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LEVEL SET--BASED SHAPE OPTIMIZATION APPROACH FOR
SHARP-INTERFACE RECONSTRUCTIONS IN TIME-DOMAIN

FULL WAVEFORM INVERSION\ast 

YURI F. ALBUQUERQUE\dagger , ANTOINE LAURAIN\dagger , AND IRWIN YOUSEPT\ddagger 

Abstract. Velocity models presenting sharp interfaces are highly relevant in seismic imaging,
e.g., for imaging the subsurface of the Earth in the presence of salt bodies. In order to mitigate the
oversmoothing of classical regularization strategies such as the Tikhonov regularization, we propose
a shape optimization approach for the sharp-interface reconstruction in time-domain acoustic full
waveform inversion. Our main result includes the shape differentiability of the cost functional mea-
suring the misfit between observed and predicted data. In particular, it reveals the expression of the
distributed shape derivative in tensor form, built on a Lagrangian-type approach and regularity re-
sults for the wave equation with discontinuous coefficients. Based on the achieved distributed shape
derivative and the level set method, we propose a numerical approach and present several numerical
tests supporting our approach.

Key words. full waveform inversion, shape optimization, level set method, acoustic wave
equation, distributed shape derivative, sharp interfaces
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1. Introduction. Seismic imaging is a set of techniques to produce images of
the subsurface of the Earth. Seismic waves generated by controlled sources at the
surface propagate into the medium, and reflections occur at the transitions between
different materials; the reflection waves are then recorded at a set of point receivers,
located either at or below the surface. Important applications of seismic imaging
include hydrocarbon exploration and imaging of the lithosphere, glaciers, and subsur-
face structures in volcanic areas. Full waveform inversion (FWI) is a recent variant of
seismic tomography that uses the full wavefield information for the inversion, instead
of simpler information such as travel times and phase velocities, by iteratively mini-
mizing the difference between synthetic and observed data; see [16, 45] for an overview.
FWI relies on the numerical solution of the acoustic or elastic wave equations to ob-

\ast Received by the editors November 3, 2020; accepted for publication January 21, 2021; published
electronically May 20, 2021.

https://doi.org/10.1137/20M1378090
Funding: The work of the first and second authors was supported by the RCGI - Research

Centre for Gas Innovation, hosted by the University of S\~ao Paulo (USP) and sponsored by FAPESP
- S\~ao Paulo Research Foundation (2014/50279-4) and Shell Brasil. This research was carried out in
association with the ongoing R\&D project registered as ANP 20714-2 - Desenvolvimento de t\'ecnicas
num\'ericas e software para problemas de invers\~ao com aplica\c c\~oes em processamento s\'{\i}smico (USP
/ Shell Brasil / ANP), sponsored by Shell Brasil under the ANP R\&D levy as ``Compromisso de
Investimentos com Pesquisa e Desenvolvimento."" The work of the second author was supported by
the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de
Desenvolvimento Cientco e Tecnologico - CNPq) through the process 408175/2018-4 ``Otimiza\c c\~ao
de forma n\~ao suave e controle de problemas de fronteira livre"" and through the program ``Bolsa
de Produtividade em Pesquisa - PQ 2015"" (process 304258/2018-0). The work of the third author
was supported by the German Research Foundation Priority Programme DFG SPP 1962 ""Non-
smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical
Optimization,"" project YO 159/2-2.

\dagger Instituto de Matem\'atica e Estat\'{\i}stica, Universidade de S\~ao Paulo, 05508-090, S\~ao Paulo, Brazil
(yuri.falbu@gmail.com, laurain@ime.usp.br, http://www.antoinelaurain.com/).

\ddagger Fakult\"at f\"ur Mathematik, University of Duisburg-Essen, 45127, Essen, Germany (irwin.yousept@
uni-due.de, https://www.uni-due.de/mathematik/agyousept/yousept.php).

939

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

32
.2

52
.2

07
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/20M1378090
mailto:yuri.falbu@gmail.com
mailto:laurain@ime.usp.br
http://www.antoinelaurain.com/
mailto:irwin.yousept@uni-due.de
mailto:irwin.yousept@uni-due.de
https://www.uni-due.de/mathematik/agyousept/yousept.php


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

940 Y. F. ALBUQUERQUE, A. LAURAIN, AND I. YOUSEPT

tain a realistic modeling of seismic wave propagation through heterogeneous media;
thus FWI can be formulated as an optimization problem with PDE constraints.

