Corol-
lary 11) can be rephrased as follows.

Corollary 18 Let © be the stationary distribution for a transition matriz
P on . LetJ be random, uniform on I. Let (&;1 € I) be independent, with
P(& = j) = pij. Consider the digraph with edges {(i,&;) : ¢ # J}. Then,
conditional on the digraph being a tree with edges directed toward the root
J, the probability that J = j equals ;.

So consider the special case of a chain with the property
Py 2 (1/2)!"x; Vi, j. (16)

The probability of getting any particular digraph under the procedure of
Corollary 18 is at least 1/2 the probability of getting that digraph under
the procedure of Lemma 17, and so the probability of getting some tree
is at least 1/2n, by Lemma 17(b). So if the procedure of Corollary 18 is
repeated r = [2nlog4] times, the chance that some repetition produces a
tree is at least 1 — (1 — 1/2n)?"1°84 = 3/4, and then the root .J of the tree
has distribution exactly .

Now for any chain, fix ¢ > 7. The submultiplicativity (yyy) property of
separation, applied to the chain with transition probabilities p;; = P;( Xy, =
J), shows that if V' denotes the sum of m independent copies of U,, and &
is the state reached after V steps of the chain started at ¢, then

P(fZ = ]) = PZ'(XV = ]) > (1 — Q_m)ﬂ'j Vz,]

So putting m = —logy(1 — (1/2)"/") = @(logn), the set of probabilities
(P& = j) satisty (16).

Combining these procedures, we have (for fixed ¢ > 7/) an algorithm
which, in a mean number nmor = O(on’logn) of steps, has chance >
3/4 to produce an output, and (if so) the output has distribution exactly
w. Of course we initially don’t know the right o to use, but we simply
try n,2n,4n,8n,...1in turn until some output appears, and the mean total
number of steps will satisfy the asserted bound (14).

15



3.2 Approximate sampling via coalescing paths

A second approach involves the parameter 7o = >_, m; E;T; arising in the
random target lemma (Chapter 2 yyy). Aldous [3] gives an algorithm which,
given P and ¢ > 0, outputs a random state £ for which ||[P(£ € -) —7|| <e,
and such that the mean number of steps is at most

8170/e2. (17)

The details are messy, so let us just outline the (simple) underlying idea.
Suppose we can define a procedure which terminates in some random number
Y of steps, where Y is an estimate of 7y: precisely, suppose that for any P

P(Y <1)<e; EY <Kmg (18)
where K is an absolute constant. We can then define an algorithm as follows.

Simulate Y; then run the chain for Uy/,. steps and output the
final state &

where as above U, denotes a random time uniform on {0,1,...,0 — 1},
independent of the chain. This works because, arguing as at xxx,

I1P(Xv, €)= 7]l < 70/0

and so

[|P(§€-)—7| < Emax( < 2e.

To
1, Y—/a)
And the mean number of steps is (14 = )EY.

So the issue is to define a procedure terminating in Y steps, where Y
satisfies (18). Label the states {1,2,...,n} and consider the following coa-
lescing paths routine.

(i) Pick a uniform random state .J.

(ii) Start the chain at state 1, run until hitting state .J, and write A; for
the set of states visited along the path.

(iii) Restart the chain at state min{j : 7 € A1}, run until hitting some
state in Ay, and write Ay for the union of A; and the set of states visited
by this second path.

(iiii) Restart the chain at state min{j : 7 ¢ Az}, and continue this
procedure until every state has been visited. Let Y be the total number of
steps.

The random target lemma says that the mean number of steps in (ii)
equals 79, making this Y a plausible candidate for a quantity satisfying (18).
A slightly more complicated algorithm is in fact needed — see [3].
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3.3 Exact sampling via backwards coupling

Write U for a r.v. uniform on [0, 1], and (U;) for an independent sequence of
copies of U. Given a probability distribution on I, we can find a (far from
unique!) function f:[0,1] — I such that f(U) has the prescribed distribu-
tion. So given a transition matrix P we can find a function f: 7 x[0,1] — I
such that P(f(i,U) = j) = p;;. Fix such a function. Simultaneously for
each state 7, define

xxX tie up with coupling treatment
Consider the (forwards) coupling time

C* = min{t : Xt(i) = Xt(j) Vi, 7} < oo.

