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This book is intended primarily as “theoretical mathematics”, focusing
on ideas that can be encapsulated in theorems. Markov Chain Monte Carlo
(MCMC), which has grown explosively since the early 1990s, is in a sense
more of an “engineering mathematics” field — a suite of techniques which
attempt to solve applied problems, the design of the techniques being based
on intuition and physical analogies, and their analysis being based on ex-
perimental evaluation. In such a field, the key insights do not correspond
well to theorems.

In section 1 we give a verbal overview of the field. Section 2 describes
the two basic schemes (Metropolis and line-sampling), and section 3 de-
scribes a few of the many more complex chains which have been suggested.
The subsequent sections are fragments of theory, indicating places where
MCMC interfaces with topics treated elsewhere in this book. Liu [23] gives
a comprehensive textbook treatment of the field.

1 Overview of Applied MCMC

1.1 Summary

We give a brisk summary here, and expand upon some main ideas (the
boldface phrases) in section 1.2.
Abstractly, we start with the following type of problem.

Given a probability distribution 7 on a space 5, and a numer-
ical quantity associated with 7 (for instance, the mean g :=
Yoam(z)g(z)or := [ g dr, for specified g : S — R), how can one
estimate the numerical quantity using Monte Carlo (i.e. ran-
domized algorithm) methods?



Asking such a question implicitly assumes we do not have a solution using
mathematical analysis or efficient deterministic numerical methods. Fzact
Monte Carlo sampling presumes the ability to sample exactly from the target
distribution 7, enabling one to simulate an i.i.d. sequence (X;) and then use
classical statistical estimation, e.g. estimate g by n=! 5" | g(X;). Where
implementable, such exact sampling will typically be the best randomized
algorithm. For one-dimensional distributions and a host of special dis-
tributions on higher-dimensional space or combinatorial structures, exact
sampling methods have been devised. But it is unrealistic to expect there
to be any exact sampling method which is effective in all settings. Markov
Chain Monte Carlo sampling is based on the following idea.

First devise a Markov chain on S whose stationary distribu-
tion is w. Simulate n steps Xi,..., X, of the chain. Treat
X, Xoog1,..., X, as dependent samples from 7 (where 7* is
some estimate of some mixing time) and then use these samples
in a statistical estimator of the desired numerical quantity, where
the confidence interval takes the dependence into account.

Variations of this basic idea include running multiple chains and introducing
auxiliary variables (i.e. defining a chain on some product space S x A). The
basic scheme and variations are what make up the field of MCMC. Though
there is no a priori reason why one must use reversible chains, in practice
the need to achieve a target distribution 7 as stationary distribution makes
general constructions using reversibility very useful.

MCMC originated in statistical physics, but mathematical analysis of
its uses there are too sophisticated for this book, so let us think instead of
Bayesian statistics with high-dimensional data as the prototype setting for
MCMC. So imagine a point z € R? as recording d numerical characteristics
of an individual. So data on n individuals is represented as a n X d matrix
x = (z;;). As amodel, we first take a parametric family ¢(8, z) of probability
densities; that is, # € RP is a p-dimensional parameter and for each 8 the
function z — ¢(#,z) is a probability density on R?. Finally, to make a
Bayes model we take # to have some probability density h(f) on RP. So
the probability model for the data is: first choose # according to A(-), then
choose (z;.) i.i.d. with density ¢(6,z). So there is a posterior distribution

on 6 specified by
h(6) TTi= ¢(6, i)

Zx

fx(8) =

(1)



where zx is the normalizing constant. Our goal is to sample from fx(-),
for purposes of e.g. estimating posterior means of real-valued parameters.
An explicit instance of (1) is the hierarchical Normal model, but the
general form of (1) exhibits features that circumscribe the type of chains it
is feasible to implement in MCMC, as follows.

(i) Though the underlying functions ¢(-,-), h(-) which define the model
may be mathematically simple, our target distribution fx(-) depends on
actual numerical data (the data matrix x), so it is hard to predict, and
dangerous to assume, global regularity properties of fx(-).

(ii) The normalizing constant zx is hard to compute, so we want to define
chains which can be implemented without calculating zx.

The wide range of issues arising in MCMC can loosely be classified as “de-
sign” or “analysis” issues. Here “design” refers to deciding which chain to
simulate, and “analysis” involves the interpretation of results. Let us start
by discussing design issues. The most famous general-purpose method is
the Metropolis scheme, of which the following is a simple implementation in
setting (1). Fix a length scale parameter [. Define a step § — 8(1) of a chain
as follows.

Pick i uniformly from {1,2,...,p}.

Pick U uniformly from [6; — [, 6; + [].

Let @' be the p-vector obtained from # by changing the i’th co-
ordinate to U.

With probability min(1, fx(6')/ fx(8)) set 80 = @', else set
o) = 6.

The target density enters the definition only via the ratios fx(6')/fx(8),
so the value of zx is not needed. The essence of a Metropolis scheme is
that there is a proposal chain which proposes a move # — €', and then
an acceptance/rejection step which accepts or rejects the proposed move.
See section 2.1 for the general definition, and proof that the stationary
distribution is indeed the target distribution. There is considerable flexibility
in the choice of proposal chain. One might replace the uniform proposal
step by a Normal or symmetrized exponential or Cauchy jump; one might
instead choose a random (i.e. isotropic) direction and propose to step some
random distance in that direction (to make an isotropic Normal step, or a
step uniform within a ball, for instance). There is no convincing theory to
say which of these choices is better in general. However, in each proposal
chain there is some length scale parameter [: there is a trade-off between



making [ too small (proposals mostly accepted, but small steps imply slow
mixing) and making [ too large (proposals rarely accepted), and in section
5 we give some theory (admittedly in an artificial setting) which does give
guidance on choice of [.

The other well-known general MCMC method is exemplified by the Gibbs
sampler. In the setting of (1), for # = (6;,...,6,) and 1 < 7 < p write

fx,j,@(v) = fX(017 RS 0j—17 v, 0j+17 ) Hp)
A step 6 — 0(1) of the Gibbs sampler is defined as follows.