The ill-posed nature of seismic inversion requires the use of a regularization. Due
to its smoothness and ease of use, the Tikhonov regularization is probably the most
frequently used regularization scheme for inverse problems, particularly for FWI. Its
main drawback is that it tends to produce smooth velocity models, which precludes
the reconstruction of singular features such as sharp interfaces, discontinuities, and
high contrasts in the model. Such sharp features are nonetheless crucial for certain ap-
plications. For instance, in hydrocarbon exploration, sound waves travel with greater
velocity inside salt bodies compared to the neighboring sediments. Salt bodies also
present a sharp velocity contrast to the sediment velocities at their boundaries and ir-
regular geometries so that an accurate representation of the interface may considerably
improve the quality of the images. Thus, an alternative regularization that preserves
sharp features and discontinuities is beneficial for the inversion. For this purpose the
total variation regularization is widely used in image processing and has been applied
to seismic imaging; see [1, 15] and the references therein. Another possible approach
is to incorporate prior information about sharp interfaces and high contrast explicitly
in the modeling of the problem; this has a regularization effect which alleviates the
ill-posedness of the problem without oversmoothing the solution. Another possible
advantage of the sharp-interface assumption is the sparse representation, which is
useful in the context of large-scale applications.

In this work, we propose the use of geometric optimization techniques (cf. [42])
for the reconstruction of sharp interfaces in the coefficients (wave speed and mass
density) of the acoustic wave equations. We consider the reconstruction of salt bodies
and assume that the velocity models are piecewise constant for simplicity, with known
but distinct constant values in the salt body and in the sediment region. In this
way, the optimization problem is recast as a shape optimization problem where the
interface of the salt region becomes the unknown. The problem is formulated as the
minimization with respect to the interface geometry of a cost functional measuring
the misfit between the velocity model and the observed data, and the evolution of the
interface is performed using a level set method (see [30, 38]).

FWI can be considered either in the frequency domain or in the time domain.
Shape optimization (design problems) and level set--based approaches have been de-
veloped recently for FWI in the frequency domain (see [13, 17, 18, 20, 22, 23, 26, 32,
33, 41, 46]) but are lacking in the time domain. Our work (see also [2]) seems to be
the first to develop and perform a mathematical analysis of a level set--based shape
optimization approach for time-domain FWI in the acoustic case; see also [27] for a
recent contribution using a level set approach based on reaction-diffusion equations.

One of the main challenges arising in the shape optimization framework is the low
regularity of the solution to the wave equations caused by the discontinuity of the wave
speed and the mass density which affects both the state and adjoint state. The existing
literature on shape optimization problems for the wave equation often assumes smooth
coefficients; see [9, 10, 37], and [34] for an optimal design problem in the context of
exact controllability for the 2D wave equation with an internal control. Optimal design
problems have also been considered for stabilization of the wave equation involving
a discontinuous damping potential in [19, 35, 36], and for exact controllability of the
wave equation in [40]. The uniqueness and stability of the inverse problem for time-
harmonic elastic waves with piecewise constant Lam\'e parameters and density has been
studied in [6], and the reconstruction of small conductivity inhomogeneities for the
scalar wave equation has been investigated in [3]. In PDE-constrained optimization,
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SHAPE OPTIMIZATION FOR FULL WAVEFORM INVERSION 941

there are a few contributions on inverse problems governed by the acoustic wave
equation with discontinuous coefficients, and on the Fr\'echet differentiability of the
parameter-to-solution map; see [5, 24, 43] and [25, 31] in the elastic case. In [7, 8], a
semismooth Newton-CG method for constrained parameter identification is studied.
We also refer the reader to [12] for a recent study of the multi-bang control approach
for the reconstruction of the mass density in the scalar wave equations.

To show the global well-posedness and the regularity properties of the correspond-
ing state and adjoint state, we make use of the semigroup theory in combination with
elliptic regularity results and techniques by Ball [4]. The semigroup theory is par-
ticularly suitable to deal with nonsmooth coefficients and the hyperbolic first-order
structure of the PDE model (see, e.g., [11, 25, 47, 48]). Besides the discontinuity of
the coefficients, the possibly low regularity of the interfaces is also challenging for the
shape optimization approach. Indeed, the boundary expression of the shape deriv-
ative, also known as the Hadamard formula, which is commonly used in the shape
optimization approach (see, for instance, [17, 18, 41]), usually requires a certain reg-
ularity of the boundary. Here, we propose a method based on a weak form of the
shape derivative, also called the distributed shape derivative, which allows working
with nonsmooth domains and functions with low regularity and often offers better ac-
curacy than the boundary expression for numerical approximation; see [14, 21, 29, 30]
and the references therein. The proof of the shape differentiability and the calculation
of the distributed shape derivative are achieved using the averaged adjoint method
introduced in [44], which is a Lagrangian-type approach for shape optimization prob-
lems; see also [30]. The shape derivative depends on the time and space derivatives
of the state and the adjoint state where the adjoint is the solution of a backwards
wave equation with terminal conditions. Based on the distributed shape derivative
and on the level set method, we eventually propose a numerical algorithm for the
minimization of the cost functional. The efficiency of the algorithm is demonstrated
through several examples of reconstruction with synthetic data.

The remainder of this paper is organized as follows. In section 2, we give regularity
results for the wave equation with discontinuous coefficients, which is a key ingredient
for proving the shape differentiability. In section 3 we describe the shape optimization
framework. In section 4, we recall the averaged adjoint method of [44] and compute the
adjoint. In section 5, we apply the averaged adjoint method to compute the distributed
shape derivative of the cost function. Thereafter, in section 6, the application of our
theoretical results to FWI is presented. Finally, in section 7 we show the numerical
algorithm and present several numerical results supporting our approach.

