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Optimal bilinear control of eddy current
equations with grad–div regularization
Abstract: An optimal bilinear control problem governed by time-harmonic eddy current equations is consid-
ered to estimate the electric conductivity of a 3D bounded isotropic domain. The model problem is mainly
complicated by the possible presence of non-conducting materials in the domain. We introduce an optimal
control approach based on grad-div regularization and divergence penalization. The estimation for the elec-
tric conductivity obtained by solving the optimal control problem is allowed to be discontinuous. Here, no
higher regularity property can be derived from the corresponding optimality conditions. We analyze the ap-
proach and present various numerical results exhibiting its numerical performance.
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1 Introduction

Eddy current equations consist of a coupled system of �rst-order partial di�erential equations arising from
Maxwell’s equations by neglecting the displacement current. In the low frequency domain, they provide a
reasonable approximation for the full Maxwell equations. We refer to the recent monograph by Alonso and
Valli [1] for the analysis andmodeling of eddy current equations. Let us consider the following time-harmonic
formulation: 

curl µ−1 curl y + iωσy = j in Ω
divy = 0 in Ω
y × n = 0 on Γ

(1.1)

where Ω is a bounded Lipschitz domain in R3 with a connected boundary Γ. The vector �eld y denotes the
magnetic vector potential, j the applied current source, µ the magnetic permeability, σ the electric conduc-
tivity, i the imaginary unit, ω > 0 the frequency, and n is the unit outward normal to the boundary Γ. In our
context, Ω consists of isotropic heterogeneous materials, and the magnetic permeability µ is assumed to be
known data satisfying

0 < µmin 6 µ(x) 6 µmax < ∞ a.e. in Ω. (1.2)

Our goal is to estimate the electric conductivity of Ω, which is typically nonsmooth and admits jump discon-
tinuities. Engineering applications for such a parameter estimation problem can be found in optimal design
of electromagnetic materials or in the context of electromagnetic metamaterials, related also to the control of
electromagnetic waves (see [6, 21]).

Given a desired �eld (target) yd, the electric conductivity can be estimated by solving the following opti-
mal control problem: 

min 1
2

∫
Ω

|y − yd|2 dx +
κ
2

∫
Ω

σ2 dx

s.t. (1.1) and 0 6 σ(x) 6 σmax a.e. in Ω
(1.3)

*Corresponding Author: Irwin Yousept: Universität Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Straße 9, D-45127
Essen, Germany. Email: irwin.yousept@uni-due.de

Authenticated | irwin.yousept@uni-due.de author's copy
Download Date | 8/8/15 10:37 AM



82 | I.Yousept, Optimal bilinear control of eddy current equations

with a Tikhonov regularization parameter κ > 0, and an upper bound σmax > 0. Note that the minimization
problem (1.3) is nonconvex and features a bilinear structure.Here, the three-dimensional complex-valuedvec-
tor function y is the state, whereas the scalar real-valued function σ is the control. If a pair (y*, σ*) solves (1.3),
then the optimal control σ* provides an approximation for the electric conductivity.

The problem (1.3) is mainly complicated by the possible presence of nonconducting materials in the do-
main Ω. Consequently, we have to allow controls that can take a zero value at any point in Ω. This is the
reason for including the Coulomb gauge

divy = 0 in Ω (1.4)

in the state equation (1.1). Notice that neglecting (1.4) would lead to non-uniqueness of the state, as every
admissible control σ can take a zero value. The presence of the Coulomb gauge, however, complicates the
numerical realization of (1.1). Here, a nontrivial �nite element discretization with divergence-free elements
is required. We introduce therefore another formulation of the optimal control problem, where (1.4) is ex-
cluded from the state equation, but considered as an explicit equality constraint of the optimization prob-
lem. Furthermore, a grad-div regularization term ĉ∇divy, with a �xed constant ĉ > 0, is included in the state
equation. The corresponding optimal control problem reads as

min J(y, σ) := 1
2

∫
Ω

|y − yd|2 dx +
κ
2

∫
Ω

σ2 dx (P)

subject to {
curl µ−1 curl y − ĉ∇divy + iωσy = j in Ω

y × n = 0 on Γ
(1.5)

and

divy = 0 in Ω (1.6)
0 6 σ(x) 6 σmax a.e. in Ω. (1.7)

By the explicit equality constraint (1.6), every feasible state y of (P) satis�es ĉ∇divy = 0, and hence it solves
the original curl-curl problem:

curl µ−1 curl y + iωσy = j in Ω.

Let us remark that the state equation (1.5) involves a curl-curl and grad-div structure. This is a well-known
regularized formulation for Maxwell’s equations (cf. [1, 19]). We note that the choice of the positive constant
ĉ is arbitrary for our analysis.

The nonlinear optimal control problem (P) admits at least one optimal solution, provided that the cor-
responding feasible set is nonempty (Theorem 3.1). A su�cient condition, ensuring that the feasible set is
nonempty, is given in Proposition 3.1. Furthermore, in Theorem 3.2, we establish the Karush–Kuhn–Tucker
(KKT)-type optimality conditions for (P). Here, to guarantee existence of a Lagrange multiplier for the diver-
gence constraint (1.6), we require an additional assumption (see Assumption 3.1). This assumption is however
di�cult to check since it also involves the unknown optimal control. Therefore, we approximate the optimal
control problem (P) by penalizing the divergence constraint in the following way:

min J(y, σ) + τ2

∫
Ω

|divy|2 dx

s.t. curl µ−1 curl y − ĉ∇divy + iωσy = j in Ω

y × n = 0 on Γ

0 6 σ(x) 6 σmax a.e. in Ω

(Pτ)

with τ > 0. Di�erently from (P), the KKT-type optimality conditions for the divergence-penalized problem (Pτ)
can be derived without any additional assumption on the unknown optimal control. Note that every optimal
state of (Pτ) is not necessarily divergence-free. Nonetheless, due to the presence of the divergence penaliza-
tion in the objective functional of (Pτ), the divergence of every optimal state of (Pτ) vanishes as τ → ∞. See
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Theorem 4.2 for the convergence of (Pτ) towards (P) as τ → ∞. Numerical results based on an SQP-algorithm
for solving (Pτ) are presented in the �nal section of the paper. Here, the control is discretized by piecewise
constant elements, whereas the state is discretized by continuous (vector-valued) P1-elements. We point out
that, in the casewhere the domainΩ is a convex polyhedron, the use of nodal �nite elements for the state dis-
cretization is justi�ed by theH1-regularity of the solution to (1.5). In general, this regularity is not true in the
case of nonconvex polyhedral domains. This case can be treated using the weighted regularization method
introduced by Costabel and Dauge [8].