Pick j uniformly from {1,2,...,p}.
Pick V from the density on R! proportional to fx ja(v).
Let 8 be # with its j’th coordinate replaced by V.

The heuristic appeal of the Gibbs sampler, compared to a Metropolis scheme,
is that in the latter one typically considers only small proposal moves (lest
proposals be almost always rejected) whereas in the Gibbs sampler one sam-
ples over an infinite line, which may permit larger moves. The disadvantage
is that sampling along the desired one-dimensional line may not be easy to
implement (see section 1.2). Closely related to the Gibbs sampler is the
hit-and-run sampler, where one takes a random (isotropic) direction line in-
stead of a coordinate line; section 2.2 abstracts the properties of such [line
samplers, and section 3 continues this design topic to discuss more com-
plex designs of chains which attain a specified target distribution as their
stationary distribution.

We now turn to analysis issues, and focus on the simplest type of prob-
lem, obtaining an estimate for an expectation ¢ = > g(x)m(x) using an
irreducible chain (X;) designed to have stationary distribution 7. How do
we obtain an estimate, and how accurate is it? The most straightforward
approach is single-run estimation. The asymptotic variance rate is

o0

o2 }EEO +—var (Z:g()(s)> = _z: cov.(g(Xo), 9(Xs)). (2)

So simulate a single run of the chain, from some initial state, for some large
number ¢ of steps. Estimate g by

1
t—to

4=

> 9(X) (3)

i=tg+1



and estimate the variance of § by (¢t —to)~'62, and report a confidence inter-
val for § by assuming § has Normal distribution with mean g and the esti-
mated variance. Here 62 is an estimate of 62 obtained by treating the sample
covariances 4, (i.e. the covariance of the data-set (g(X;),9(Xi45));0 < <
t — s) as estimators of 75 = cov,(g(Xo),g(Xs)). And the burn-in time tq is
chosen as a time after which the 45 become small.

Though the practical relevance of theoretical mixing time pa-
rameters is debatable, one can say loosely that single-run estimates based
on t steps will work fine if ¢ is large compared to the relaxation time 5.
The difficulty is that in practical MCMC problems we do not know, or have
reasonable upper bounds on, 75, nor can we estimate 75 rigorously from sim-
ulations. The difficulty in diagnosing convergence from simulations is the
possibility of metastability error caused by multimodality. Using statisti-
cal physics imagery, the region around each mode is a potential well, and
the stationary distribution conditioned to a potential well is a metastable
distribution. Believing that a simulation reaches the stationary distribution
when in fact it only reaches a metastable distribution is the metastability
error.

The simplest way to try to guard against metastability error is the mul-
tiple trials diagnostic. Here we run k independent copies of the chain from
different starting states, each for ¢ steps. One diagnostic is to calculate the
k sample averages §;, and check that the empirical s.d. of these £ averages
is consistent with the estimated s.d. (t — to)~'/26. Intuitively, one chooses
the initial states to be “overdispersed”, i.e. more spread out than we expect
the target distribution to be; passing the diagnostic test gives us some re-
assurance against metastability error (if there were different potential wells,
we hope our runs would find more than one well, and that different behavior
of g on different wells would be manifest).

Of course, if one intends to perform such diagnostics it makes sense to
start out doing the & multiple runs. A more elaborate procedure is to divide
[0,7] into L successive blocks, and seek to check whether the kL blocks “look
similar”. This can be treated as a classical topic in statistics (“analysis of
variance”). In brief, we compute the sample mean §; ; and sample variance
‘32'2,]‘ for the 7’th block of the i’th simulation, and see if this data (perhaps
after deleting the first few blocks of each simulation) is consistent with the
blocks being i.i.d.. If so, we use the overall average as an estimator of g,
and estimate the accuracy of this estimator by assuming the blocks were
independent.

If a multiple-runs diagnostic fails, or if one lacks confidence in one’s



ability to choose a small number of starting points which might be attracted
to different nodes (if such existed), then one can seek schemes specially
adapted to multimodal target densities. Because it is easy to find local
maxima of a target density f,e.g. by a deterministic hill-climbing algorithm,
one can find modes by repeating such an algorithm from many initial states,
to try to find an exhaustive list of modes with relatively high f-values. This
is mode-hunting; one can then design a chain tailored to jump between the
wells with non-vanishing probabilities. Such methods are highly problem-
specific; more general methods (such as the multi-level or multi-particle
schemes of sections 3.3 and 3.4) seek to automate the search for relevant
modes within MCMC instead of having a separate mode-hunting stage.

In seeking theoretical analysis of MCMC one faces an intrinsic difficulty:
MCMUC is only needed on “hard” problems, but such problems are difficult
to study. In comparing effectiveness of different variants of MCMC it is
natural to say “forget about theory — just see what works best on real
examples”. But such experimental evaluation is itself conceptually difficult:
pragmatism is easier in theory than in practice!

1.2 Further aspects of applied MCMC

Sampling from one-dimensional distributions. Consider a probability distri-
bution g on R! with density function f and and distribution function F.
In one sense, sampling from p is easy, because of the elementary result that
F~Y(U) has distribution g, where U is uniform on [0,1] and = = F~'(u)
is the inverse function of u = F(z). In cases where we have an explicit
formula for //~!, we are done. Many other cases can be done using rejection
sampling. Suppose there is some other density ¢ from which we can sample
by the inverse distribution function method, and suppose we know a bound
¢ > sup, f(z)/g(z). Then the algorithm

propose a sample z from g¢(-);

f(z)

cg(x)

accept # with probability ; else propose a new sample from

g

produces an output with density f(-) after mean ¢ steps. By combining these
two methods, libraries of algorithms for often-encountered one-dimensional
distributions can be built, and indeed exist in statistical software packages.

But what about a general density f(z)? If we need to sample many times
from the same density, it is natural to use deterministic numerical methods.