By considering an initial state j chosen according to the stationary distri-
bution 7,
max || P(X; € 1) —7|| < P(C' > 1).
k3

This can be used as the basis for an approximate sampling algorithm. As
a simple implementation, repeat k times the procedure defining C*, suppose
we get finite values C7,...,C} each time, then run the chain from an arbi-
trary initial start for max;<;<x C7 steps and output the final state . Then
the error || P(£ € -) — || is bounded by a function §(k) such that §(k) — 0
as k — oo.

Propp and Wilson [31] observed that by using instead a backwards cou-
pling method (which has been exploited in other contexts — see Notes) one
could make an exact sampling algorithm. Regard our i.i.d. sequence (Uy) as
defined for —oc < t < 0. For each state ¢ and each time s < 0 define

x09 =i x5 = fxB U t=s+1,5+2,...,0.
Consider the backwards coupling time
C = max{t: X(gi’t) = Xéj’t) Vi, j} > —oc.

Lemma 19 (Backwards coupling lemma) If S is a random time such
that —c0 < 5 < C a.s. then the random variable X %) does not depend on
1 and has the stationary distribution w.

xxx describe algorithm

XXX poset story

xxx analysis in general setting and in poset setting.
xxx compare the 3 methods
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4 Making reversible chains from irreversible chains

Let P be an irreducible transition matrix on I with stationary distribution
w. The following straightforward lemma records several general ways in
which to construct from P a transition matrix Q for which the associated
chain still has stationary distribution = but is reversible. These methods all
involve the time-reversed matrix P*

TiPij = TPy
and so in practice can only be used when we know 7 explicitly (as we have

observed several times previously, in general we cannot write down a useful
explicit expression for 7 in the irreversible setting).

Lemma 20 The following definitions each give a transition matriz Q which
is reversible with respect to .

The additive reversiblization: Q) = L(P+ P
The multiplicative reversiblization: Q1 = PP~

The Metropolis reversiblization; QZ(?;) = min(p; j,p};), J # i

Of these three construction, only Q() is automatically irreducible. Consider
for instance the “patterns in coin tossing” example (Chapter 2 Example
yyy). Here are the distributions of a step of the chains from state (i1,...,,).
(QW). To (igy. .. 0n,0)0r (g, ... i, 1) or (0,41, ... 0p_1) 0r (1,41,...,00_1),
with probability 1/4 each.
(Q(Q)). To (0,ig,...,1,) or (1,42,...,1,), with probability 1/2 each. So
the state space decomposes into 2-element classes.
(Q(3)). Here a “typical” 1 is isolated.
We shall discuss two aspects of the relationship between irreversible
chains and their reversibilizations.

4.1 Mixing times

Because the theory of L? convergence to stationarity is nicer for reversible
chains, a natural strategy to study an irreversible chain (transition matrix
P) would be to first study a reversibilization Q and then seek some general
result relating properties of the P-chain to properties of the Q-chain. There
are (see Notes) general results relating spectra, but we don’t pursue these
because (cf. section 5) there seems no useful way to derive finite-time results
for irreversible chains from spectral gap estimates.
xxx Persi, Fill etc stuff
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4.2 Hitting times

Here are a matrix-theoretic result and conjecture, whose probabilistic sig-
nificance (loosely relating to mean hitting times and reversiblization) will
be discussed below. As usual Z is the fundamental matrix associated with
P, and P~ is the time-reversal.

Proposition 21 trace Z(P* - P) > 0.
Conjecture 22 (race Z*(P* - P) > 0.

Proposition 21 is essentially due to Fiedler et al [18]. In fact, what is proved
in ([18], p. 91) is that, for a positive matrix V with largest eigenvalue < 1,

trace (i v (v -vTh<o. (19)

/ —

Applying this to v;; = 57r2»1 zpijﬂ'j V2o s <1 gives

trace (Z sm(pg;n) —7;))(P —P*) = trace (Z P (P — P¥)

m=0 m=0

o0
= s 'trace (Z v (v-vTh<o.
m=0
Letting s T 1 gives the Proposition as stated. O
The proof in [18] of (19) has no simple probabilistic interpretation, and
it would be interesting to find a probabilistic proof. It is not clear to me
whether Conjecture 22 could be proved in a similar way.
Here is the probabilistic interpretation of Proposition 21. Recall the
elementary result (yyy) that in a n-state chain

Zzﬂ-apabEbTa =n-—1. (20)
a b

The next result shows that replacing FyT, by F,T} gives an inequality. This
arose as an ingredient in work of Tetali [37] discussed at xxx.