2. Regularity results for the wave equation with discontinuous coeffi-
cients. In this section we give several well-posedness and regularity results for the
solution of the acoustic wave equations with damping and discontinuous coefficients.
These results are essential for the study of the shape differentiability in the subse-
quent sections. Let \scrD \subset \BbbR n, n \geq 2, be a bounded Lipschitz domain. Let \Gamma \subset \partial \scrD be
a connected subset of \partial \scrD where the homogeneous Dirichlet condition is imposed. On
\Gamma n := \partial \scrD \setminus \Gamma , we impose the homogeneous Neumann condition. Let H1

\Gamma (\scrD ) be the
closed subspace of H1(\scrD ) of functions with vanishing trace on \Gamma . Furthermore, we
introduce the following Hilbert spaces:

X : = L2((0, T ), H1
\Gamma (\scrD )) \cap H1((0, T ), L2(\scrD )),

X0 : = \{ \psi \in X | \psi (0) = 0\} , XT := \{ \psi \in X | \psi (T ) = 0\} ,
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942 Y. F. ALBUQUERQUE, A. LAURAIN, AND I. YOUSEPT

endowed with the scalar product

(u, v)X :=

\int T

0

uv + utvt +\nabla u \cdot \nabla v

and the associated norm \| \cdot \| X :=
\sqrt{} 
(\cdot , \cdot )X .

Let us consider the following second-order wave equations:

\kappa utt  - div(R\nabla u) + \eta ut = f in \scrD \times (0, T ),(1)

u(0) = 0 in \scrD ,(2)

ut(0) = 0 in \scrD ,(3)

u = 0 on \Gamma \times (0, T ),(4)

R\nabla u \cdot n = 0 on \Gamma n \times (0, T ),(5)

where the material parameters \kappa : \scrD \rightarrow \BbbR , R : \scrD \rightarrow \BbbR n\times n, and \eta : \scrD \rightarrow \BbbR satisfy the
following assumptions.

Assumption 1. Let \kappa \in L\infty (\scrD ), \eta \in L\infty (\scrD ), and R \in L\infty (\scrD ,\BbbR n\times n). There
exist positive constants 0 < \kappa < \kappa such that \kappa \leq \kappa (x) \leq \kappa holds true for a.e. x \in \Omega .
Moreover, \eta is nonnegative, and R is symmetric and uniformly positive definite; i.e.,
there exists a positive constant R > 0 such that

(6) \xi TR(x)\xi \geq R| \xi | 2 for all \xi \in \BbbR n and a.e. x \in \BbbR .

A function u \in \scrC ([0, T ], H1
\Gamma (\scrD ))\cap \scrC 1([0, T ], L2(\scrD )) is called a mild solution to the

hyperbolic forward problem (1)--(5) if and only if

(7)

\left\{         
d

dt

\int 
\scrD 
\kappa ut(t)\psi dx+

\int 
\scrD 
R\nabla u(t) \cdot \nabla \psi + \eta ut(t)\psi dx =

\int 
\scrD 
f(t)\psi dx

for all \psi \in H1
\Gamma (\scrD ) and a.e. t \in (0, T ),

u(0) = ut(0) = 0,

and for every \psi \in H1
\Gamma (\scrD ) the mapping t \mapsto \rightarrow (\kappa ut(t), \psi )L2(\scrD ) is absolutely continuous.

Theorem 1. If Assumption 1 is satisfied, then for every f \in L1((0, T ), L2(\scrD )),
the hyperbolic forward problem (1)--(5) admits a unique mild solution u satisfying
u \in \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 1([0, T ], L2(\scrD )) and\int 
\scrD 
\kappa u2(t) dx \leq t

\int t

0

\| \kappa 1
2 f(\sigma )\| L2(\scrD )d\sigma \forall t \in [0, T ],(8) \biggl( \int 

\scrD 
\kappa u2t (t) dx+

\int 
\scrD 
R\nabla u(t) \cdot \nabla u(t) dx

\biggr) 1
2

\leq 
\int t

0

\| \kappa 1
2 f(\sigma )\| L2(\scrD )d\sigma \forall t \in [0, T ].(9)

Proof. Uniqueness: Suppose that u(1), u(2) \in \scrC ([0, T ], H1
\Gamma (\scrD )) \cap \scrC 1([0, T ], L2(\scrD ))

satisfy (7). Then the difference d := u(1)  - u(2) satisfies

d

dt

\int 
\scrD 
\kappa dt(t)d(t) dx+

\int 
\scrD 
R\nabla d(t) \cdot \nabla d(t) + \eta dt(t)d(t) dx = 0 for a.e. t \in (0, T ).

