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Introduction

This tutorial gives a detailed description of how to do simulations with porous media in
OpenFOAM-1.5. The porous media class will be rewritten to cylindrical coordinates and applied
for modeling the honeycomb of the ercoftacConicaldiffuser case study. It is showed how
porous media can be used to alter the flow direction.

The Governing Equations

Porous media is modeled by attenuating the time derivative and by adding a sink term to the
Navier-Stokes equations.
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The value of γ should be between 0 and 1, where the latter is a complete porosity. The source
term, S i, is composed of two parts, a viscous loss term and an inertial loss term, creating a pressure
drop that is proportional to the velocity and velocity squared, respectively.
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This equation is known as the Darcy-Forchheimer equation. In the case of simple homogeneous
porous media it becomes
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where Di j and Fi j are represented as the scalars D and F.
The source term can also be modeled as a power law of the velocity magnitude, i.e.

S i = −ρC0 |ui|
(C1−1)/2 (4)

where C0 and C1 are user defined empirical coefficients.

The Class

The porous media source files in OpenFOAM-1.5 are located in the following directory:
$FOAM_SRC/finiteVolume/cfdTools/general/porousMedia/

The porousMedia folder contains the following files:
• porousZones.H

• porousZones.C

• porousZone.H

• porousZone.C

• porousZonesTemplates.C

• porousZoneTemplates.C

The implementation of the porosity equations are found in the file porousZoneTemplates.C.
The member function used to modify the time-dependent term with the value, γ, is named modifyDdt.
The viscous and inertial source terms from eqn. 2, are defined in the
addViscousInertialResistancemember function and the power law from eqn. 4, is defined
in the addPowerLawResistancemember function. Those two member functions used for cal-
culating the source term are overloaded for explicit and implicit use. The first one that appears in
the template is used for explicit calculations and the second one for implicit.
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The Solver

In OpenFOAM-1.5, the use of the porousZones class is exemplified by the
rhoPorousSimpleFoam solver, which is based on the rhoSimpleFoam solver as the name indi-
cates. It is a steady-state solver for turbulent flow of compressible fluids with implicit or explicit
porosity treatment. The implicit porosity solver is supposed to be more robust and is needed
if the resistances are large, heavily anisotropic or not aligned with the global coordinates. The
rhoPorousSimpleFoam solver is located in the following directory:
$FOAM_SOLVERS/compressible/rhoPorousSimpleFoam

There we find a Make folder and the following files:

• rhoPorousSimpleFoam.C

• initConvergenceCheck.H

• convergenceCheck.H

• createFields.H

• UEqn.H

• pEqn.H

• hEqn.H

In UEqn.H the momentum equation is constructed and the source term, S i, is added by calling the
member function addResistance, taking in different number of input variables depending on
which solver is supposed to be used, explicit or implicit. The member function addResistance
invokes the member functions addViscousInertialResistance and
addPowerLawResistance from the file porousZoneTemplate.C
In createFields.H an object, named pZones, of the class porousZones is created. In the
dictionary <case>/system/fvSolution it is checked if an implicit or an explicit solver should
be used. If nUCorrectors = 0 an explicit solver is used, otherwise the solver is implicit.
If a transient solver is to be created with porous media, the modifyDdt member function from
the file porousZoneTemplate.C should to be applied to the time-derivative term needed in the
UEqn.H

The Case

There are two tutorials using rhoPorousSimpleFoam included in OpenFoam-1.5. They are lo-
cated in the following directory:
$FOAM_TUTORIALS/rhoPorousSimpleFoam.
Both tutorials use the same geometry, see figure 1. It is a duct with a rectangular cross sec-
tion with a sharp 45◦ bend at the center. The porous media is added where the duct is bend-
ing and it goes halfway up the angled duct. The cases are named angledDuctExplicit and
angledDuctImplicit. The difference between them, as one would guess, is an explicit and an
implicit porosity treatment. The directory structure for both cases is the same, see figure 2. The
porosity is added to the geometry in the file constant/porousZones, which will be described
later.
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Figure 1: The angledDuct geometry.
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Figure 2: Directory structure for the rhoPorousSimpleFoam cases.

In order to choose whether an explicit or an implicit solver is to be used, the system/fvSolution
file needs to be modified. For the implicit solver to be used the variable nUcorrectors inside
SIMPLE needs to be a value larger than zero. If the explicit solver is to be used the variable
nUcorrectors can be removed. Its default value is set to zero in createFields.H which is
included in rhoPorousSimpleFoam.C. Therefore it is unnecessary to set it to zero.
Here is an example of how to "remove" nUCorrectors by standard C++ commenting.