The mathematical and numerical analysis of Maxwell’s equations has become an important research
area in applied mathematics. See the monographs [1, 17, 19], the articles [2–5, 7–9, 12, 13, 20], and many
others. To the best of the author’s knowledge, however, only a few studies on the optimal control ofMaxwell’s
equations have been carried out. We refer to the recent results [10, 16, 24, 26, 27, 29] for PDE-constrained
optimization involving eddy current equations (with �xed material coe�cients) and the article by Hoppe et
al. [14] concerning a topology optimization problem for identifying electric conductivity in a two-dimensional
H1(Ω)-elliptic system. More recently, Feng et al. [11] have analyzed an identi�cation problem of magnetic
permeability and electric permittivity in the time-domain Maxwell equations with BV-regularization. We also
mention our previous work [28] on the �nite element analysis of optimal control problems in the coe�cients
of time-harmonic eddy current equations. In that work, however, pointwise constraints on the gradient of the
control were considered, leading to W1,∞(Ω)-regularity in the optimal control. This is rather undesirable as
electromagnetic material parameters are typically discontinuous.

We are not aware of any previous study dealing with an optimal control approach based on grad-div reg-
ularization and divergence penalization for estimating discontinuous electric conductivity in a 3D bounded
domain, that possibly contains non-conducting materials. We emphasize that the estimation for the elec-
tric conductivity obtained by solving (P) or (Pτ) is allowed to be discontinuous. In fact, no higher regularity
property can be derived from the corresponding optimality conditions. The rest of the paper is organized as
follows. In next section, we introduce our notation. Section 3 is concerned with the analysis of (P). Then, in
Section 4, we investigate (Pτ). Finally, an SQP-algorithm for solving (Pτ) and various numerical results are
presented in Section 5.

2 Notation

If X is a Banach space, thenwe use the notation ‖ ·‖X for a standard norm in X. If X a Hilbert space, then (·, ·)X
denotes the inner product of X. A continuous embedding of X in another Banach space Y is denoted by X ↪→ Y.
For a complex number a ∈ C3, its real- and imaginary-parts are denoted by Re a and Im a, respectively. The
space of quadratic Lebesgue integrable real-valued functions on Ω is denoted by L2(Ω). On the other hand,
L2(Ω;C) is the space of quadratic Lebesgue integrable complex-valued functions on Ω. The same notation is
used for other Banach spaces to distinguish between complex- and real-valued functions. Furthermore, we
use a bold typeface to indicate a Banach space of three-dimensional vector functions. As usual, the Hilbert
spaces H(curl) and H(div) are de�ned as follows:

H(curl) :=
{
q ∈ L2(Ω;C)

∣∣ curl q ∈ L2(Ω;C)}
H(div) :=

{
q ∈ L2(Ω;C)

∣∣ divq ∈ L2(Ω;C)
}

where the curl and div operators are understood in the distributional sense (cf. [2]). Note that L2(Ω;C) is
endowed with the following inner product:

(q, v)L2(Ω;C) :=
∫
Ω

q · vdx ∀q, v ∈ L2(Ω;C)

where v denotes the complex conjugate of v. Furthermore, we de�ne

H0(curl) :=
{
q ∈ H(curl)

∣∣ q × n = 0 on Γ
}
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and the state space
V := H0(curl) ∩H(div).

This space is endowed with the graph norm:

‖v‖V = (‖v‖2L2(Ω;C) + ‖curl v‖
2
L2(Ω;C) + ‖divv‖

2
L2(Ω;C))

1/2 ∀v ∈ V.

Let us now introduce the sesquilinear form ασ : V × V → C, de�ned by

ασ(z, v) := ( µ−1curl z, curl v)L2(Ω;C) + ĉ( div z, divv)L2(Ω;C)
+ (iωσz, v)L2(Ω;C) ∀ z, v ∈ V.

The weak formulation for (1.5) then reads as follows: �nd y ∈ V such that

ασ(y, v) = (j, v)L2(Ω;C) ∀v ∈ V. (2.1)

We de�ne the admissible control set and the feasible set associated with (P), respectively, by

Uad :=
{
σ ∈ L∞(Ω)

∣∣ 0 6 σ(x) 6 σmax a.e. in Ω
}

F :=
{
(y, σ) ∈ V × Uad

∣∣ (y, σ) ful�lls (2.1) and divy = 0 in Ω
}
.

A pair (y*, σ*) ∈ F satisfying J(y*, σ*) 6 J(y, σ) for all (y, σ) ∈ F is called an optimal solution of (P).

3 Grad-div regularization

The analysis of the optimal control problem (P) requires the use of the well-known Poincaré–Friedrichs-type
inequality:

‖u‖L2(Ω) 6 cM(‖curl u‖L2(Ω) + ‖divu‖L2(Ω)) ∀u ∈ V (3.1)

with a constant cM > 0 depending only on the domain Ω. Let us remark that (3.1) follows from a classical
contradictionargumentusing the compactness of the embeddingV ↪→ L2(Ω) (seeWeck [25]) and the following
result:

DF(Ω) :=
{
u ∈ V

∣∣ curl u = 0, divu = 0
}
=
{
0
}
. (3.2)

Note that (3.2) holds since Γ is connected. If Γ were not connected, then the space DF(Ω) would contain a
nontrivial vector �eld (see [2, 22]).

Lemma 3.1. For every σ ∈ L3(Ω), the weak formulation (2.1) admits a unique solution y = y(σ) ∈ V. This
solution satis�es

‖y(σ)‖V 6 C (3.3)

with a constant C > 0 depending only on j, µmax, ĉ, and cM .

Proof. Let σ ∈ L3(Ω). According to the regularity result by Costabel [7], the embedding

V = H0(curl) ∩H(div) ↪→ H1/2(Ω;C) (3.4)

holds true. Then, employing the injection H1/2(Ω;C) ↪→ L3(Ω;C) and (1.2), it follows that

|ασ(z, v)| 6 µ−1min‖curl z‖L2(Ω;C)‖curl v‖L2(Ω;C) + ĉ‖div z‖L2(Ω;C)‖divv‖L2(Ω;C)
+ ω‖σ‖L3(Ω)‖z‖L3(Ω;C)‖v‖L3(Ω;C)

6 µ−1min‖curl z‖L2(Ω;C)‖curl v‖L2(Ω;C) + ĉ‖div z‖L2(Ω;C)‖divv‖L2(Ω;C)
+ cω‖σ‖L3(Ω)‖z‖V‖v‖V ∀ z, v ∈ V

(3.5)
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with a constant c > 0 depending only on Ω. In view of (3.5), the sesquilinear form ασ : V ×V → C is bounded.
Taking the real part of ασ(v, v) into account, we now deduce that

|ασ(v, v)| > Re(ασ(v, v)) =
∫
Ω

µ−1|curl v|2 dx + ĉ
∫
Ω

|divv|2 dx

> µ−1max‖curl v‖2L2(Ω;C) + ĉ‖divv‖
2
L2(Ω;C) ∀v ∈ V. (3.6)

From (3.6) along with Poincaré–Friedrichs-type inequality (3.1), it follows that the sesquilinear form ασ :
V × V → C is coercive. In conclusion, the Lax-Milgram lemma implies that (2.1) admits a unique solution.
Finally, (3.3) follows from (3.6) and the Poincaré–Friedrichs-type inequality (3.1).