Corollary 23 >, > s mupar BTy <n—1.
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Proof. We argue backwards. By (20), the issue is to prove

ZZ 7I-apab(Evlea - EaTb) Z 0.
a b

Using Lemma yyy, the quantity in question equals

Za

P/ Y/ S SN/
E E TaPab +
=5 Tq Tq T Th

= trace Z — trace PZ — trace Z + trace P*Z = trace (P* - P)Z > 0.

O

Here is the motivation for Conjecture 22. For 0 < A < 1 let P()\) =
(1= X)P + AP~*, so that P(1/2) is the “additive reversiblization” in Lemma
20. Consider the average hitting time parameters 7o = 79(A) from Chapter
4.

Corollary 24 Assuming Conjecture 22 is true, To(\) < 19(1/2) for all 0 <
A<,

In other words, making the chain “more reversible” tends to increase mean
hitting times.

Proof. This depends on results about differentiating with respect to
the transition matrix, which we present as slightly informal calculations.
Introduce a “perturbation” matrix Q such that

Z%’ =0 Vi; g¢i; = 0 whenever p;; = 0. (21)
J

Then P + #Q is a transition matrix, for  is some neighborhood of 0. Write
% for the derivative at § = 0. Then, writing N;(¢) for the number of visits
to ¢ before time ¢,

d
75 FaTo =D EuNi(T) 3 aii BT
i J

This holds because the 3, term gives the effect on ET} of a Q-step from :.
Using general identities from Chapter 2 yyy, and (21), this becomes

d Ti(Zap — 2
T ET, = E <7( b = ) + 2y — Zai) E 4525/ T
{ J

T

20



Now specialize to the case where 7 is the stationary distribution for each

P + 60Q, that is where
Zﬂi%]’ =0Vj.

Then the expression above simplifies to

d
70 EJTy = (2 — zai) Y €%/
J

Averaging over a, using y, Tq2q; = 0,
d
70 ET, = Zzzbi%ﬂjb/ﬂb
J

7

and then averaging over b,

d
T To = trace ZQZ = trace Z2Q.

So consider A < 1/2 in Corollary 24. Then

Do) = trace Z2(0)(P" ~ P)

X
= (1-2))7" trace ZEA\)(P*(\) — P()))

and Conjecture 22 would imply this is > 0, implying the conclusion of Corol-
lary 24.

5 An example concerning eigenvalues and mixing
times

Here is an example, adapted from Aldous [1]. Let (A, : 1 < u < n) be the
eigenvalues of P with Ay = 1, and let

B = max{|A,]:2 <wu < n}.
A weak quantification of “mixing” is provided by

a(t) = IﬂaBX|P7r(X0 € A, X, € B)—n(A)n(B)|.
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By definition, a(t) is less than the mazimal correlation p(t) discussed in
Chapter 4 yyy, and so by yyy

a(t) < 8 for a reversible chain. (22)

The convergence theorem (Chapter 2 yyy) says that a(f) — 0 as t — oo
provided 3 < 1. So one might expect some analog of (22) to hold in general.
But this is dramatically false: Example 26 shows

Lemma 25 There exists a family of n-state chains, with uniform stationary
distributions, such that sup,, 3, < 1 while inf, a,,(n) > 0.

Loosely, this implies there is no reasonable hypothesis on the spectrum of a
n-state chain which implies an o(n) mixing time. There is a time-asymptotic
result

a(t) < p(t) < OB VL,

for some C' depending on the chain. But implicit claims in the literature
that bounding the spectrum of a general chain has some consequence for
finite-time behavior should be treated with extreme skepticism!