Using the fact that
\int 
\scrD \eta dt(t)d(t) dx = 1

2
d
dt\| \eta 

1
2 d(t)\| 2L2(\scrD ) and d(0) = 0, we obtain by

integrating the above equality over the time interval [0, \tau ] for any 0 \leq \tau \leq T that\int 
\scrD 
\kappa dt(\tau )d(\tau ) dx+

\int \tau 

0

\int 
\scrD 
R\nabla d(t) \cdot \nabla d(t) dxdt+ 1

2
\| \eta 1

2 d(\tau )\| 2L2(\scrD ) = 0.
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Thus, in view of (6), it follows that

d

dt
\| \kappa 1

2 d(t)\| 2L2(\scrD ) = 2

\int 
\scrD 
\kappa dt(t)d(t) dx \leq 0 \forall t \in [0, T ] =\Rightarrow \underbrace{}  \underbrace{}  

d(0)=0

d \equiv 0.

Existence: We introduce the Hilbert spaces

H(div) := \{ v \in L2(\scrD )n | div v \in L2(\scrD )\} ,
H\Gamma (div) := \{ v \in H(div) | (div v, \varphi )L2(\scrD ) =  - (v,\nabla \varphi )L2(\scrD )n \forall \varphi \in H1

\Gamma (\scrD )\} ,(10)

where the divergence is understood in the distributional sense. Furthermore, let
\scrH := L2(\scrD )\times L2(\scrD )n equipped with the scalar product

(11) ((u1, v1), (u2, v2))\scrH :=(\kappa u1, u2)L2(\scrD ) + (R - 1v1, v2)L2(\scrD )n .

Using these Hilbert spaces, we introduce the densely defined (unbounded) operator

(12) \scrA : D(\scrA ) \subset \scrH \rightarrow \scrH , \scrA (u, v) :=  - (\kappa  - 1(div v + \eta u), R\nabla u)

with the effective domain D(\scrA ) := H1
\Gamma (\scrD ) \times H\Gamma (div). By definition, it holds for all

(u, v) \in D(\scrA ) that

(\scrA (u, v), (u, v))\scrH =\underbrace{}  \underbrace{}  
(11)\&(12)

( - div v  - \eta u, u)L2(\scrD )  - (v,\nabla u)L2(\scrD )n

=\underbrace{}  \underbrace{}  
(10)

 - (\eta u, u)L2(\scrD ) \leq 0
(13)

since \eta is nonnegative. In other words, \scrA : D(\scrA ) \subset \scrH \rightarrow \scrH is dissipative. Let us now
show that the operator \scrA  - I : D(\scrA ) \rightarrow \scrH is surjective. To this aim, let (g, q) \in \scrH .
By the Lax--Milgram lemma, there exists a unique u \in H1

\Gamma (\scrD ) such that

(R\nabla u,\nabla \varphi )L2(\scrD )n + ((\eta + \kappa )u, \varphi )L2(\scrD )

=  - (\kappa g, \varphi )L2(\scrD ) - (q,\nabla \varphi )L2(\scrD )n \forall \varphi \in H1
\Gamma (\scrD ).

(14)

Making use of the solution to (14), we set

(15) v :=  - (q +R\nabla u) \in L2(\scrD )n.

In view of (14), the vector field v satisfies

(v,\nabla \varphi )L2(\scrD )n = ((\eta + \kappa )u+ \kappa g, \varphi ) \forall \varphi \in \scrC \infty 
0 (\scrD ),

and so the distributional definition of the divergence yields that v \in H(div) and

(16) div v =  - (\eta + \kappa )u - \kappa g.

Furthermore, from (14)--(16), we also have that

(div v, \varphi )L2(\scrD ) =  - (v,\nabla \varphi )L2(\scrD )n \forall \varphi \in H1
\Gamma (\scrD ) \Rightarrow v \in H\Gamma (div).

All together, (12), (15), and (16) lead to the desired surjectivity result:

(17) \forall (g, q) \in \scrH , \exists (u, v) \in D(\scrA ) : (\scrA  - I)(u, v) = (g, q).
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Thanks to (13) and (17), the Lumer--Phillips theorem [39, Theorem 4.3] implies
that the operator \scrA : D(\scrA ) \subset \scrH \rightarrow \scrH generates a contraction semigroup \{ \BbbT t\} t\geq 0.
Making use of this semigroup, we introduce

(u, v)(t) :=

\int t

0

\BbbT t - \sigma (F (\sigma ), 0) d\sigma \forall t \in [0, T ],

F (\sigma ) :=

\int \sigma 

0

f(\xi ) d\xi \forall \sigma \in [0, T ].