Corollary 3.1. Assume that Ω is convex or of class C1,1. Then, for every σ ∈ L2(Ω), the weak formulation (2.1)
admits a unique solution y = y(σ) ∈ V.

Proof. In the case where Ω is convex or of class C1,1, it is well-known that V ↪→ H1(Ω;C) holds true (see [2,
Proposition 3.7 and Theorem 2.17]). Therefore, asH1(Ω;C) ↪→ L4(Ω;C), we can show, analogously to the proof
of Lemma 3.1, that the sesquilinear form ασ : V × V → C, for every σ ∈ L2(Ω), is well-de�ned, bounded, and
coercive.

In the upcoming proposition, we will make use of the following subspace:

D :=
{
φ ∈ H1

0(Ω;C)
∣∣∇φ ∈ H(div)}. (3.7)

Proposition 3.1. Under the assumption that

div j = 0 in Ω (3.8)

the feasible set F is nonempty.

Proof. We consider a constant σc ∈ [0, σmax], and let y denote the solution of the weak formulation (2.1)
associated with σ ≡ σc. By de�nition, every φ ∈ D satis�es ∇φ ∈ V. Therefore, setting v = ∇φ with φ ∈ D
in (2.1) yields that

ĉ( divy, div (∇φ))L2(Ω;C) + iωσc(y,∇φ)L2(Ω;C) = (j,∇φ)L2(Ω;C) ∀nφ ∈ D

where we have also used curl∇ ≡ 0. By the distributional de�nition of the divergence, we obtain from the
above variational equality and (3.8) that

ĉ( divy, div (∇φ))L2(Ω;C) − iωσc( divy, φ)L2(Ω;C) = −( div j, φ)L2(Ω;C) = 0 ∀φ ∈ D

which is equivalent to
( divy, − div (∇φ) + iωσc ĉ−1φ)L2(Ω;C) = 0 ∀φ ∈ D. (3.9)

Now, for any given u ∈ L2(Ω;C), there exists a unique φ ∈ D such that

− div (∇φ) + iωσc ĉ−1φ = u.

This follows immediately from the Lax-Milgram lemma along with the distributional de�nition of the diver-
gence. Therefore, (3.9) implies that

( divy, u)L2(Ω;C) = 0 ∀ u ∈ L2(Ω;C)

from which it follows that divy = 0 in Ω. In conclusion, F 6= ∅ holds true since (y, σc) ∈ F.

In the following, we assume that F is nonempty. From Proposition 3.1, we already know that F 6 = ∅, if j is
divergence-free.

Theorem 3.1. Assume that F 6= ∅. Then, the optimal control problem (P) admits at least one optimal solution.
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Proof. Since the functional J is nonnegative and F 6= ∅, the in�mum inf(y,σ)∈F J(y, σ) exists, and there is a
minimizing sequence {(yk , σk)}∞k=1 ⊂ F. In other words,

lim
k→∞

J(yk , σk) = inf
(y,σ)∈F

J(y, σ) (3.10)

and every (yk , σk) satis�es

(µ−1curl yk , curl v)L2(Ω;C) + (iωσkyk , v)L2(Ω;C) = (j, v)L2(Ω;C) ∀v ∈ V (3.11)

divyk = 0 in Ω. (3.12)

Thanks to Lemma 3.1, {yk}∞k=1 is bounded in V. For this reason and by the structure of Uad, there exists a
subsequence of {(yk , σk)}∞k=1 denoted again by {(yk , σk)}∞k=1 such that

yk ⇀ y* weakly in V as k → ∞ (3.13)
σk ⇀ σ* weakly in Ls(Ω) as k → ∞ ∀ s ∈ [2,∞) (3.14)

for some (y*, σ*) ∈ V × Uad. Let us demonstrate that (y*, σ*) ∈ F. First, since (3.12) holds for all k ∈ N, the
weak convergence (3.13) yields that divy* = 0 in Ω. Moreover, in view of (3.4) and the compactness of the
injection H1/2(Ω;C) ↪→ L2+ϑ(Ω;C) for all ϑ ∈ [0, 1), we infer from (3.13) that

yk → y* strongly in L2+ϑ(Ω;C) ∀ ϑ ∈ [0, 1).

This strong convergence and the weak convergence (3.14) yield

(iωσkyk , v)L2(Ω;C) → (iωσ*y*, v)L2(Ω;C) as k → ∞ (3.15)

for every �xed v ∈ V. Then, passing to the limit k → ∞ in (3.11), we obtain from (3.13) and (3.15) that

(µ−1curl y*, curl v)L2(Ω;C) + (iωσ*y*, v)L2(Ω;C) = (j, v)L2(Ω;C) ∀v ∈ V. (3.16)

Thus, since divy* = 0 in Ω, it follows that (y*, σ*) ∈ F. Now, by the lower semicontinuity of the functional
J : L2(Ω;C) × L2(Ω) → R and (3.13)–(3.14), we deduce that

J(y*, σ*) 6 lim inf
k→∞

J(yk , σk) = inf
(y,σ)∈F

J(y, σ)

from which it follows that (y*, σ*) ∈ F is an optimal solution.

3.1 KKT optimality system

We denote the control-to-state operator associated with the weak formulation (2.1) by

S : L3(Ω) → V, σ 7→ y

that assigns every function σ ∈ L3(Ω) the unique solution y ∈ V of (2.1). Furthermore, we introduce the
operators

G1 : L3(Ω) → L2(Ω), G1(σ) = Re
(
div
(
S(σ)

))
G2 : L3(Ω) → L2(Ω), G2(σ) = Im

(
div
(
S(σ)

))
.

Employing these operators and the control-to-state operator S, the optimal control problem (P) can be refor-
mulated as an optimization problem in Banach spaces:

min
σ∈Uad

f (σ) := J(S(σ), σ)

s.t. G1(σ) = 0
G2(σ) = 0.