First probe f at many values of z. Then either

(a) build up a numerical approximation to F’ and thence to F~!; or

(b) choose from a library a suitable density g and use rejection sampling.
The remaining case, which is thus the only “hard” aspect of sampling from
one-dimensional distributions, is where we only need one sample from a
general distribution. In other words, where we want many samples which
are all from different distributions. This is exactly the setting of the Gibbs
sampler where the target multidimensional density is complicated, and thus
motivates some of the variants we discuss in section 3.

Practical relevance of theoretical mizing time parameters. Standard theory
from Chapter 4 (yyy cross-refs) relates 7 to the asymptotic variance rate
o%(g) at (2) for the “worst-case” g:

2
Ty = ! = L+ A :sup—g (g) (4)
1— A 1— A g Vvar pg
Moreover Proposition 29 of Chapter 4 (yyy 10/11/94 version) shows that
0?(g) also appears in an upper bound on variances of finite-time averages
from the stationary chain. So in asking how long to run MCMC simulations,
a natural principle (not practical, of course, because we typically don’t know

T3) is

base estimates on ¢ steps, where ¢ is a reasonable large multiple
of 5.

But this principle can be attacked from opposite directions. It is sometimes
argued that worrying about m, (corresponding to the worst-case g) is overly
pessimistic in the context of studying some specific g. For instance, Sokal
[37] p. 8 remarks that in natural statistical physics models on the infinite
lattice near a phase transition in a parameter #, as 6 tends to the critical
point the growth exponent of 0%(g) for “interesting” ¢ is typically different
from the growth exponent of 7,. Madras and Slade [25] p. 326 make similar
remarks in the context of the pivot algorithm for self-avoiding walk. But we
do not know similar examples in the statistical R? setting. In particular, in
the presence of multimodality such counterexamples would require that g
be essentially “orthogonal” to the differences between modes, which seems
implausible.

Burn-in, the time ?y excluded from the estimator (3) to avoid undue
influence of initial state, is conceptually more problematic. Theory says that
taking tg as a suitable multiple of 7 would guarantee reliable estimates. The



general fact 7y > 7, then suggests that allowing sufficient burn-in time is a
stronger requirement than allowing enough “mixing” for the stationary chain
— so the principle above is overly optimistic. On the other hand, because it
refers to worst-case initial state, requiring a burn-in time of 7 seems far too
conservative in practice. The bottom line is that one cannot eliminate the
possibility of metastability error; in general, all one gets from multiple-runs
and diagnostics is confidence that one is sampling from a single potential
well, in the imagery below (though section 6.2 indicates a special setting
where we can do better).

Statistical physics imagery. Any probability distribution 7 can be written
as

m(z) x exp(—H(z)).

One can call H a potential function; note that a mode (local maximum) of =
is a local minimum of H. One can envisage a realization of a Markov chain
as a particle moving under the influence of both a potential function (the
particle responds to some “force” pushing it towards lower values of H) and
random noise. Associated with each local minimum y of H is a potential
well, which we envisage as the set of points which under the influence of the
potential only (without noise) the particle would move to y (in terms of =,
states from which a “steepest ascent” path leads to y).

A fundamental intuitive picture is that the main reason why a reversible
chain may relax slowly is that there is more than one potential well, and the
chain takes a long time to move from one well to another. In such a case,
7 conditioned to a single potential well will be a metastable (i.e. almost-
stationary) distribution. Omne expects the chain’s distribution, from any
initial state, to reach fairly quickly one (or a mixture) of these metastable
distributions, and then the actual relaxation time to stationarity is domi-
nated by the times taken to move between wells. In more detail, if there are
w wells then one can consider, as a coarse-grained approximation, a w-state
continuous-time chain where the transition rates w; — wq are the rates of
moving from well wy to well wy. Then 7 for the original chain should be
closely approximated by 75 for the coarse-grained chain.

The hierarchical Normal model. As a very simple instance of (1), take d =
I,p=2and 2 — ¢(u,0?, z) the Normal(u,o?) density. Then let (u,c) be
chosen independently for each individual from some joint density h(p, o) on
R x R*. The data is an n-vector x = (z1,...,2,) and the full posterior



distribution is

n

fX(:ulv s My 015 '7Un) = Z§1 Hh(,uz,az)gb(,ul,af,l‘z)

=1

Typically we are interested in a posterior mean of p; for fixed ¢, that is g for
G, ooy iy 01y e oy Op) 1=

Pragmatism is easier in theory than in practice. In comparing MCMC meth-
ods experimentally, one obvious issue is the choice of example to study. An-
other issue is that, if we measure “time” as “number of steps”, then a step of
one chain may not be comparable with a step of another chain. For instance,
a Metropolis step is typically easier to implement than a Gibbs step. More
subtlely, in combinatorial examples there may be different ways to set up
a data structure to represent the current state in a way that permits easy
computation of 7-values. The alternative of measuring “time” as CPU time
introduces different problems — details of coding matter.

2 The two basic schemes

We will present general definitions and discussion in the context of finite-
state chains on a state space 5; translating to continuous state space such
as R involves slightly different notation without any change of substance.

2.1 Metropolis schemes

Write K = (k) for a proposal transition matrix on 5. The simplest case is
where K is symmetric (kg = ky;). In this case, given 7 on S we define a
step * — z’ of the associated Metropolis chain in words by

e pick y from k(z,-) and propose a move to y;

e accept the move (i.e. set 2’ = y) with probability min(1,r,/7;), oth-
erwise stay (2’ = z).

This recipe defines the transition matrix P of the Metropolis chain to be
Doy = kpymin(l, 7, /7,), y # z.

Assuming K is irreducible and 7 strictly positive, then clearly P is irre-
ducible. Then since 7,py, = kyymin(7r,,T,), symmetry of K implies P



satisfies the detailed balance equations and so is reversible with stationary
distribution 7.

The general case is where K is an arbitrary transition matrix, and the
acceptance rule becomes

e accept a proposed move z — y with probability min(1, %)
The transition matrix of the Metropolis chain becomes
. T,k
Py = kgymin [ 1,222y £ 2. (5)

To ensure irreducibility, we now need to assume connectivity of the graph
on S whose edges are the (z,y) such that min(kg,, kyz) > 0. Again detailed
balance holds, because

TyPey = MIN(Tykey, Tykys), Y # .