(18)

Since (F, 0) \in W 1,1((0, T ),\scrH ), classical arguments yield that (u, v) \in \scrC ([0, T ], D(\scrA ))\cap 
\scrC 1([0, T ],\scrH ) is the unique solution to

(19)

\left\{       
\biggl( 
d

dt
 - \scrA 

\biggr) 
(u, v)(t) = (F (t), 0) \forall t \in [0, T ] =\Rightarrow \underbrace{}  \underbrace{}  

(12)

vt +R\nabla u = 0,

(u, v)(0) = (0, 0),

and

(20) (ut, vt)(t) =

\int t

0

\BbbT t - \sigma (f(\sigma ), 0) d\sigma \forall t \in [0, T ],

where we have used the fact that F \prime = f and F (0) = 0 to obtain the above variation
of constants formula. Then, applying the classical result by Ball [4] to (20), it follows
that (ut, vt) satisfies

(21)

\left\{       
d

dt
((ut, vt)(t), (\varphi , z))\scrH  - ((ut, vt)(t),\scrA \ast (\varphi , z))\scrH 

= ((\kappa  - 1f(t), 0), (\varphi , z))\scrH for all (\varphi , z) \in D(\scrA \ast ) and a.e. t \in (0, T ),

(ut, vt)(0) = (0, 0),

and the mapping t \mapsto \rightarrow ((ut, vt)(t), (\varphi , z))\scrH is absolutely continuous. On the other
hand, in view of (12) and (10), we have that H1

\Gamma (\scrD )\times \{ 0\} \subset D(\scrA ) \subset D(\scrA \ast ) and

(22)

 - ((ut, vt)(t),\scrA \ast (\varphi , 0))\scrH = (ut(t), \eta \varphi )L2(\scrD )  - (vt(t),\nabla \varphi )L2(\scrD )n

=\underbrace{}  \underbrace{}  
(19)

\int 
\scrD 
R\nabla u(t) \cdot \nabla \varphi + \eta ut(t)\varphi dx \forall \varphi \in H1

\Gamma (\scrD ).

Therefore, considering z = 0 and \varphi \in H1
\Gamma (\scrD ) in (21), we conclude from (22) that u

satisfies (7). It remains to prove that u satisfies the stability estimates (8)--(9). Since
\{ \BbbT t\} t\geq 0 is a contraction semigroup, the variation of constants formula (18) implies

\int 
\scrD 
\kappa u2(t) dx \leq \underbrace{}  \underbrace{}  

(11)

\| (u, v)(t)\| \scrH \leq \underbrace{}  \underbrace{}  
(18)

\int t

0

\int \sigma 

0

\| \kappa 1
2 f(\xi )\| L2(\scrD ) d\xi d\sigma \forall t \in [0, T ],

which immediately yields the desired estimate (8). Similarly, the second estimate (9)

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

32
.2

52
.2

07
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SHAPE OPTIMIZATION FOR FULL WAVEFORM INVERSION 945

is obtained as follows:\biggl( \int 
\scrD 
\kappa u2t (t) dx+

\int 
\scrD 
R\nabla u(t) \cdot \nabla u(t) dx

\biggr) 1
2

=\underbrace{}  \underbrace{}  
(19)

\biggl( \int 
\scrD 
\kappa u2t (t) dx+

\int 
\scrD 
R - 1vt(t) \cdot vt(t) dx

\biggr) 1
2

=\underbrace{}  \underbrace{}  
(11)

\| (ut, vt)(t)\| \scrH \leq \underbrace{}  \underbrace{}  
(20)

\int t

0

\| \kappa 1
2 f(\sigma )\| L2(\scrD )d\sigma \forall t \in [0, T ].

This completes the proof.

Corollary 2. Let Assumption 1 be satisfied and let f \in W 1,1((0, T ), L2(\scrD )).
Then the unique mild solution u \in \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 1([0, T ], L2(\scrD )) of the forward
hyperbolic problem (1)--(5) satisfies the higher regularity u \in \scrC 2([0, T ], L2(\scrD )) and

(23) \kappa utt(t) - div (R\nabla u(t)) + \eta ut(t) = f(t) \forall t \in [0, T ],

i.e., it is the solution to (1)--(5).

Proof. Again by classical arguments, since f \in W 1,1((0, T ), L2(\scrD )), the variation
of constants formula (20) implies that ut \in \scrC 1([0, T ], L2(\scrD )). Applying this higher
regularity property to the variational equality (7) yields that\int 

\scrD 
R\nabla u(t) \cdot \nabla \varphi dx =

\int 
\scrD 
(f(t) - \eta ut(t) - \kappa utt(t))\varphi dx \forall \varphi \in H1

\Gamma (\scrD ) \forall t \in [0, T ].

Thus, as \scrC \infty 
0 (\scrD ) \subset H1

\Gamma (\scrD ), the distributional definition of the divergence implies that

(24) R\nabla u(t) \in H(div) and div (R\nabla u(t)) =  - f(t) + \eta ut(t) + \kappa utt(t) \forall t \in [0, T ].

In conclusion, u is the solution to (1)--(5).

Assumption 2. Suppose that there exists an open set \scrO \subset \scrD such that

(25) R(x) = r(x)In \forall x \in \scrO 

holds for the identity matrix In \in \BbbR n\times n and a Lipschitz-continuous function r \in 
\scrC 0,1(\scrO ). Moreover, there exists a positive constant r > 0 such that r(x) \geq r holds for
all x \in \scrO .