(P)

By classical arguments (cf. Tröltzsch [23]), it is standard to derive the Fréchet di�erentiability of the control-
to-state operator with respect to the L∞-topology.
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Lemma 3.2. The control-to-state operator S : L∞(Ω) → V is continuously Fréchet-di�erentiable. For all σ*, σ ∈
L∞(Ω), S′(σ*)σ = y is the unique solution of∫

Ω

µ−1curl y · curl vdx + ĉ
∫
Ω

divy divvdx +
∫
Ω

iωσ*y · vdx = −
∫
Ω

iωσy* · vdx ∀v ∈ V

where y* = S(σ*).

Let us now introduce the Lagrangian functional L : L3(Ω) × L2(Ω) × L2(Ω) → R associated with (P), de�ned
by

L(σ, λ1, λ2) := f (σ) +
∫
Ω

λ1G1(σ) dx +
∫
Ω

λ2G2(σ) dx.

Lemma 3.3. For all σ*, σ ∈ L∞(Ω) and λ1, λ2 ∈ L2(Ω), it holds that

∂L
∂σ (σ

*, λ1, λ2)σ = −Re
(∫
Ω

iωσy* · p* dx
)
+ κ

∫
Ω

σ*σ dx (3.17)

where y* = S(σ*), and p* ∈ V is the solution of∫
Ω

µ−1curl p* · curl vdx + ĉ
∫
Ω

divp* divvdx +
∫
Ω

iωσ*p* · vdx

=
∫
Ω

(
y* − yd

)
· vdx +

∫
Ω

(
λ1 − iλ2

)
divvdx ∀v ∈ V. (3.18)

Proof. Straightforward computations yield

∂L
∂σ (σ

*, λ1, λ2)σ =
∫
Ω

(
Rey* − Reyd

)
· Reydx +

∫
Ω

(
Imy* − Imyd

)
· Imydx

+ κ
∫
Ω

σ*σ dx +
∫
Ω

λ1 Re( divy) + λ2 Im( divy) dx (3.19)

where y = S′(σ*)σ. Notice that, according to Lemma 3.2, y satis�es∫
Ω

µ−1curl y · curl vdx + ĉ
∫
Ω

divydivvdx +
∫
Ω

iωσ*y · vdx = −
∫
Ω

iωσy* · vdx ∀v ∈ V. (3.20)

Let p* ∈ V denote the solution of (3.18). Setting v = p* in (3.20), v = y in (3.18), and then subtracting the
resulting equations, we obtain∫

Ω

(
y* − yd

)
· ydx +

∫
Ω

(λ1 − iλ2) divydx = −
∫
Ω

iωσy* · p* dx

and hence

Re
(∫
Ω

(
y* − yd

)
· ydx

)
+ Re

(∫
Ω

(λ1 − iλ2) divydx
)
= −Re

(∫
Ω

iωσy* · p* dx
)
.

Since Re(ab) = Re a Re b + Im a Im b holds for a, b ∈ C, it follows that∫
Ω

(
Rey* − Reyd

)
· Reydx +

∫
Ω

(
Imy* − Imyd

)
· Imydx

+
∫
Ω

λ1 Re( divy) dx +
∫
Ω

λ2 Im( divy) dx = −Re
(∫
Ω

iωσy* · p* dx
)
.

Inserting this identity in (3.19) results in the formula (3.17).
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De�nition 3.1. Let (y*, σ*) ∈ F be an optimal solution of (P). Then (λ*1, λ*2) ∈ L2(Ω) × L2(Ω) is called a pair of
Lagrange multipliers associated with (y*, σ*), if it satis�es

∂L
∂σ (σ

*, λ*1, λ*2)(σ − σ*) > 0 ∀ σ ∈ Uad .

In what follows, let (y*, σ*) ∈ F be an optimal solution of (P). To derive existence of a pair of Lagrange multi-
pliers associated with (y*, σ*), we invoke the well-known constraint quali�cation by Zowe and Kurcyusz [30]
(cf. also [23, p. 331]), which requires the use of the following cone:

C(σ*) =
{
γ(σ − σ*)

∣∣ γ > 0, σ ∈ Uad
}
.

Assumption 3.1. Assume that, for every φ ∈ D (see (3.7) for the de�nition of D), there exists a function σ ∈
C(σ*) such that

S′(σ*)σ = ∇φ.

According to Lemma 3.2, this is equivalent to

ĉ
∫
Ω

div (∇φ) divvdx +
∫
Ω

iωσ*∇φ · vdx = −
∫
Ω

iωσy* · vdx ∀v ∈ V

since curl∇ ≡ 0.

Lemma 3.4. Suppose that σ* ful�lls Assumption 3.1. Then,

G′1(σ*)C(σ*) = L2(Ω), G′2(σ*)C(σ*) = L2(Ω). (3.21)

Proof. Let u ∈ L2(Ω;C), and let φ ∈ H1
0(Ω;C) be the solution of

−(∇φ,∇ξ ) = (u, ξ ) ∀ ξ ∈ H1
0(Ω;C).

The distributional de�nition of the divergence yields that

div (∇φ) = u ∈ L2(Ω;C) =⇒ ∇φ ∈ H(div) =⇒ φ ∈ D. (3.22)

Now, Assumption 3.1 implies the existence of a function σ ∈ C(σ*) such that

S′(σ*)σ = ∇φ. (3.23)

Then, we obtain from (3.22)–(3.23) that

G′1(σ*)σ = Re
(
div
(
S′(σ*)σ

))
= Re

(
div (∇φ)

)
= Re u

G′2(σ*)σ = Im
(
div
(
S′(σ*)σ

))
= Im

(
div (∇φ)

)
= Im u.

As u ∈ L2(Ω;C) was chosen arbitrarily, we conclude that (3.21) is valid.