Example 26 Let (Y;) be independent r.v.’s taking values in {0,1,...,n—1}
with distribution specified by
L Jt1 :
PY<H=2T" 0<j<n—2
V<i)=5r j
Define a Markov chain (X;) on {0,1,...,n— 1} by
X = max(X;1 — 1, Y;).

This chain has the property (cf. the “patterns in coin-tossing” chain) of
attaining the stationary distribution in finite time. Precisely: for any initial
distribution o, the distribution of X,,_; is uniform, and hence X; is uniform
for all t > n — 1. To prove this, we simply observe that for 0 < 7 <mn —1,

Pa(Xn—lgj) = P(Yn—l S]vYn—2§]+177Y0§]+n_1)
+ 1  + 2 -1
= ‘Lx‘ix...xn X 1x...1
i+2 43 "
j+1

n

If Xg is either 0 or 1 then X; is distributed as Y7, implying that the vector
v with v; = 1(;20) — 1(;=1) is an eigenvector of P with eigenvalue 0. By soft
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“duality” arguments it can be shown [1] that this is the largest eigenvalue,
in the sense that

R(A,) <0forall 2<u<n. (23)

I believe it is true that
= max{|A\,|:2<u<n}

is bounded away from 1, but we can avoid proving this by considering the
“lazy” chain X; with transition matrix P = (I 4+ P)/2, for which by (23)

B < sup{|(1+2)/2] : A < LR(A) < 0} = y/1/2.

So the family of lazy chains has the eigenvalue property asserted in Lemma
25. But by construction, X; > Xo —t, and so P(Xo > 3n/4, X,/ < n/4) =
0. For the lazy chains we get

Pr(Xo>3n/4,X, <n/4) —0asn—

establishing the (non)-mixing property asserted in the lemma.

6 Miscellany

6.1 Mixing times for irreversible chains

In Chapter 4 yyy we discussed equivalences between different definitions of
“mixing time” in the 7 family. Lovasz and Winkler [26] give a detailed
treatment of analogous results in the non-reversible case.

xxx state some of this ?

6.2 Balanced directed graphs

Any Markov chain can be viewed as random walk on a weighted directed
graph, but even on unweighted digraphs it is hard to relate properties on
the walk to graph-theoretic properties, because (as we have often observed)
it is in general hard to get useful information about the stationary distribu-
tion. An exception is the case of a balanced digraph, i.e. when the in-degree
equals the out-degree (= r,, say) at each vertex ». Random walk on a bal-
anced digraph clearly retains the “undirected” property that the stationary
probabilities m, are proportional to r,. Now the proofs of Theorems yyy
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and yyy in Chapter 6 extend unchanged to the balanced digraph setting,
showing that the cover-and-return time C% satisfies

max F,CT < n%in general; max E,CT <6n?ona regular balanced digraph.
v U

(The proofs rely on the edge-commute inequality (Chapter 3 yyy), rather
than any “resistance” property).

6.3 An absorption time problem

Consider a Markov chain on states {1,2,...,n} for which the only possible
transitions are downward, i.e. for 7 > 2 we have

p(2,5) =10, j>i

and p(1,1) = 1. The chain is ultimately absorbed in state 1. A question
posed by Gil Kalai is whether there is a bound on the mean absorption time
involving a parameter similar to that appearing in Cheeger’s inequality. For
each proper subset A of {1,...,n} with 1 ¢ A define

|A|[A]
n EZ'EA E]‘eAC p(iaj)

c(A) =

and then define
K = max c(A).

Open Problem 27 Prove that max; F;T is bounded by a polynomial func-
tion of klogn.

7 Notes on Chapter 9

Section 1. The idea of a maximal coupling goes back to Goldstein [21]: see
Lindvall [25] for further history. Strong stationary times were studied in
detail by Diaconis - Fill [17, 16] and Fill [19, 20], with particular attention
to the case of one-dimensional stochastically monotone chains where there
is some interesting “duality” theory. The special case of random walks on
groups had previously been studied in Aldous - Diaconis [4, 5], and the idea
is implicit in the regenerative approach to time-asymptotics for general state
space chains, discussed at xxx. The theory surrounding Theorem 4 goes back
to Rost [34]. This is normally regarded as part of the potential theory of
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Markov chains, which emphasizes analogous results in the transient setting,
and the recurrent case is rather a sideline in that setting. See Revuz [32] sec.
2.5 or Dellacherie - Meyer [14] Chapter 9 sec. 3 for textbook treatments in
the general-space setting. The observation that the theory applied in simple
finite examples such as those in section 1.3 was made in Lovasz - Winkler [26],
from whom we borrowed the phrase halting state. Monotonicity properties
like that in the statement of Corollary 5 were studied in detail by Brown
[12] from the viewpoint of approximate exponentiality of hitting times.