The general case is often called Metropolis-Hastings — see Notes for termi-
nological comments.

2.2 Line-sampling schemes

The abstract setup described below comes from Diaconis [10]. Think of each
S; as a line, i.e. the set of points in a line.

Suppose we have a collection (.5;) of subsets of state space 5, with U;5; =
S. Write I(z) := {¢ : z € 5;}. Suppose for each z € S we are given a
probability distribution ¢ — w(i,2) on I(z), and suppose

if z,y € 5; then w(?,z) = w(t,y). (6)

Write 7ll(-) = 7(:|S;). Define a step z — ¥ of the line-sampling chain in
words by

e choose i from w(-,z);
e then choose y from 7li.

So the chain has transition matrix

pM/ = Z w('a‘r)ﬂ'g[j]a ) # Z.

1€1(x)

10



We can rewrite this as

Py = Y, w(i,2)my/x(S))

€I(z)nI(y)

and then (6) makes it clear that 7;p,, = mypy,. For irreducibility, we need
the condition

the union over 7 of the edges in the complete graphs

on 5; form a connected graph on 5. (7)

Note in particular we want the S; to be overlapping, rather than a partition.

This setting includes many examples of random walks on combinatorial
sets. For instance, card shuffling by random transpositions (yyy cross-ref)
is essentially the case where the collection of subsets consists of all 2-card
subsets. In the R? setting, with target density f, the Gibbs sampler is the
case where the collection consists of all lines parallel to some axis. Taking
instead all lines in all directions gives the hit-and-run sampler, for which a
step from x is defined as follows.

e Pick a direction uniformly at random, i.e. a point 3 on the surface on
the unit ball.

o Step from z to z + Uy, where —oco < U < oo is chosen with density
proportional to

ud_lf(ac + uy).

The term u?~! here arises as a Jacobean; see Liu [23] Chapter 8 for expla-
nation and more examples in R

3 Variants of basic MCMC

3.1 Metropolized line sampling

Within the Gibbs or hit-and-run scheme, at each step one needs to sample
from a one-dimensional distribution, but a different one-dimensional distri-
bution each time. As mentioned in section 1.2, this is in general not easy to
implement efficiently. An alternative is Metropolized line sampling, where
one instead takes a single step of a Metropolis (i.e. propose/accept) chain
with the correct stationary distribution. To say the idea abstractly, in the
general “line sampling” setting of section 2.2, assume also:

11



for each i we have an irreducible transition matrix K¢ on S; whose sta-
tionary distribution is .
Then define a step x — y of the Metropolized line sampler as

e choose i from w(-,z);
e then choose y from ki(z,-).

It is easy to check that the chain has stationary distribution =, and is re-
versible if the K* are reversible, so in particular if the K* are defined by a
Metropolis-type propose-accept scheme. In the simplest setting where the
line sampler is the Gibbs sampler and we use the same one-dimensional pro-
posal step distribution each time, this scheme is Metropolis-within-Gibbs. In
that context is seems intuitively natural to use a long-tailed proposal distri-
bution such as the Cauchy distribution. Because we might encounter wildly
different one-dimensional target densities, e.g. one density with s.d. 1/10
and another with two modes separated by 10, and using a U(—L, L) step
proposal would be inefficient in the latter case if L is small, and inefficient
in the former case if L is large. Intuitively, a long-tailed distribution avoids
these worst cases, at the cost of having the acceptance rate be smaller in
good cases.

3.2 Multiple-try Metropolis

In the setting (section 2.1) of the Metropolis scheme, one might consider
making several draws from the proposal distribution and choosing one of
them to be the proposed move. Here is one way, suggested by Liu et al
[24], to implement this idea. It turns out that to ensure the stationary
distribution is the target distribution 7, we need extra samples which are
used only to adjust the acceptance probability of the proposed step.

For simplicity, we take the case of a symmetric proposal matrix K. Fix
m > 2. Define a step from z of the multiple-try Metropolis (MTM) chain as
follows.

e Choose y1,..., ¥y independently from k(z,-);
¢ Choose y; with probability proportional to m(y;);

e Choose z1,...,2,,—1 independently from k(y;,-), and set z,, = z;

e Accept the proposed move z — 7; with probability min <1, %::’ :EZ‘)))

12



Irreducibility follows from irreducibility of K. To check detailed balance,
write the acceptance probability as min(1,¢). Then

i Ty;

m—1 m—1
™ .
Pzy = mkwyz H L H ky e, E%mm(l,q)
=1 =1

where the first sum is over ordered (2m—2)-tuples (y1,. .., Ym—1,%1, -+, Tm—1)-
So we can write

m—1 m—1 1 q
TPy = MkpyTyTy E H kg y: H ky. 2, min <—E > ”Ty‘) .
k3 2 k3 2

The choice of ¢ makes the final term become min(zé

o ﬁ) One can
now check m.pyy = TyPye, by switching the roles of z; and y;.

To compare MTM with single-try Metropolis, consider the m — oo limit,
in which the empirical distribution of #1,..., ¥y, will approach k(z,-), and
so the distribution of the chosen y; will approach k(z,-)7(-)/a, for a, :=

>y kzymy. Thus for large m the transition matrix of MTM will approximate

k.., .
Doy = l;’ Y min(1,az/ay), y#z.

xr

To compare with single-try Metropolis P, rewrite both as

oo __ : 1 1
Pry = Faymymin (aa @) , yFaw
_ (L1 .
Pry = kgyTymin (m’ Wy) , Y F .

Thinking of a step of the proposal chain as being in a random direction
unrelated to the behavior of 7, from a 7-typical state x we expect a proposed
move to tend to make 7 decrease, so we expect a, < w, for w-typical z. In
this sense, the equations above show that MTM is an improvement. Of
course, if we judge “cost” in terms of the number of evaluations of 7., then
a step of MTM costs 2m — 1 times the cost of single-step Metropolis. By this
criterion it seems implausible that MTM would be cheaper than single-step.
On the other hand one can envisage settings where there is substantial cost
in updating a data structure associated with the current state z, and in such
a setting MTM may be more appealing.