Theorem 3.2. Let (y*, σ*) ∈ F be an optimal solution of (P). Suppose that the optimal control σ* ful�lls As-
sumption 3.1. Then there exist (λ*1, λ*2) ∈ L2(Ω) × L2(Ω) and p* ∈ V such that∫

Ω

µ−1curl y* · curl vdx +
∫
Ω

iωσ*y* · vdx =
∫
Ω

j · vdx ∀v ∈ V (3.24)

∫
Ω

µ−1curl p* · curl vdx + ĉ
∫
Ω

divp* divvdx +
∫
Ω

iωσ*p* · vdx (3.25)

=
∫
Ω

(
y* − yd

)
· vdx +

∫
Ω

(
λ*1 − iλ*2

)
divvdx ∀v ∈ V

σ*(x) = P[0,σmax]

(
ω
κ Re

[
iy*(x) · p*(x)

])
a.e. in Ω (3.26)

where the projection P[0,σmax] : R → [0, σmax] is de�ned by

P[0,σmax](δ) = max
{
0, min

{
δ, σmax

}}
∀ δ ∈ R.
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Proof. As shown in Lemma 3.4, the constraint quali�cation (3.21) holds true. For this reason, there exists a
pair of Lagrange multipliers (λ*1, λ*2) ∈ L2(Ω) × L2(Ω) satisfying

∂L
∂σ (σ

*, λ*1, λ*2)(σ − σ*) > 0 ∀ σ ∈ Uad . (3.27)

In view of Lemma 3.3, we have
∂L
∂σ (σ

*, λ*1, λ*2)(σ − σ*) = −Re
(∫
Ω

iω(σ − σ*)y* · p* dx
)
+ κ

∫
Ω

σ*(σ − σ*) dx ∀ σ ∈ Uad

where p* ∈ V is the unique solution of (3.25). Thus (3.27) is equivalent to∫
Ω

(
σ − σ*

)(
σ* − ωκ Re

[
iy* · p*

])
dx > 0 ∀ σ ∈ Uad .

A standard pointwise evaluation of the above variational inequality leads to the projection formula (3.26). In
conclusion, the assertion is valid.

Remark 3.1. As p* and y* are of class V ↪→ H1/2(Ω;C), the product y* · p* is only well-de�ned as an ele-
ment of L3/2(Ω;C). For this reason, we cannot extract any higher regularity property from the projection for-
mula (3.26). In conclusion, every optimal control σ* of (P), which serves as an approximation for the electric
conductivity of Ω, belongs only to L∞(Ω) and is allowed to be highly discontinuous.

It should be emphasized that Assumption 3.1 involves the unknown optimal control σ*. We do not know
how to check this assumption in practice. Therefore, in next section, we consider the divergence-penalized
problem (Pτ), where no additional assumption is required for deriving the correspondingKKT-type optimality
conditions.

4 Divergence penalization

This section is devoted to the divergence-penalized problem
min

(y,σ)∈V×Uad
Jτ(y, σ) := J(y, σ) +

τ
2

∫
Ω

|divy|2 dx

s.t. ασ(y, v) = (j, v)L2(Ω;C) ∀v ∈ V
(Pτ)

where the violation of the eliminated divergence constraint is minimized by the penalty functional Iτ :
H(div) → R, Iτ(y) = 1

2 τ
∫
Ω |divy|

2 dx. Note that every pair (S(σ), σ), with σ ∈ Uad, is feasible for (Pτ) for all
τ > 0.

Lemma 4.1. For every τ > 0, the divergence-penalized problem (Pτ) admits at least one optimal solution
(yτ , στ) ∈ V × Uad. If, for a �xed τ1 > 0, there is an optimal solution (yτ1 , στ1 ) of (Pτ1 ) satisfying divyτ1 = 0 in
Ω, then (yτ1 , στ1 ) is an optimal solution of (P) and (Pτ) for all τ > τ1.

Proof. The existence result can be justi�ed analogously as in the proof of Theorem 3.1. Now, suppose that
(yτ1 , στ1 ) ∈ V × Uad is an optimal solution of (Pτ1 ) satisfying

divyτ1 = 0 in Ω (4.1)

which in particular yields that (yτ1 , στ1 ) ∈ F. Since every element (y, σ) ∈ F is feasible for (Pτ1 ), (4.1) gives

J(yτ1 , στ1 ) = Jτ1 (yτ1 , στ1 ) 6 Jτ1 (y, σ) = J(y, σ) ∀ (y, σ) ∈ F.

It follows therefore that (yτ1 , στ1 ) is an optimal solution of (P). Let (yτ , στ) ∈ V × Uad be an optimal solution
of (Pτ) for any �xed τ > τ1. Using again (4.1) and since (yτ , στ) is feasible for (Pτ1 ), we have that

Jτ(yτ1 , στ1 ) = Jτ1 (yτ1 , στ1 ) 6 Jτ1 (yτ , στ) 6 Jτ(yτ , στ).

For this reason, we conclude that (yτ1 , στ1 ) is an optimal solution of (Pτ). This completes the proof.
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In the following theorem, we present the KKT-type optimality conditions for (Pτ). In contrast to (P), the opti-
mality conditions for (Pτ) can be established without any additional assumption on the optimal solution.

Theorem 4.1. Let τ > 0 and (yτ , στ) ∈ V×Uad be an optimal solution of (Pτ). Then, there exists a uniquepτ ∈ V
such that ∫

Ω

µ−1curl yτ · curl vdx + ĉ
∫
Ω

divyτ divvdx +
∫
Ω

iωστyτ · vdx =
∫
Ω

j · vdx ∀v ∈ V (4.2)

∫
Ω

µ−1curl pτ · curl vdx + ĉ
∫
Ω

divpτ divvdx +
∫
Ω

iωστpτ · vdx (4.3)

=
∫
Ω

(
yτ − yd

)
· vdx + τ

∫
Ω

divyτ divvdx ∀v ∈ V

στ(x) = P[0,σmax]

(
ω
κ Re

[
iyτ(x) · pτ(x)

])
a.e. in Ω. (4.4)

Proof. Employing the control-to-state operator, (Pτ) can be written in the following form:

min
σ∈Uad

fτ(σ) := Jτ(S(σ), σ).

Since Uad is a convex subset of L∞(Ω), and fτ : L∞(Ω) → R is Fréchet-di�erentiable, the optimal control στ
satis�es the following variational inequality:

f ′τ(στ)(σ − στ) > 0 ∀ σ ∈ Uad . (4.5)

Analogously as in the proof of Lemma 3.3, it holds that

f ′τ(στ)σ = −Re
(∫
Ω

iωσyτ · pτ dx
)
+ κ

∫
Ω

στσ dx

where pτ is the unique solution of (4.3). Using the above identity, we can show that (4.5) is equivalent to the
optimality system (4.2)–(4.4).

Remark 4.1. From the projection formula (4.4), we cannot extract any higher regularity property for the op-
timal control στ.

Theorem 4.2. Let {(yτ , στ)}τ>0 ⊂ V × Uad be a sequence of optimal solutions of (Pτ). Then

divyτ → 0 strongly in L2(Ω;C) as τ → ∞.

There is a subsequence of {(yτ , στ)}τ>0, denoted by {(yτ , στ)}τ>0, such that

yτ → y* strongly in L2(Ω;C) as τ → ∞ (4.6)
curl yτ → curl y* strongly in L2(Ω;C) as τ → ∞ (4.7)

στ → σ* strongly in Ls(Ω) as τ → ∞ ∀ s ∈ [1,∞) (4.8)

where (y*, σ*) ∈ F is an optimal solution of (P). Every weakly converging subsequence of the sequence
{(yτ , στ)}τ>0 converges strongly in the V × Ls(Ω)-topology, for all s ∈ [1,∞), towards an optimal solution
of (P).