Corollary 3. Suppose f \in W 1,1((0, T ), L2(\scrD )) and Assumptions 1 and 2 hold.
Then the unique mild solution u of the forward hyperbolic problem (1)--(5) satisfies

u \in \scrC ([0, T ], H2(\omega ))

for every open set \omega \subset \scrO \subset \scrD satisfying \omega \subset \scrO .

Proof. Let \omega \subset \scrO be an open set satisfying \omega \subset \scrO . The classical interior elliptic
regularity result implies that for any y \in H1(\scrO ) and z \in L2(\scrO ) satisfying

 - \Delta y = z in \scrO (in the weak sense)

it holds that y \in H2(\omega ). Furthermore, there exists a constant C, depending only on
\omega and \scrO , such that

(26) \| y\| H2(\omega ) \leq C(\| z\| L2(\scrO ) + \| y\| L2(\scrO )).
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946 Y. F. ALBUQUERQUE, A. LAURAIN, AND I. YOUSEPT

Now, according to Corollary 2, the unique mild solution u \in \scrC ([0, T ], H1
\Gamma (\scrD )) \cap 

\scrC 2([0, T ], L2(\scrD )) and f \in W 1,1((0, T ), L2(\scrD )) \lhook \rightarrow \scrC ([0, T ], L2(\scrD )) satisfy for every
fixed t \in [0, T ] the elliptic problem

 - div (R\nabla u(t)) = f(t) - \eta ut(t) - \kappa utt(t) in \scrD ,

and so by Assumption 2 it follows that

(27)  - \Delta u(t) = r - 1 (\nabla r \cdot \nabla u(t) + f(t) - \eta ut(t) - \kappa utt(t)) in \scrO \forall t \in [0, T ].

As the right-hand side of (27) belongs to L2(\scrO ), it follows that u(t) \in H2(\omega ) for
all t \in [0, T ]. To prove the uniform regularity in \scrC ([0, T ], H2(\omega )), let t, \tau \in [0, T ] be
arbitrarily fixed. By the superposition principle, (27) yields that

 - \Delta (u(t) - u(\tau )) = r - 1 (\nabla r \cdot \nabla (u(t) - u(\tau )) + f(t) - f(\tau ))

+ r - 1 ( - \eta (ut(t) - ut(\tau )) - \kappa (utt(t) - utt(\tau ))) in \scrO .

Consequently, the a priori estimate (26) implies that

\| u(t) - u(\tau )\| H2(\omega ) \leq C(\| r - 1(\nabla r \cdot \nabla (u(t) - u(\tau )) + f(t) - f(\tau ))\| L2(\scrO )

+ \| r - 1( - \eta (ut(t) - ut(\tau )) - \kappa (utt(t) - utt(\tau )))\| L2(\scrO )

+ \| u(t) - u(\tau )\| L2(\scrO )).

(28)

Finally, applying the regularity u \in \scrC ([0, T ], H1
\Gamma (\scrD )) \cap \scrC 2([0, T ], L2(\scrD )) and f \in 

W 1,1((0, T ), L2(\scrD )) \lhook \rightarrow \scrC ([0, T ], L2(\scrD )) to (28), we deduce that

lim
\tau \rightarrow t

\| u(t) - u(\tau )\| H2(\omega ) \leq 0.

In conclusion, u \in \scrC ([0, T ], H2(\omega )).

Let us close this section by introducing an appropriate variational formulation for
the forward problem (1)--(5), which is important for our shape sensitivity analysis:

Find u \in X0 :

\int T

0

\int 
\scrD 
R\nabla u \cdot \nabla \psi  - \kappa ut\psi t + \eta ut\psi dx dt

=

\int T

0

\int 
\scrD 
f\psi dx dt \forall \psi \in XT .

(29)

Theorem 4. Let Assumption 1 hold and f \in W 1,1((0, T ), L2(\scrD )). Then the
variational problem (29) admits a unique solution u \in X0, which coincides with the
solution to (1)--(5). In particular, the unique solution to (29) enjoys the regularity
property u \in X0 \cap \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 2([0, T ], L2(\scrD )).

Proof. Uniqueness: Suppose that u(1), u(2) \in X0 are solutions to (29). By defini-
tion, the difference d := u(1)  - u(2) \in X0 satisfies\int T

0

\int 
\scrD 
R\nabla d \cdot \nabla \psi  - \kappa dt\psi t + \eta dt\psi dx dt = 0 \forall \psi \in XT .

Testing the above variational equality with \psi := \mu \varphi for \mu \in \scrC \infty 
0 (0, T ) and \varphi \in H1

\Gamma (\scrD )
yields

 - 
\int T

0

\mu \prime (t)

\int 
\scrD 
\kappa dt(t)\varphi dx dt+

\int T

0

\mu (t)

\int 
\scrD 
R\nabla d(t) \cdot \nabla \varphi + \eta dt(t)\varphi dx dt

= 0 \forall \mu \in \scrC \infty 
0 (0, T ),
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SHAPE OPTIMIZATION FOR FULL WAVEFORM INVERSION 947

from which it follows by the definition of the weak (time) derivative that

d

dt

\int 
\scrD 
\kappa dt(t)\varphi dx+

\int 
\scrD 
R\nabla d(t) \cdot \nabla \varphi + \eta dt(t)\varphi dx = 0

for all \varphi \in H1
\Gamma (\scrD ) and a.e. t \in (0, T ).