13



3.3 Multilevel sampling

Writing 7(z) x exp(—H(z)), as in the statistical physics imagery (section
1.2), suggests defining a one-parameter family of probability distributions
by

mo(z) x exp(—0H (z)).

(In the physics analogy, 8 corresponds to 1/temperature). If 7 is multimodal
we picture g, as # increases from 0 to 1, interpolating between the uniform
distribution and 7 by making the potential wells grow deeper. Fix a proposal
matrix &', and let Py be the transition matrix for the Metropolized chain (5)
associated with A and my. Now fix L and values 0 = 6; < 8, < ... < 8 = 1.
The idea is that for small 8 the Py-chain should have less difficulty moving
between wells; for # = 1 we get the correct distribution within each well; so
by varying 6 we can somehow sample accurately from all wells. There are
several ways to implement this idea. Simulated tempering [26] defines a chain
on state space S x {1,..., L}, where state (z,7) represents configuration z
and parameter 6;, and where each step is either of the form

o (z,i)— (2',i); x — 2’ a step of Py,
or of the form

o (z,i)— (z,7"); wherei — 7 is a proposed step of simple random walk
on {1,2,...,L}.

However, implementing this idea is slightly intricate, because normalizing
constants zg enter into the desired acceptance probabilities. A more elegant
variation is the multilevel exchange chain suggested by Geyer [16] and imple-
mented in statistical physics by Hukushima and Nemoto [21]. First consider
L independent chains, where the 7’th chain Xt(l) has transition matrix Fy,.
Then introduce an interaction; propose to switch configurations X () and
X+ and accept with the appropriate probability. Precisely, take state

space S* with states x = (z1,...,27). Fix a (small) number 0 < a < 1.
e With probability 1 — a pick ¢ uniformly from {1,..., L}, pick z! ac-
cording to Py, (z;,-) and update x by changing z; to z!.
e With probability «, pick uniformly an adjacent pair (7,7 + 1), and
propose to update x by replacing (z;,z;+1) by (Zit1,%;). Accept this
proposed move with probability

i (17 Wei($i+1)7rei+1(fcz’)) '

79, (%i)To, 4, (Tig1)
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To check that the product @ = mg, X ... X 7y, is indeed a stationary distri-
bution, write the acceptance probability as min(1, ¢). If x and x’ differ only
by interchange of (z;,2;+1) then

7(x) pex) _ w(x) g2ymin(lg) (%)
T(x) p(xx)  w(x) g min(L ) | A(x)

and the definition of ¢ makes the expression = 1. The case of steps where
only one component changes is easier to check.

3.4 Multiparticle MCMC

Consider the setting of section 2.2. There is a target distribution 7 on §
and a collection of subsets (5;). Write 7ll = 7(-|$;) and I(z) = {i: 2 €
Si}. Now fix m > 2. We can use the line-sampling scheme of section 2.2
to define (recall Chapter 4 section 6.2) (yyy 10/11/94 version) a product
chain on S™ with stationary distribution 7 x © x ... x 7 = 7*. For this
product chain, picture m particles, at each step picking a random particle
and making it move as a step from the line-sampling chain. Now let us
introduce an interaction: the line along which a particle moves may depend
on the positions of the other particles.

Here is a precise construction. Suppose that for each (z,%) € § x §™1
we are given a probability distribution w(-,z,%) on I(z) satisfying the fol-
lowing analog of (6):

if z,y € 5; then w(i,z,%) = w(i,y,X). (8)
A step of the chain from (z;) is defined by
e Pick k£ uniformly from {1,2,...,m}
o Pick 7 from w(-, zg, (2,1 # k))
o Pick z/ from 7ll(.)
o Update (X;) by replacing zj by ).
It is easy to check that 7™ is indeed a stationary distribution; and the chain

is irreducible under condition (7). Of course we could, as in section 3.1, use
a Metropolis step instead of sampling from Kl
Constructions of this type in statistical applications on R? go back to

Gilks et al [18], under the name adaptive directional sampling. In particular
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they suggested picking a distinct pair (j, k) of the “particles” and taking the
straight line through z; and z; as the line to sample , from. Liu et al [24]
suggest combining this idea with mode-hunting. Again pick a distinct pair
(j, k) of “particles”; but now use some algorithm to find a local maximum
m(z;) of the target density starting from z;, and sample ) from the line
through z; and m(z;).

4 A little theory

The chains designed for MCMC in previous sections are reversible, and
therefore the theory of reversible chains developed in this book is available.
Unfortunately there is very little extra to say — in that sense, there is no
“theory of MCMC”. What follows is rather fragmentary observations.

4.1 Comparison methods

Consider the Metropolis chain

Metro __ . Tykye ,
pzye " = kzy min (17 Wzkzy) , Y F .

The requirement that a step of a chain be constructible as a proposal from K
followed by acceptance/rejection, is the requirement that p,, < k;y, y # 2.
Recall the asymptotic variance rate

t
2 iy =1
o“(P, f):= hgnt var Z_:lf(XS)
Lemma 1 (Peskun’s Theorem [30]) Given K and, let P be a reversible

chain with pgy, < kgy, y # x and with stationary distribution ©. Then
a*(P, f) > a*(PMere, f) Vf.

Proof. Reversibility of P implies

_ TyPyz Tykys _ k
Pzy = > = hgy
Ty Ty Tokey

and hence
__Metro
Pry = pa:y ﬁzy

where 8,y = Byr < 1, y # x. So the result follows directly from Peskun’s
lemma (yyy Lemma 5, to be moved elsewhere). O
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This result can be interpreted as saying that the Metropolis rates (5)
are the optimal way of implementing a proposal-rejection scheme. Loosely
speaking, a similar result holds in any natural Metropolis-like construction
of a reversible chain using a max(1,-) acceptance probability.

It is important to notice that Lemma 1 does not answer the following
question, which (except for highly symmetric graphs) seems intractable.

Question. Given a connected graph and a probability distribution 7 on its
vertices, consider the class of reversible chains with stationary distribution
7w and with transitions only across edges of the graph. Within that class,
which chain has smallest relaxation time?