Proof. In view of Lemma 3.1, {yτ}τ>0 is bounded in V. For this reason and by the structure of Uad, we can
extract a subsequence of {(yτ , στ)}τ>0, denoted again by {(yτ , στ)}τ>0, such that

yτ ⇀ y* weakly in V as τ → ∞ (4.9)
στ ⇀ σ* weakly in Ls(Ω) as τ → ∞ ∀ s ∈ [2,∞) (4.10)
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for some (y*, σ*) ∈ V × Uad. Notice that the weak convergence (4.9) implies in particular that

divyτ ⇀ divy* weakly in L2(Ω;C) as τ → ∞. (4.11)

Using (4.9) and (4.10), we can show, analogously as in the proof of Theorem 3.1, that the weak limit (y*, σ*)
satis�es

(µ−1curl y*, curl v)L2(Ω;C) + ĉ( divy*, divv)L2(Ω;C) + (iωσ*y*, v)L2(Ω;C) = (j, v)L2(Ω;C) ∀v ∈ V. (4.12)

Let (ỹ, σ̃) ∈ F be an optimal solution of (P). As (ỹ, σ̃) is feasible for (Pτ) for all τ > 0, we have

J(yτ , στ) +
τ
2‖divyτ‖

2
L2(Ω;C) = Jτ(yτ , στ) 6 Jτ(ỹ, σ̃) =︸︷︷︸

div ỹ=0

J(ỹ, σ̃) ∀ τ > 0. (4.13)

Since J is nonnegative, it follows from (4.13) that

divyτ → 0 strongly in L2(Ω;C) as τ → ∞. (4.14)

This convergence and (4.11) yield
divy* = 0 in Ω. (4.15)

Furthermore, using the weak lower semicontinuity of J : L2(Ω;C) × L2(Ω) → R along with the weak con-
verges (4.9)–(4.10), we infer that

J(y*, σ*) 6 lim inf
τ→∞

J(yτ , στ) 6 lim sup
τ→∞

J(yτ , στ) 6︸︷︷︸
(4.13)

J(ỹ, σ̃). (4.16)

According to (4.12) and (4.15), (y*, σ*) ∈ F. Thus, since (ỹ, σ̃) is an optimal solution of (P), we conclude
from (4.16) that (y*, σ*) is also an optimal solution of (P). In particular,

J(y*, σ*) = J(ỹ, σ̃). (4.17)

Let us now prove (4.6), (4.7), and (4.8). In view of the compactness of the injectionV ↪→ L2+ϑ(Ω;C) for all
ϑ ∈ [0, 1) (see (3.4)), we obtain from (4.9) that

yτ → y* strongly in L2+ϑ(Ω;C) ∀ ϑ ∈ [0, 1) as τ → ∞. (4.18)

From (4.16) and (4.17), it follows that limτ→∞ J(yτ , στ) = J(y*, σ*), or equivalently

lim
τ→∞

(
1
2‖yτ − yd‖

2
L2(Ω;C) +

κ
2 ‖στ‖

2
L2(Ω)

)
= 1
2‖y

* − yd‖2L2(Ω;C) +
κ
2 ‖σ

*‖2L2(Ω).

Thus, (4.18) implies that limτ→∞ ‖στ‖L2(Ω) = ‖σ*‖L2(Ω) and hence, along with the weak convergence (4.10), we
obtain

στ → σ* strongly in L2(Ω) as τ → ∞. (4.19)

Since σ*, στ ∈ Uad for all τ > 0,∫
Ω

|στ − σ*|s dx =
∫
Ω

|στ − σ*|s−2|στ − σ*|2 dx

6
∫
Ω

σs−2max|στ − σ*|2 dx = σs−2max‖στ − σ*‖2L2(Ω) ∀ s ∈ (2,∞).

Then, passing to the limit τ → ∞, (4.19) yields

στ → σ* strongly in Ls(Ω) as τ → ∞ ∀ s ∈ [2,∞). (4.20)
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It remains to prove (4.7). By de�nition, every yτ satis�es

(µ−1curl yτ , curl yτ)L2(Ω;C) = −ĉ( divyτ , divyτ)L2(Ω;C) − (iωσγyτ , yτ)L2(Ω;C) + (j, yτ)L2(Ω;C).

Passing to the limit τ → ∞, (4.14), (4.18), and (4.20) imply

(µ−1curl yτ , curl yτ)L2(Ω;C) → −(iωσ*y*, y*)L2(Ω;C) + (j, y*)L2(Ω;C)︸ ︷︷ ︸
=(µ−1curl y* ,curl y*)L2(Ω;C)by (4.12) and (4.15)

as τ → ∞.

In other words
‖µ−1/2curl yτ‖2L2(Ω;C) → ‖µ

−1/2curl y*‖2L2(Ω;C) as τ → ∞. (4.21)

Further, since µ−1/2 ∈ L∞(Ω), the weak convergence (4.9) implies that

µ−1/2curl yτ ⇀ µ−1/2curl y* weakly in L2(Ω;C) as τ → ∞.

This weak convergence together with (4.21) gives the strong convergence

µ−1/2curl yτ → µ−1/2curl y* strongly in L2(Ω;C) as τ → ∞.

In conclusion, (4.7) is valid. This completes the proof.

Corollary 4.1. Let {(yτ , στ)}τ>0 ⊂ V × Uad be a sequence of optimal solutions of (Pτ). If (P) admits a unique
solution, then {(yτ , στ)}τ>0 converges strongly in the V × Ls(Ω)-topology, for all s ∈ [1,∞), towards the
optimal solution of (P).

5 Numerical experiment

We consider an SQP-algorithm for the numerical solution of (Pτ). Let us �rst point out that (P) can be equiva-
lently formulated as aminimization problem involving only real-valued quantities. More precisely, we denote
the real-part and the imaginary-part of the state y, respectively, by y1 and y2:

y = Re y + i Im y = y1 + iy2.

In view of this, the optimization problem (P) is equivalent to

min F(y1, y2, σ) := 1
2‖y1 − yd1‖

2
L2(Ω) +

1
2‖y2 − yd2‖

2
L2(Ω) +

κ
2 ‖σ‖

2
L2(Ω)

s.t. curl µ−1 curl y1 − ĉ∇divy1 − ωσy2 = j1 in Ω
y1 × n = 0 on Γ

curl µ−1 curl y2 − ĉ∇divy2 + ωσy1 = j2 in Ω
y2 × n = 0 on Γ

divy1 = 0 in Ω
divy2 = 0 in Ω

0 6 σ(x) 6 σmax a.e. in Ω .