SIMPLE

{

// nUCorrectors 0;

nNonOrthogonalCorrectors 0;

pMin pMin [1 -1 -2 0 0 0 0] 100;

}
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For the explicit case the solver for the velocity U is needed to be defined. This is done inside the
keyword solver:

solver

{

U smoothSolver

{

smoother GaussSeidel;

nSweeps 2;

tolerance 1e-6;

relTol 0.1;

};

...

}

while for the implicit case it is not needed to specify the solver for the velocity U. The under-
relaxation factors are also different between the explicit and the implicit case, being higher for the
implicit case. The under-relaxation factors can be higher for the implicit solver because it is more
robust than the explicit one.

relaxationFactors //implicit

{

p 0.3;

rho 1;

U 0.7;

k 0.9;

epsilon 0.9;

h 0.9;

}

relaxationFactors //explicit

{

p 0.3;

rho 0.05;

U 0.7;

k 0.7;

epsilon 0.7;

h 0.5;

}

In system/fvSchemes the following line is added in the laplacianSchemes for the explicit
case, otherwise the two files are identical.

laplacianSchemes

{

...

// pCorrect

laplacian((rho|A(U)),p) Gauss linear corrected;

...

}
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In the file constant/porousZones the porous media is defined.

1

(

porosity

{

coordinateSystem

{

e1 (0.70710678 0.70710678 0);

e2 (0 0 1);

}

Darcy

{

d d [0 -2 0 0 0 0 0] (5e7 -1000 -1000);

f f [0 -1 0 0 0 0 0] (0 0 0);

}

}

)

Porous media is added to a certain cell zone belonging to the mesh. Here the name of the cell
zone is porosity, but it can refer to any cell zone defined in the
constant/polyMesh/blockMeshDict.m4 file, i.e. inlet, porosity or outlet.
Inside the cell zone a local coordinate system can be defined. The global coordinate system of
the geometry is set by default. The coordinate system is defined with the coordinateSystem
class. Which has several constructors. Here it is specified with two vectors. The vector e1 is
created as a linear combination of the global x- and y-axes so it is aligned with the angled duct
and the vector e2 is set orthogonal to e1. The vector e3 is then created in a right handed order by
the coordinateSystem class orthogonally to both e1 and e2. More examples of how to create
a local coordinate system is found in the description at the header of coordinateSystem.H,
located in $FOAM_SRC/meshTools/coordinateSystems.
In Darcy the viscous and inertial resistance are defined, i.e. the source term from eqn. 2. The two
dimensioned vectors, d and f are added to the diagonal of the tensors Di j and Fi j respectively.
The coordinates of these vectors corresponds to the local coordinate system. Default values of d
and f is zero. At least one component of the vectors needs to be greater than zero. The code will
automatically multiply negative values with the largest component of the vector and switch the
sign to a positive value. This is done with the method adjustNegativeResistance which is
implemented in porousZone.C.
The following code is an example of the entry in the porousZones dictionary, when using the
powerLaw porosity model from eqn. 4. The default values for C0 and C1 are zero. The code also
shows how to set porosity, the value γ from eqn. 1, its default value is 1. But the steady-state
solver rhoPorousSimpleFoamwill not use it since it belongs to the time-dependent term of the
momentum equations.

<cellZoneName>

{

powerLaw

{

C0 0.5;

C1 2;

}

porosity 0.5;

}
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Many porous zones can be added to the case. The number of porous zones is limited to the number
of cell zones in the mesh.
1

(

<cellZoneName>

{

Defintions.

}

)

2

(

<anotherCellZoneName>

{

Defintions.

}

)

The names of the cell zones is defined inside blocks in the file
constant/polymesh/blockMeshDict.m4.
Here we have three cell zone names, i.e. inlet, porosity and outlet.
blocks

(

// inlet block

hex2D(in1, join1, join2, in2)

inlet ( ninlet ncells ncells ) simpleGrading (1 1 1)

// porosity block

hex2D(join1, poro1, poro2, join2)

porosity ( nporo ncells ncells ) simpleGrading (1 1 1)

// outlet block

hex2D(poro1, out1, out2, poro2)

outlet ( noutlet ncells ncells ) simpleGrading (1 1 1)

);

In the 0 directory the boundary conditions for different field variables are defined as usual in
OpenFOAM. At a porosity wall the velocity U has a slip boundary condition while at a regular
wall a no-slip boundary condition is set, i.e. U =0m/s.