Section 2. A slightly more sophisticated and extensive textbook treat-
ment of these topics is in Lyons [28]. The nomenclature reflects my taste:
Theorem 10 is “the underlying theorem” which implies “the formula” for
the stationary distribution in terms of weighted spanning trees. Different
textbooks (e.g. [22] p. 340 xxx more refs) give rather different historical cita-
tions for the Markov chain tree formula, and in talks I often call it “the most
often rediscovered result in probability theory”: it would be an interesting
project to track down the earliest explicit statement. Of course it can be
viewed as part of a circle of ideas (including the matrix-tree theorem for the
number of spanning trees in a graph) which is often traced back to Kirchoff.
The fact that Theorem 10 underlies the formula was undoubtably folklore
for many years (Diaconis attributes it to Peter Doyle, and indeed it appears
in an undergraduate thesis [36] of one of his students), but was apparently
not published until the paper of Anantharam and Tsoucas [7]. The fact
that the Markov chain tree theorem can be interpreted as an algorithm for
generating uniform random spanning trees was observed by Aldous [2] and
Broder [11], both deriving from conversations with Diaconis. [2] initiated
study of theoretical properties of uniform random spanning trees, proving
e.g. the following bounds on the diameter A of the random tree in a regular
n-vertex graph.

n!/? - 1/2 1/2
< EA < Koy "n'/*logn (24)

Kimlogn —

where Kq and K, are absolute constants. Loosely, “in an expander, a ran-
dom spanning tree has diameter n'/2£°(1)”  Results on asymptotic Poisson
distribution for the degrees in a random spanning tree are given in Aldous
[2], Pemantle [30] and Pemantle and Burton [13]. Pemantle [29] discusses
the analog of uniform random spanning trees on the infinite d-dimensional
lattice, and Aldous and Larget [6] give simulation results on quantitative
behavior on the d-dimensional torus.
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Section 2.2. As described in Pemantle [30] and Burton and Pemantle
[13], the key to deeper study of random spanning trees is

Theorem 28 (Transfer-impedance theorem) Fiz a graph G. There is
a symmetric function H(ey,ez) on pairs of edges in G such that for any
edges (e1,...,€,)

Ple; €T forall1 <i<r)=det M(eq,...,e,)
where M(eq,...,e;) is the matriz with entries H(e;,e;),1<1,j <r.

Section 3. The first “pure simulation” algorithm for sampling exactly
from the stationary distribution was given by Asmussen et al [8], using a
quite different idea, and lacking explicit time bounds.

Section 3.1. In our discussion of these algorithms, we are assuming that
we have a list of all states. Lovasz - Winkler [27] gave the argument in a
slightly different setting, where the algorithm can only “address” a single
state, and their bound involved max;; £;T} in place of 7.

Section 3.3. Letac [23] gives a survey of the “backwards coupling”
method for establishing convergence of continuous-space chains: it suffices
to show there exists a r.x. X ~°° such that Xéz’s) — X7 a.s. as s — —00,
for each state z. This method is especially useful in treating matrix-valued
chains of the form X; = A¢X;_1 + By, where (A4, B;),t > 1 arei.i.d. random
matrices. See Barnsley and Elton [9] for a popular application.

Section 4.1. One result on spectra and reversibilizations is the following.
For a transition matrix P write

T(P) = sup{l_;ll\| : A # 1 an eigenvalue of P}.

Then for the additive reversibilization Q) = 1(P + P*) we have (e.g. [35]
Proposition 1)
(P) < 2r(QM).
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Reversibility doesn’t help with this obstruction. A different approach is
to seek to use coupling ideas.

777 tie up with coupling discussion.