Here, we also use the same notation for the desired state and the applied current density:

yd1 := Re yd , yd2 := Im yd
j1 := Re j, j2 := Im j .
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Analogously, we reformulate the divergence-penalized problem (Pτ) as

min Fτ(y1, y2, σ) := F(y1, y2, σ) + τ
2‖divy1‖

2
L2(Ω) +

τ
2‖divy2‖

2
L2(Ω)

s.t. curl µ−1 curl y1 − ĉ∇divy1 − ωσy2 = j1 in Ω
y1 × n = 0 on Γ

curl µ−1 curl y2 − ĉ∇divy2 + ωσy1 = j2 in Ω
y2 × n = 0 on Γ

0 6 σ(x) 6 σmax a.e. in Ω.

Let us remark that SQP-methods are well-known for solving nonlinear optimal control problems. For the de-
tails of SQP-methods, we refer to the monographs [15, Section 5.3] and [23, Section 4.11.3]. By a standard
linearization of the optimality system for (Pτ) (cf. the aforementioned reference), the linear quadratic opti-
mization problem in the kth iteration step of the SQP-algorithm is obtained in the following form:

min Fτ,k(y1, y2, σ)

s.t. curl µ−1 curl y1 − ĉ∇divy1 − ωσ(k−1)y2
= j1 + ω(σ − σ(k−1))y(k−1)2 in Ω

y1 × n = 0 on Γ

curl µ−1 curl y2 − ĉ∇divy2 + ωσ(k−1)y1
= j2 − ω(σ − σ(k−1))y(k−1)1 in Ω

y2 × n = 0 on Γ

0 6 σ(x) 6 σmax a.e. in Ω

(QPk)

where

Fτ,k(y1, y2, σ) := F′τ(y(k−1)1 , y(k−1)2 , σ(k−1))(y1 − y(k−1)1 , y2 − y(k−1)2 , σ − σ(k−1))

+ 1
2‖y1 − y

(k−1)
1 ‖2L2(Ω) +

1
2‖y2 − y

(k−1)
2 ‖2L2(Ω) +

κ
2 ‖σ − σ

(k−1)‖2L2(Ω)

+ τ2‖div (y1 − y
(k−1)
1 )‖2L2(Ω) +

τ
2‖div (y2 − y

(k−1)
2 )‖2L2(Ω)

+ ω((σ − σ(k−1))(y1 − y(k−1)1 ), p(k−1)2 )L2(Ω)
− ω((σ − σ(k−1))(y2 − y(k−1)2 ), p(k−1)1 )L2(Ω)

and (y(k−1)1 , y(k−1)2 , σ(k−1)) is an optimal solution of (QPk−1) with the associated adjoint state (p(k−1)1 , p(k−1)2 ).

Algorithm 5.1 (SQP-algorithm).
1. Initialization: Choose (y(0)1 , y(0)2 , σ(0), p(0)1 , p(0)2 ) and set k = 1.
2. Solve the linear quadratic problem (QPk) to �nd the next iterate (y(k)1 , y(k)2 , σ(k), p(k)1 , p(k)2 ).
3. Stop or set k = k + 1 and go to step 2.

In our numerical experiment, the computational domain is given by

Ω = (−0.5, 0.5)3. (5.1)

Here, (5.1) is triangulated with a regular mesh of mesh size h. We employ piecewise constant elements for the
control discretization, whereas the state is discretized using continuous (vector-valued) P1-elements. We un-
derline that, since the computational domain (5.1) is convex, the state enjoysH1-regularity (cf. Corollary 3.1).
For all computations presented in the following, we use the open source software FEniCS [18] on a PC with
a 2.00 Ghz dual core processor and 8 GB RAM memory. Furthermore, the linear quadratic problem (QPk) is
solved using a standard projected gradient method (see, e.g., [23, Section 2.12]). The SQP-algorithm is termi-
nated, if δk drops below 10−4, where δk is the di�erence between two iterates of the algorithm given by

δk = ‖y(k)1 − y(k−1)1 ‖L2(Ω) + ‖y
(k)
2 − y(k−1)2 ‖L2(Ω) + ‖p

(k)
1 − p(k−1)1 ‖L2(Ω)

+ ‖p(k)2 − p(k−1)2 ‖L2(Ω) + ‖σ
(k) − σ(k−1)‖L2(Ω).
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Figure 1. Example 5.1: Computed optimal control with τ = 102 (upper left), τ = 103 (upper right), τ = 104 (lower left), and
τ = 105 (lower right).

Example 5.1. We choose κ = 10−4, µ−1 = ĉ = 10, ω = 1, σmax = 100, and

yd1 (x1, x2, x3) ≡ (0, 0, 0)T

yd2 (x1, x2, x3) = ((x22 − 0.25)(x23 − 0.25), 0, 0)T .

Moreover,

j1 = −χ(0, 0.5)3yd2 , j2 = curl µ−1curl yd2

where χ(0, 0.5)3 denotes the characteristic function on the set (0, 0.5)3.

Short computations show that the characteristic function χ(0,0.5)3 is the optimal control of (P), if κ vanishes.
Therefore, since κ is chosen to be small, the optimal control of (P) is expected to be close to χ(0,0.5)3 . We have
solved (Pτ) with a �xed mesh size h = 2−6 and di�erent values of τ. Figure 1 shows the computed optimal
control σh generated by the SQP-algorithm.Here, the regionwhere σh = 0 is plotted transparently.We observe
that, as τ becomes larger and larger, the computed optimal control σh tends to approximate χ(0,0.5)3 .

Example 5.2. We de�ne K = (−0.5, 0)3 ∪ (0, 0.5)3 and set j1 = −χKyd2 , where yd2 and all other data are
speci�ed as in Example 5.3.

Figure 2 displays the computed optimal control σh with h = 2−6 generated by the SQP-algorithm. Similarly to
the previous example, as τ increases, the computed optimal control tends to approximate the characteristic
function χK .

5.1 Numerical test with exact solutions

We construct exact solutions for the divergence-penalized problem (Pτ) by including a shift control σd in the
objective functional F. More precisely, we rede�ne F as follows:

F(y1, y2, σ) :=
1
2‖y1 − yd1‖

2
L2(Ω) +

1
2‖y2 − yd2‖

2
L2(Ω) +

κ
2 ‖σ − σd‖

2
L2(Ω).
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Figure 2. Example 5.2: Computed optimal control with τ = 102 (upper left), τ = 103 (upper right), τ = 104 (lower left), and
τ = 105 (lower right).

h 2−3 2−4 2−5 2−6

#It. 5 5 4 4
‖σh − σd‖L2(Ω) 2.09002 1.54141 1.111772 0.793758
‖y1,h − yd1‖V 0.73200 0.37473 0.188491 0.094388
‖y2,h − yd2‖V 0.29903 0.15149 0.075992 0.038026

Table 1. Example 5.3: Convergence of the computed solu-
tion.