Unfortunately, standard comparison theorems don’t take us much fur-
ther in comparing MCMC methods. To see why, consider Metropolis on
R? with isotropic Normal(0, 02I,) proposal steps. This has some relaxation
time 73(f, o), where f is the target density. For oy < o3, the normal den-
sities g, () satisfy g,,(2)/go,(z) > (01/02)%. So the comparison theorem
(Chapter 3 Lemma 29) (yyy 9/2/94 version) shows

To(f,09) > (Ul/UQ)dTQ(fv o2), 01 < 09.

But this is no help in determining the optimal o.

4.2 Metropolis with independent proposals

Though unrealistic in practical settings, the specialization of the Metropolis
chain to the case where the proposal chain is i.i.d., that is where k., = £,
is mathematically a natural object of study. In this setting the transition
matrix (5) becomes

Poy = kymin (1w, /w,), y#a

where w, := m,/k;. It turns out there is a simple and sharp coupling
analysis, based on the trick of labeling statesas 1,2,...,n so that wy > wy >
... > wy, (Liu [22] used this trick to give an eigenvalue analysis, extending
part (b) below). Let p be the chance that a proposed step from state 1 is
rejected (count a proposed step from state 1 to 1 as always accepted). So

n

pzzki( —%)(1.

=1
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Proposition 2 For the Metropolis chain over independent proposals, with
states ordered as above,

(a) d(t) < p'
(b) The relazation time 75 = (1 —p)~L.

Proof. For the chain started at state 1, the time T of the first acceptance of
a proposed step satisfies
P(T >t)=p'.

Recall from (yyy Chapter 4-3 section 1; 10/11/99 version) the notion of
coupling. For this chain a natural coupling is obtained by using the same
U(0,1) random variable to implement the accept/reject step (accept if U <
P(accept)) in two versions of the chain. It is easy to check this coupling
(X, X]) respects the ordering: if Xo < X{ then X; < X/. At time T the fact
that a proposed jump from 1 is accepted implies that a jump from any other
state must be accepted. So T is a coupling time, and the coupling inequality

(yyy Chapter 4-3 section 1.1; 10/11/99 version) implies d(t) < P(T > t).
This establishes (a), and the general inequality d(¢) = Q(A}) implies Ay < p.
On the other hand, for the chain started at state 1, on {7 = 1} the time-1

distribution is 7; in other words

Pi(X1 €)= pbi () + (1= p)m(-).

But this says that p is an eigenvalue of P (corresponding to the eigenvector
61 — m), establishing (b). O

In the continuous-space setting, with a proposal distribution uniform on
[0,1] and target density f with f* := max, f(z), part (b) implies the relax-
ation time 73 equals f*. So (unsurprisingly) Metropolis-over-independent is
comparable to the basic rejection sampling scheme (section 1.2), which gives
an exact sample in mean f* steps.

5 The diffusion heuristic for optimal scaling of
high dimensional Metropolis

In any Metropolis scheme for sampling from a target distribution on R?,
there arises the question of how large to take the steps of the proposal chain.
One can answer this for isotropic-proposal schemes in high dimensions, in
the setting where the target is a product distribution, and the result in
this (very artificial) setting provides a heuristic for more realistic settings
exemplified by (1).

18



5.1 Optimal scaling for high-dimensional product distribu-
tion sampling

Fix a probability density function f on R'. For large d consider the i.i.d.
product distribution 7;(dx) = [T, f(z;) dz; for x = (z;) € R%. Suppose
we want to sample from 7 using Metropolis or Gibbs; what is the optimal
scaling (as a function of d) for the step size of the proposal chain, and how
does the relaxation time scale?

For the Gibbs sampler this question is straightforward. Consider the one-
dimensional case, and take the proposal step increments to be Normal(0, a%).
Then (under technical conditions on f — we omit technical conditions here
and in Theorem 3) the Gibbs chain will have some finite relaxation time
depending on f and o, and choosing the optimal ¢* gives a relaxation time
72(f), say. The Gibbs sampler chain in which we choose a random coordinate
and propose changing only that coordinate (using the optimal o* above) is a
product chain in the sense of Chapter 4 section 6.2 (yyy 10/11/94 version),
and so the relaxation time of this product chain is 75'PP5(f) = m(f) d.

Though the argument above is very simple, it is unsatisfactory because
there is no simple expression for relaxation time as a function of ¢ or for the
optimal ¢*. It turns out that this difficulty is eliminated in the isotropic-
proposal Metropolis chain. In the Gibbs sampler above, the variance of the
length of a proposed step is 02, so we retain this property by specifying the
steps of the proposal chain to have Normal(0,c%d~11;) distribution. One
expects the relaxation time to grow linearly in d in this setting also. The
following result of Roberts et al [34] almost proves this, and has other useful
corollaries.

Theorem 3 Fiz o > 0. Let (X(t),t = 0,1,2,...) be the Metropolis chain
for sampling from product measure my on R? based on a proposal random
walk with step distribution Normal(0,02d='15). Write X()(t) for the first
coordinate of X(t), and let Yy(t) := X(|td]) be this coordinate process
speeded up by a factor d, for continuous 0 <t < co. Suppose X(0) has the
stationary distribution 7¢. Then

(Ya(1),0 <t < o00) % (Y(1),0<t< 00) asd — oo (9)
where the limit process is the stationary one-dimensional diffusion

dY; = 02dW, + (Y, )dt (10)
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for standard Brownian motion Wy, where

po) = 4
0 := 20°®(—0k/2) where ® is the Normal distribution function
o (e )
- f@  © '

Moreover, as d — oo the proportion of accepted proposals in the stationary
chain tends to 2®(—ok/2).

We outline the proof in section 5.3. The result may look complicated, so
one piece of background may be helpful. Given a probability distribution on
the integers, there is a Metropolis chain for sampling from it based on the
simple random walk proposal chain. As a continuous-space analog, given a
density f on R! there is a “Metropolis diffusion” with stationary density f
based on 6'/2W, (for arbitrary constant #) as “proposal diffusion”, and this
Metropolis diffusion is exactly the diffusion (10): see Notes to (yyy final
Chapter).