Using the fact that
\int 
\scrD \eta dt(t)d(t) dx = 1

2
d
dt\| \eta 

1
2 d(t)\| 2L2(\scrD ) and d(0) = 0, we obtain by

setting \varphi = d(t) and integrating the resulting equality over the time interval [0, \tau ] for
any 0 \leq \tau \leq T that\int 

\scrD 
\kappa dt(\tau )d(\tau ) dx+

\int \tau 

0

\int 
\scrD 
R\nabla d(t) \cdot \nabla d(t) dxdt+ 1

2
\| \eta 1

2 d(\tau )\| 2L2(\scrD ) = 0.

Thus, it follows that

d

dt
\| \kappa 1

2 d(t)\| 2L2(\scrD ) = 2

\int 
\scrD 
\kappa dt(t)d(t) dx \leq 0 for a.e. t \in (0, T ) =\Rightarrow \underbrace{}  \underbrace{}  

d(0)=0

d \equiv 0.

Existence: As f \in W 1,1((0, T ), L2(\scrD )), Corollary 2 yields that the mild solution
to (1)--(5) enjoys the regularity property u \in \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 2([0, T ], L2(\scrD )) and
satisfies (23); i.e., it is the solution to (1)--(5). It is straightforward to see that u is a
solution to the variational problem (29).

3. Shape optimization setting. In this section we describe a general shape
optimization framework to find an approximate solution of the inverse problem. The
key tool to perform the sensitivity analysis of the problem is the notion of shape
derivative, which we shall briefly recall in the following. Let us first denote the set of
admissible shapes by

P(\scrD ) := \{ \Omega \subset \scrD | \Omega open, \partial \Omega \cap \partial \scrD = \emptyset \} 

and introduce F : \BbbR \times \scrD \times [0, T ] \rightarrow \BbbR for the shape functional as follows:

(30) F (u, x, t) =
1

2

N\rho \sum 
\rho =1

w\rho (x)(u - d\rho (t))
2, N\rho \in \BbbN ,

for given mappings d\rho : [0, T ] \rightarrow \BbbR and w\rho : \scrD \rightarrow \BbbR . The required mathematical
assumptions for this function and all other data involved in the shape optimization
problem are summarized as follows.

Assumption 3. Let \Omega \in P(\scrD ). The material parameters \kappa and R are assumed
to be piecewise constant:

\kappa = \kappa \Omega = \kappa 0\chi \Omega + \kappa 1\chi \scrD \setminus \Omega and R = R\Omega = R0\chi \Omega +R1\chi \scrD \setminus \Omega 

with positive real constants \kappa 0, \kappa 1 > 0 and symmetric and positive definite matrices
R0, R1 \in \BbbR n\times n. Furthermore, suppose that \eta \in L\infty (\scrD ) is nonnegative, and f \in 
W 1,1((0, T ), L2(\scrD )) is given. Concerning (30), we assume that d\rho \in W 1,1((0, T ),\BbbR )
and w\rho \in \scrC 2(\scrD ) for all \rho = 1, . . . , N\rho .

Under Assumption 3, our focus is set on the following shape optimization problem:

min \scrJ (u,\Omega ) :=

\int T

0

\int 
\scrD 
F (u(x, t), x, t) dx dt

subject to \Omega \in P(\scrD ) and (29).

(31)
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948 Y. F. ALBUQUERQUE, A. LAURAIN, AND I. YOUSEPT

In view of (30), \scrJ is a general misfit functional where d\rho represents the observed data
at a receiver indexed by \rho . The precise meaning of w\rho and d\rho in the context of FWI is
described in section 6. Denoting by u(\Omega ) \in X0 \cap \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 2([0, T ], L2(\scrD ))
the unique solution to (29) associated with \kappa = \kappa \Omega and R = R\Omega (see Assumption 3),
the minimization problem (31) can be equivalently reformulated as

min
\Omega \in \bfP (\scrD )

J(\Omega ) := \scrJ (u(\Omega ),\Omega ).(32)

We now recall some basics regarding the sensitivity analysis of shape functionals. For
given k \geq 0 and 0 \leq \alpha \leq 1, we define

\scrC k,\alpha c (\scrD ,\BbbR n) := \{ \theta \in \scrC k,\alpha (\scrD ,\BbbR n) | \theta has compact support in \scrD \} .

Let \theta \in \scrC 0,1
c (\scrD ,\BbbR n) and consider the associated flow \Phi s(x0) = x(s, x0) defined by the

solution to the ordinary differential equation

(33)
d

ds
x(s, x0) = \theta (x(s, x0)) for s \in [0, s0], x(0, x0) = x0 \in \scrD ,

for some given s0 > 0. It is well known (see [42, p. 50]) that (33) admits a unique
solution for a sufficiently small s0 > 0. Note that \Phi s(\scrD ) = \scrD since \theta has compact
support in \scrD . For \Omega \in P(\scrD ), we introduce the parameterized family of domains
\Omega s := \Phi s(\Omega ) for all s \in [0, s0]. Let us now recall the definition of the shape derivative
used in this paper.