Porous media as a flow control

Porous media can be used to change flow direction by adding low porosity, i.e. high values for the
source term, in a plane intersecting the flow direction with a certain angle. This can be thought as
if a honeycomb, or some guide vanes, are set up in the flow field with its holes/vanes at some angle
from the main flow direction. This procedure will here be illustrated step-by-step with the porous
media class from OpenFOAM-1.5. The geometry from the ercoftacConicaldiffuser-Case1
will be used. See a description at:
http://openfoamwiki.net/index.php/Sig_Turbomachinery_/\

_ERCOFTAC_conical_diffuser#Case1:_Extended_base_case_set-up

The flow direction will be changed at the inlet of the diffuser at cross section CD, by adding porous
media with low porosity in a plane with 45◦ angle to the flow direction. It is recommended that
you copy the case into your run directory:

7



run

svn checkout http://openfoam-extend.svn.sourceforge.net/\

svnroot/openfoam-extend/trunk/Breeder_1.5/OSIG/ \

TurboMachinery/ercoftacConicalDiffuser ercoftacConicalDiffuser

We will use the rhoPorousSimpleFoam solver and the angledDuctImplicit case as a base
case. Copy it to your run directory and rename it as conicalDiffuser:

cp -r $FOAM_TUTORIALS/rhoPorousSimpleFoam/angledDuctImplicit/ .

mv angledDuctImplicit conicalDiffuser

Remove the old mesh information from constant/polymesh folder and copy the new mesh
information from ercoftacConicaldiffuser-Case1:

cd conicalDiffuser/constant/polyMesh

rm *

cp -r $FOAM_RUN/ercoftacConicalDiffuser/\

cases/Case1/constant/polyMesh/blockMeshDict.m4 .

Generate the blockMeshDict by typing

m4 -P blockMeshDict.m4 > blockMeshDict

Take a look inside blockMeshDict. Open it with any text editor, i.e. gedit, emacs, vim,
e.t.c.

vi blockMeshDict

There you will find inside blocks the definitions of the cell zones, A-F, for example the cross
section CD:

blocks

(

...

//Blocks between plane C and plane D:

// block0 - positive x O-grid block

hex (21 17 16 20 29 25 24 28 ) CD

(15 20 6)

simpleGrading (5 1 1)

// block1 - positive y O-grid block

hex (22 18 17 21 30 26 25 29 ) CD

(15 20 6)

simpleGrading (5 1 1)

// block2 - negative x O-grid block

hex (23 19 18 22 31 27 26 30 ) CD

(15 20 6)

simpleGrading (5 1 1)

// block3 - negative y O-grid block

hex (20 16 19 23 28 24 27 31 ) CD

(15 20 6)

simpleGrading (5 1 1)

// block4 - central O-grid block

hex (16 17 18 19 24 25 26 27 ) CD

(20 20 6)

simpleGrading (1 1 1)

...

)
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Hint: Exit vi by entering :q! and hit the return key. The porousZones file needs to be modified
to add the porous media at cross-section CD. Open porousZones and replace "porosity" with
"CD".

vi ../porousZones

The local coordinate system needs to be modified. The flow direction is along the axial direction
of the diffuser, i.e. the global z-axis. Set the local x-axis as a linear combination of the global y-
and z-axes to make the flow take a θ = 45◦ turn, i.e.

e1 = cos(θ) ey + sin(θ) ez

coordinateSystem

{

e1 (0 0.70710678 0.70710678);

e2 (1 0 0);

}

Also define the viscous loss d in the new local coordinate system. We will not define the inertial
loss f this time:

Darcy

{

d d [0 -2 0 0 0 0 0] (5e7 1000 1000);

// f f [0 -1 0 0 0 0 0] (0 0 0);

}

The patch names in the files T, U, epsilon, k and p inside the 0/ folder need to match the
patch names defined in constant/polyMesh/blockMeshDict. Therefore open T, U, epsilon,
k and p and replace:

front => wallProlongation

back => wallDiffuser

wall => rotSwirlWall

porosityWall => statSwirlWall

This can be done by using the Linux sed command:

cd ../../0

sed -i s/porosityWall/statSwirlWall/ *

sed -i s/wall/rotSwirlWall/ *

sed -i s/back/wallDiffuser/ *

sed -i s/front/wallProlongation/ *

Now everything is set.
Run the case with:

run

cd conicalDiffuser

blockMesh

rhoPorousSimpleFoam > log &

This will take few minutes. The simulation has finished when there is a time directory named
100. Postprocess the case with ParaFoam:

paraFoam &

Figure 3 shows how the porous media alters the flow direction as expected.
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Figure 3: The flow turns because of high porosity in a plane with a 45◦ angle to the yz-plane.