If we can specify a Markov coupling, then for any pair (, ) of initial dis-
tributions we can simulate the coupled processes and estimate the coupling
time, and then the coupling inequality provides a self-verifying bound on the
time ¢ taken for || P,(X¢ € -) — P, (Xt € -)|| to become small. Unfortunately,
in the context where we cannot simulate directly from the stationary dis-
tribution m, we would in general need to simulate coupled processes started
from every state. But let us describe a very special setting where we can
get away with coupling only two initial distributions. (This is motivated by
a result of Propp - Wilson [31] described later).

Suppose we have a finite poset (partially ordered set) I with partial
order <. Call P algorithmically monotone if we can explicitly find an (easily
computable) function f : I x [0,1] — [ such that, writing U for a r.v.
uniformly distributed on [0, 1],

P(f(i,U)=7) = pi (25)
if i < j then f(i,u) < f(j,u) Vu. (26)

(This is closely related to the standard theoretical notion of a monotone P:
see Notes). For such a chain, we can use a sequence (U;;¢ > 1) of indepen-

dent uniform r.v.’s to define, simultaneously for each i, versions Xt(i);t >0
of the chain started at 2:

X(gi) =1 Xt(i) = f(Xt(i)lv Ui),t > 1. (27)

Now suppose that I has a minimum element 7, and a maximum element 2*,
so that i, < i < i* for all i. Write X* and X, for the chains X () and X (i)
constructed above, and write

Cr = min{t : X*(t) = X.(1)}.

By construction X,(t) < X@(t) < X*(¢), and similarly X.(¢) < X)(¢) <
X*(t), where J denotes a random initial state picked according to the sta-
tionary distribution. So

X9ty = XD(1) for all t > €.

In other words, in terms of the definition d(¢) of variation distance from
stationarity (Chapter 2 yyy),

d(t) < P(C: > 1), (28)
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It should now be clear that, in the setting of an algorithmically monotone
chain with minimum and maximum states, we can use (28) to make an al-
gorithm for sampling approximately from the stationary distribution. The
point is that C7} is the first meeting time for the joint process (X*(), X«(t)),and
so can be simulated. Here is one implementation.

Step 1. Simulate k values of C}, and let 7 be the maximum of these &
values.

Step 2. Start from an arbitrary state, simulate 27 steps of the chain,
output the final state. Repeat k times, outputting (Y7,...,Y%).

This gives k£ samples whose joint distribution is close to the joint distri-

bution 7% of k independent samples from 7: precisely,
1+ log?k
| dist(Ya, ..., Y3) — 7| < +Tog (29)

7z7 give argument

The key point is that this procedure requires no prior bound on mixing
times: it’s a “self-verifying” procedure. It is important to understand why
this doesn’t contradict Lemma 16: instead of just simulating the P-chain,
the procedure for obtaining 7 involves simulating the coupled chain whose
definition involves the detailed structure of P.

777 strong hypothesis; examples in c-t

777 gap between lemma and s-m case. Three results.

zzz comment on relationship between results, cost of exact vs approx.

zz7 3 results have same structure

Notes The partial order < on [ induces a partial order, say <*, on the
set of probability distributions on I: this has several equivalent definitions,
of which the “probabilistic” definition is

p1 =" pg iff there exist (X,,, X,,) with dist(X,,) = g, and P(X,, < X,,) = 1.

A Markov chain taking values in the poset [ is called monotone if the tran-
sition probabilities p(i, -) satisfy

if ¢ < j then p(i,-) <* p(7,-).

There is a standard theory of “monotone couplings” for monotone chains:
see Lindvall [25] Chapter IV. Our set-up differs in one or two ways from
the standard theory. First, existence of a function f satisfying (25,26) is
equivalent to existence of a joint distribution (Z;;¢ € I) with P(Z; = k) =
pir and

if i < j then Z; < Z;. (30)
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But of course for algorithmic purposes we need an explicit f, rather than
just existence of f. Secondly, monotonicity implies that we can achieve (30)
for any specified pair ¢ < 7, but it is not clear (to me) whether it implies
existence of a whole family (Z;;¢ € I') satisfying (30) for each pair 7 < j.

Use of (28) is central to the analysis of attractive spin systems: see
Liggett [24] Chapter 3.
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