In the following, we consider two examples, where the triple (yd1 , yd2 , σd) is constructed to be the optimal
solution of (Pτ). With the exact solution at hand, we would like to test the convergence performance of the
numerical solution computed by the SQP-algorithm.

Example 5.3. We set τ = 103, κ = ω = 1, µ−1 = ĉ = 10, σmax = 100, and

yd1 (x1, x2, x3) = (cos(πx2) cos(πx3), cos(πx1) cos(πx3), cos(πx1) cos(πx2))T

yd2 (x1, x2, x3) = 10((x22 − 0.25)(x23 − 0.25), 0, 0)T

σd(x1, x2, x3) =



8, if x2 ∈ (−0.25, 0), x1 6 0
10, if x1 ∈ (0, 0.25), x2 6 0
15, if x2 ∈ (0, 0.25), x1 > 0
20, if x1 ∈ (−0.25, 0), x2 > 0
0, otherwise.

Furthermore, we set

j1 = curl µ−1curl yd1 − σdyd2 , j2 = curl µ−1curl yd2 + σdyd1 .

It is straightforward to check that the optimization problem (Pτ) with data speci�ed as in Example 5.3 admits a
unique solution (y*1, y*2, σ*) = (yd1 , yd2 , σd). In Table 1, we report on the convergence history of the computed
optimal solution. Here, we used zero as initial data, and #It. denotes the number of iterations required by
the SQP-algorithm to converge. We observe that the numerical error in the control (with respect to the L2(Ω)-
norm) and the numerical error in the state (with respect to the V-norm) become smaller and smaller as the
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h 2−3 2−4 2−5 2−6

EOCσ – 0.43926 0.471389 0.486089
EOCy1 – 0.96600 0.991349 0.997823
EOCy2 – 0.98105 0.995313 0.998849

Table 2. Example 5.3: Experimental order of convergence.

Figure 3. Example 5.3: Computed optimal control.

mesh size h decreases. This is an indication for the convergence of the computed optimal solution towards
the exact one. Moreover, to detect the corresponding experimental order of convergence, we use the quantity

EOCσ =
log ‖σh1 − σd‖L2(Ω) − log ‖σh2 − σd‖L2(Ω)

log h1 − log h2

for two consecutive mesh sizes h1 and h2. Similarly, we de�ne EOCy1 and EOCy2 for the convergence rate
indicators with respect to y1 and y2. The results for these quantities are given in Table 2. Here, we monitor
that EOCσ ≈ 0.5, whereas EOCy1 and EOCy2 are very close to 1.0.

Example 5.4. We set τ = 103, κ = ω = 1, µ−1 = ĉ = 2, σmax = 100, and

yd1 (x1, x2, x3) = 10((x22 − 0.25)(x23 − 0.25), 0, (x21 − 0.25)(x22 − 0.25))T

yd2 (x1, x2, x3) = 10(0, (x21 − 0.25)(x23 − 0.25), 0)T

σd(x1, x2, x3) =
{
10 in Ωc :=

{
x ∈ R3 ∣∣ x21 + x22 + x33 6 1/16

}
0 otherwise

Moreover, we set
j1 = curl µ−1curl yd1 − σdyd2 , j2 = curl µ−1curl yd2 + σdyd1 .

As in the previous example, the optimization problem (Pτ) admits a unique optimal solution (y*1, y*2, σ*) =
(yd1 , yd2 , σd). Figure 4 shows the computed optimal control σh with h = 2−6. Furthermore, the convergence
history including the experimental order of convergence are summarized in Table 3. Here, we monitor again
that EOCσ ≈ 0.5 and EOCy1 , EOCy2 ≈ 1. Based on our observation from Example 5.3 and Example 5.4, we
experimentally conclude the convergence of orders 0.5 and 1 for the �nite element discretization error in
the control and the state, respectively. Our goal in the future is to prove this numerical hypothesis and to
investigate the �nite element analysis in the case of nonconvex polyhedral domains.

5.2 Numerical test with discontinuous magnetic permeability

The previous numerical examples consider only a constant magnetic permeability µ. In many real applica-
tions, one typically deals with a non-constant magnetic permeability that is possibly highly discontinuous.
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h 2−3 2−4 2−5 2−6

#It. 5 5 5 5
‖σh − σd‖L2(Ω) 0.61772 0.46329 0.336368 0.239577
‖y1,h − yd1‖V 0.42211 0.21413 0.107453 0.053775
‖y2,h − yd2‖V 0.29897 0.15148 0.075990 0.038026
EOCσ – 0.41503 0.461898 0.489548
EOCy1 – 0.97916 0.994759 0.998692
EOCy2 – 0.98093 0.995212 0.998812

Table 3. Example 5.4: Convergence of the computed solu-
tion.

Figure 4. Example 5.4: Computed optimal control.

For instance, if a ferromagnetic metal is considered in an air region, then the magnetic permeability µ fea-
tures strong jump discontinuities across the material interface. To test our numerical approach for such a
case, we consider the following example.

Example 5.5. We set τ = 103, κ = ω = 1, ĉ = 5, σmax = 1000, and

σd =


10 in Ω1
102 in Ω2
0 otherwise,

µ−1 =


10−3 in Ω1
10−5 in Ω2
1 otherwise

where Ω1 :=
{
x ∈ R3∣∣ (x1 − 1/8)2 + x22 + x33 6 1/256

}
and Ω2 :=

{
x ∈ R3∣∣ (x1 + 1/8)2 + x22 + x33 6 1/256

}
.

Moreover,
j1(x1, x2, x3) = 10(−x2, x1, 0)T , j2 ≡ 0

and yd1 , yd2 are set to be the solution of the state equation with the above data.

Note that µ is now chosen to have strong jump discontinuities across the interfaces ∂Ω1 and ∂Ω2. As in the
previous numerical examples, for h = 2−3, . . . , 2−6, the algorithm applied to Example 5.5 successfully con-
verged towards reasonable numerical solutions. This justi�es the capability of the proposed optimal control
approach for material parameters with jump discontinuities. The computed optimal control at h = 2−6 is
depicted in Fig. 1, which is close to σd.

Figure 5. Example 5.5: Computed optimal control.
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