Porous Media in Cylindrical Coordinates

The previous example showed how we can use the porous media class to add porosity to a ge-
ometry in order to change the flow direction. The porous media class is though limited to flow
changes in Cartesian coordinates. If changes in tangential or radial direction are to be made using
porosity then the porous media class needs to be rewritten. The following text describes one way
to modify the porous media class in order to solve this problem. Figure 4 shows some definitions
needed for the description of how to transform between the coordinate systems. If the flow is
to start spinning, guide vanes are added that have a constant angle α along the radial axis er for
all angles θ. If the flow is to start turning into the radial direction, guiding vanes are added that
have constant turn β along the radial axis er for all angles θ. In order to do this a local coordinate
system (e1, e2, e3) needs to be set up along every radial axis. The coordinate system will vary
with the polar coordinate θ. It is created by making polar-axes:

ez = ez

er = (x ex + y ey) / (x2 + y2)1/2

eθ = eaxial × er

and then building on top of them the axes:

e1 = cos(β) er + sin(β) eaxial

e2 = cos(α) eθ + sin(α) eaxial

e3 = e1 × e2

Note that if α is to be used, then β should be zero and vice versa. The global coordinate system
consists of the vectors (ex, ey, ez), where ez is in this case aligned along the axis of the conical
diffuser. The angles α and β change the flow in tangential and radial direction respectively, see
figure 4. A local-to-global transformation of the tensors Di j and Fi j is needed in every point, i.e.
every cell of the porous media.
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Figure 4: Schematic illustrating the relation between the local and global coordinate system.

These modifications have been made, and are now briefly described:
The classes in the porousMedia folder are modified. The name of the folder and the names
of all the files as well have been replaced with the letters cylP instead of the first p, i.e. the
folder porousMedia is now cylPorousMedia, e.t.c. The flow direction controlling variables,
α and β are created as the member variables rotationAngle_ and radialAngle_ in the class
cylPorousZones.H. The member function addViscousInertialResistance in
cylPorousZoneTemplates.C is modified by removing the local-to-global transformation tensor
E from cylPorousZone.C and adding it instead inside the for-loop where the source term is
created.
The solver rhoPorousSimpleFoam is modified as well to use the new classes. The new solver
name is cylRhoPorousSimpleFoam and it works in the same manner as before.

To use the new solver copy the files from the course home page:

wget http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/\

HaukurElvarHafsteinsson/haukur_case_class_solver.tgz

Extract it:

tar xzf haukur_case_class_solver.tgz

Enter the folder:

cd haukur_case_class_solver

Move the directories to keep similar directory structure as the original class:

mkdir -p $WM_PROJECT_USER_DIR/src/finiteVolume/cfdTools/general/

cp -r cylPorousMedia $WM_PROJECT_USER_DIR/src/finiteVolume/\

cfdTools/general/

Create the library:

cd $WM_PROJECT_USER_DIR/src/finiteVolume/cfdTools/general/cylPorousMedia

wmake libso
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Move the directories to keep similar directory structure as the original solver:

mkdir -p $WM_PROJECT_USER_DIR/applications/solvers/compressible/

cp -r rhoCylPorousSimpleFoam \

$WM_PROJECT_USER_DIR/applications/solvers/compressible/

Compile the solver:

cd $WM_PROJECT_USER_DIR/applications/solvers/\

compressible/rhoCylPorousSimpleFoam

wmake

And rehash if necessary.

Now we will use the new solver on the case created before, i.e. the conicalDiffuser. The porosity
will be added to cross-section CD as before. We will make the flow start rotating clockwise and
then counterclockwise, by adding a porosity plane with α = 45◦ and α = 135◦ angle from the tan-
gential direction. Then we will make the flow turn outward from the center axis and towards the
center axis by adding a porosity plane with β = 45◦ and β = 135◦ angle from the radial direction.

run

mv conicalDiffuser cylConicalDiffuser

cd cylConicalDiffuser/constant

mv porousZones cylPorousZones

The cylPorousZone needs to be modified. Change the object from porousZones to
cylPorousZones, define the member variables rotationAngle and radialAngle and take out
the definition of the coordinateSystem. It should look like this:

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object cylPorousZones;

}

1

(

CD

{

radialAngle 0;

rotationAngle 45;

Darcy

{

d d [0 -2 0 0 0 0 0] (1000 5e7 1000);

//f f [0 -1 0 0 0 0 0] (0 0 0)

}

}

)

Now run the case by typing

rhoCylPorousSimpleFoam > log &

and view the results with paraFoam as before. Then re-run the case three more times with the
following settings:
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radialAngle 0;

rotationAngle 135;

radialAngle 45;

rotationAngle 0;

radialAngle 135;

rotationAngle 0;

Figures 5-7 visualize the results from these different settings.

Figure 5: Porosity planes with angles α = 45◦ (left) and α = 135◦ (right) from the tangential
direction.
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Figure 6: Streamlines showing the rotation of the flow caused by the porous media, α = 135◦.

Figure 7: Porosity planes with angles β = 45◦ (left) and β = 135◦ (right) from the radial direction.
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