Thus the appearance of the limit diffusion Y is not unexpected; what is
important is the explicit formula for # in terms of o and f. Note that the
parameter @ affects the process (Y;) only as a speed parameter. That is, if
Y,* is the process (10) with # = 1 then the general process can be represented
as Y; = Yg. In particular, the relaxation time scales as 7(Y) = 67 (V™).
Thus we seek to maximize # as a function of the underlying step variance
o, and a simple numerical calculation shows this is maximized by taking
o = 2.38/k, giving 8 = 1.3/k2.

Thus Theorem 3 suggests that for the Metropolis chain X, the optimal
variance is 2.382x72d7'1;, and suggests that the relaxation time 7(f,d)
scales as

dr?
Ta(f.d) ~ 13 T2(Y7). (11)
In writing (11) we are pretending that the Metropolis chain is a product
chain (so that its relaxation time is the relaxation time of its individual
components) and that relaxation time can be passed to the limit in (9).
Making a rigorous proof of (11) seems hard.

5.2 The diffusion heuristic.

Continuing the discussion above, Theorem 3 says that the long-run propor-
tion of proposed moves which are accepted is 2¢(—ko/2). At the optimal
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value 0 = 2.38/k we find this proportion is a “pure number” 0.23, which
does not depend on f. To quote [34]

This result gives rise to the useful heuristic for random walk
Metropolis in practice:

Tune the proposal variance so that the average acceptance
rate is roughly 1/4.

We call this the diffusion heuristic for proposal-step scaling. Intuitively one
might hope that the heuristic would be effective for fairly general unimodel
target densities on R?, though it clearly has nothing to say about the prob-
lem of passage between modes in a multimodal target. Note also that to
invoke the diffusion heuristic in a combinatorial setting, where the proposal
chain is random walk on a graph, one needs to assume that the target distri-
bution is “smooth” in the sense that 7(v)/7(w) &~ 1 for a typical edge (v, w).
In this case one can make a Metropolis chain in which the proposal chain
jumps o edges in one step, and seek to optimize . See Roberts [33] for some
analysis in the context of smooth distributions on the d-cube. However, such
smoothness assumptions seem inapplicable to most practical combinatorial

MCMC problems.

5.3 Sketch proof of Theorem

Write a typical step of the proposal chain as

($17$27---7$d)_>($1+€17$2+€27"'7$d+£d)-

Write ;
flzi+ &) flzi+ &)
J =log ;5 =log .
f(z1) Z_HQ f(@i)
The step is accepted with probability min(1, [, %) = min(1, e/*5).

So the increment of the first coordinate of the Metropolis chain has mean
and mean-square E¢; min(1,e’*5) and E¢ min(1,e’T%). The essential

issue in the proof is to show that, for “typical” values of (z3,...,z,),
E¢ min(1,e’*) ~ Bu(zy)/d (12)
E¢} min(1,e7%) ~ 4/d. (13)

This identifies the asymptotic drift and variance rates of Y;(#) with those of

Y (1).
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Write h(u) := Emin(1,e“+¥). Since

I mlog (14 52t6) ~ 6 = 26,
the desired estimates (12,13) can be rewritten as
EJh(J) ~ 20p*(z1)/d (14)
EJPh(J) ~ 40p*(z1)/d. (15)

Now if J has Normal(0, 3?) distribution then for sufficiently regular A(-) we
have

EJh(J) ~ 3%k (0); EJ*h(J) ~ 3*R(0) as 3 — 0.

Since J has approximately Normal(0, 4u?(z1)var & = 4p*(zq1)0?/d) distri-
bution, proving (14,15) reduces to proving

6
6
h(0) — por (17)
We shall argue
dist(S) is approximately Normal(—x%0?/2, k*0?). (18)

Taking the first two terms in the expansion of log(1 + u) gives

zité (x4 (i) \?
log 175 ~ Fd 6 - 5 (51 €

Write K(x) = d™! Zfﬁ(%)? Summing the previous approximation over
i, the first sum on the right has approximately Normal(0,0?K (x)) distri-
bution, and (using the weighted law of large numbers) the second term
is approximately —%O‘QI((X). So the distribution of S is approximately
Normal(— K (x)o%/2, K(x)o?). But by the law of large numbers, for a typ-
ical x drawn from the product distribution 7; we have K(x) ~ x?%, giving
(18).

To argue (17) we pretend S has exactly the Normal distribution at (18).
By a standard formula, if S has Normal(a, 3?) distribution then

Emax(1,e5) = ®(a/B) + 2 28(— — a/3).
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This leads to
h(0) = 20(—ko/2)

which verifies (17). From the definition of h(u) we see
h'(0) = Eesl(sso) =Nh(0)—P(S>0)=h(0) - ®(—kro/2) = ®(—K0o/2)

which verifies (16).

6 Other theory

6.1 Sampling from log-concave densities

As mentioned in Chapter 9 section 5.1 (yyy version 9/1/99) there has been
intense theoretical study of the problem of sampling uniformly from a convex
set in R?, in the d — oo limit. This problem turns out to be essentially
equivalent to the problem of sampling from a log-concave density f, that is
a density of the form f(z) x exp(—H(z)) for convex H. The results are not
easy to state; see Bubley et al [6] for discussion.

6.2 Combining MCMC with slow exact sampling

Here is a special setting in which one can make rigorous inferences from
MCMC without rigorous bounds on mixing times. Suppose we have a guess
7 at the relaxation time of a Markov sampler from a traget distribution =;
suppose we have some separate method of sampling exactly from m, but
where the cost of one exact sample is larger than the cost of 7 steps of the
Markov sampler. In this setting it is natural to take m exact samples and
use them as initial states of m multiple runs of the Markov sampler. It turns
out (see [1] for precise statement) that one can obtain confidence intervals
for a mean g which are always rigorously correct (without assumptions on
72) and which, if 7 is indeed approximately 75, will have optimal length,
that is the length which would be implied by this value of 7.

7 Notes on Chapter MCMC

Liu [23] provides a nice combination of examples and carefully-described
methodology in MCMC, emphasizing statistical applications but also cov-
ering some statistical physics. Other statistically-oriented books include
[7, 17, 32]. We should reiterate that most MCMC “design” ideas originated
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in statistical physics; see the extensive discussion by Sokal [37]. Neal [28]
focuses on neural nets but contains useful discussion of MCMC variants.

Section 1.1. In the single-run setting, the variance of sample means (3)
could be estimated by classical methods of time series [5].

The phrase metastability error is our coinage — though the idea is stan-
dard, there seems no standard phrase.

Elaborations of the multiple-runs method are discussed by Gelman and
Rubin [14]. The applied literature has paid much attention to diagnostics:
for reviews see Cowles and Carlin [8] or Robert [31].

Section 1.2. Devroye [9] gives the classical theory of sampling from one-
dimensional and other specific distributions.

Section 2.1. The phrase “Metropolis algorithm” is useful shorthand
for “MCMC sampling, where the Markov chain is based on a proposal-
acceptance scheme like those in section 2.1”7. The idea comes from the 1953
paper by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller [27] in the
context of statistical physics, and the variant with general proposal matrix
is from the 1970 paper of Hastings [20]. Of course the word “algorithm”
means a definite rule for attaining some goal; the arbitraryness of proposal
matrix, and vagueness about when to stop, makes it an extreme stretch to
use the word for the Metropolis scheme.

The map K — P in the Metropolis-Hastings construction (5) has an
interpretation as a minimum-length projection in a certain L' space of ma-
trices — see Billera and Diaconis [3].

Section 2.2. The Gibbs sampler was popularized in 1984 by Geman and
Geman [15] in the context of Bayesian image analysis. The idea is older in
statistical physics, under the name heat bath. Hit-and-run was introduced
in 1984 by Smith [36]. General line-sampling schemes go back to Goodman
and Sokal [19].

Section 3.1. Terminology for this type of construction is not standard.
What we call “Metropolized line sampling” is what Besag and Greene [2]
call an auxiliary variable construction, and this type of construction goes
back to Edwards and Sokal [12] in statistical physics.

Section 3.2. One can also define MTM using a general proposal matrix
K [24], though (in contrast to Metropolis) the specialization of the general
case to the symmetric case is different from the symmetric case described
in the text. Liu et al [24] discuss the use of MTM as an ingredient in other
variations of MCMC.

Other MCMC variations. In statistical physics, it is natural to think of
particles in R? having position and velocity. This suggests MCMC schemes
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in which velocity is introduced as an auxiliary variable. In particular one
can use deterministic equations of motion to generate proposal steps for
Metropolis, an idea called hybrid Monte Carlo — see Neal [29].

Section 4. The survey by Diaconis and Saloff-Coste [11] has further
pieces of theory, emphasizing the low-dimensional discrete setting. For tar-
get densities on R? one needs some regularity conditions to ensure 7y is
finite; see Roberts and Tweedie [35] for results of this type.

Section 4.1. As background to Peskun’s theorem, one might think (by
vague physical analogy) that it would be desirable to have acceptance prob-
abilities behave as some “smooth” function; e.g. in the symmetric-proposal

case, instead of min(1, m,/7,) take W;ﬁﬂy. Lemma 1 shows this intuition is
wrong, at least using asymptotic variance rate or relaxation time as a crite-
rion. Liu [23] section 12.3 gives further instances where Peskun’s Theorem
can be applied. As usual, it is hard to do such comparison arguments for
1.

Section 4.2. The coupling here is an instance of a one-dimensional mono-
tone coupling, which exists for any stochastically monotone chain.

Section 5.2. Discussion of practical aspects of the diffusion heuristic
can be found in Roberts et al [13], and discussion in the more complicated

setting of Gibbs distributions of (X,;v € Z%) is in Breyer and Roberts [4].
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8 Belongs in other chapters

yyy: add to what’s currently sec. 10.2 of Chapter 2, version 9/10/99, but
which may get moved to the new Chapter 8.

Where 7 does not vary with the parameter a we get a simple expression
for L 7.
dov

Lemma 4 [n the setting of (yyy Chapter 2 Lemma 37), suppose m does not
depend on a. Then
L7 =17RZ.

xxx JF': I see this from the series expansion for Z — what to do about a
proof, I delegate to you!

8.1 Pointwise ordered transition matrices

yyy: belongs somewhere in Chapter 3.
Recall from Chapter 2 section 3 (yyy 9/10/99 version) that for a function
f:8 — R with >, 7, f; = 0, the asymptotic variance rate is

t
oX(P, f):= li%rn t~var Zf(Xs) = frf (19)

s=1

where I';; = m;Z;; + 7;Z;; + m;7w; — m;0;5. These individual-function variance
rates can be compared between chains with the same stationary distribution,
under a very strong “coordinatewise ordering” of transition matrices.

Lemma 5 (Peskun’s Lemma [30]) Let P and Q be reversible with the
same stationary distribution 7. Suppose p;; < q;; ¥j # i. Then o*(P, f) >
o(Q, f) for all f with Y, 7 fi = 0.

Proof. Introduce a parameter 0 < a < 1 and write P* = (1 — a)P 4+ aQ.
Write (+)' for 2(+) at @ = 0. It is enough to show

(a*(P, f)) <0.

By (19)
(UQ(Paf))/ =fI"f= QZZfi“iZz/jfj-
i

By (yyy Lemma 4 above) Z' = ZP'Z. By setting
9i = mifiy @i = zij[/Ti wi = Tpg
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we can rewrite the equality above as
(0*(P, f)) = 2 gAW'Ag.

Since A is symmetric wsith row-sums equal to zero, it is enough to show that
W' is non-negative definite. By hypothesis W' is symmetric and wj; > 0
for j # i. These properties imply that, ordering states arbitrarily, we may

write
1 _ il i
W =3"> wiM
i<j
where M¥ is the matrix whose only non-zero entries are m(i,i) = m(j,7) =

—1; m(4,7) = m(j,i) = 1. Plainly M% is non-negative definite, hence so is
W',
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