Definition 5 (shape derivative). Let K : P(\scrD ) \rightarrow \BbbR be a shape functional. The
Eulerian semiderivative of K at \Omega \in P(\scrD ) in direction \theta \in \scrC 0,1

c (\scrD ,\BbbR n) is defined as
the limit, if it exists,

dK(\Omega )(\theta ) := lim
s\searrow 0

K(\Omega s) - K(\Omega )

s
.

Moreover, K is said to be shape differentiable at \Omega if it has an Eulerian semiderivative
at \Omega for all \theta \in \scrC 0,1

c (\scrD ,\BbbR n), and the mapping

dK(\Omega ) : \scrC 0,1
c (\scrD ,\BbbR n) \rightarrow \BbbR , \theta \mapsto \rightarrow dK(\Omega )(\theta ),

is linear and continuous. In this case dK(\Omega )(\theta ) is called the shape derivative of K at
\Omega in direction \theta .

4. Averaged adjoint method. In this section we describe the averaged ad-
joint method introduced in [44] to establish the shape derivative of the reduced cost
functional J(\Omega ) = \scrJ (u(\Omega ),\Omega ). The notation is adapted to the particular setting of
our problem, and we refer the reader to [44] or [30] for a presentation of the method
in the general case.

Let Assumption 3 hold in all of what follows. Furthermore, let \theta \in \scrC 0,1
c (\scrD ,\BbbR n)

with the associated flow \Phi s : \scrD \rightarrow \scrD and \Omega s = \Phi s(\Omega ) as in section 3. Furthermore,
we write us = u(\Omega s) for the unique solution to (29) associated with \kappa = \kappa \Omega s =
\kappa 0\chi \Omega s

+ \kappa 1\chi \scrD \setminus \Omega s
and R = R\Omega s

= R0\chi \Omega s
+R1\chi \scrD \setminus \Omega s

.
The averaged adjoint method relies on the use of the Lagrangian \scrL : P(\scrD )\times X0\times 

XT \rightarrow \BbbR associated with the minimization problem (32) as follows:

\scrL (\Omega , \varphi , \psi ) :=
\int T

0

\int 
\scrD 
F (\varphi (x, t), x, t) +R\nabla \varphi \cdot \nabla \psi  - \kappa \varphi t\psi t + \eta \varphi t\psi  - f\psi dx dt.(34)
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By definition, it holds that

J(\Omega s) = \scrL (\Omega s, us, \psi ) \forall \psi \in XT .

Thus, we can compute the shape derivative using

(35) dJ(\Omega )(\theta ) =
d

ds
\scrL (\Omega s, us, \psi )| s=0 \forall \psi \in XT .

We will see shortly that the above calculation can be significantly simplified by choos-
ing a particular \psi . In order to differentiate \scrL (\Omega s, \varphi , \psi ) with respect to s, the change
of coordinates x \mapsto \rightarrow \Phi s(x) is used in (34). In the process the compositions \varphi \circ \Phi s
and \psi \circ \Phi s appear, which creates differentiability issues. To compensate for this ef-
fect, one considers the reparameterized Lagrangian \scrL (\Omega s,\Psi  - 1

s (\varphi ),\Psi  - 1
s (\psi )), where the

pullback \Psi s is defined by \Psi s(\psi ) = \psi \circ \Phi s. It can be checked that \Psi s : X0 \rightarrow X0 and
\Psi s : XT \rightarrow XT are bijections; see [49, Theorem 2.2.2, p. 52]. Thus, we introduce the
so-called parameterized shape-Lagrangian G : [0, s0]\times X0 \times XT \rightarrow \BbbR as

(36) G(s, \varphi , \psi ) := \scrL (\Omega s, \varphi \circ \Phi  - 1
s , \psi \circ \Phi  - 1

s ).

Denote by us := us \circ \Phi s \in X0 and by d\psi G(s, u
s, 0; \^\psi ) the directional derivative of G

with respect to \psi in direction \^\psi at (s, us, 0). It can be checked, using the change of
coordinates x \mapsto \rightarrow \Phi s(x), that the equation

(37) d\psi G(s, u
s, 0; \^\psi ) = 0 \forall \^\psi \in XT

for us is equivalent to the state equation (29) with \kappa = \kappa \Omega s and R = R\Omega s ; see (61)
for an explicit expression of (37).

For the convenience of the reader, we now provide the main result of the averaged
adjoint method, adapted to our case. A proof can be found in [44] or [30, Theorem
2.1]. The main idea of this result is to show that the shape derivative can be computed
via the partial derivative of G with respect to s under the use of the averaged adjoint
state. Observe that u = u0, so we will use the notation u in what follows, and we also
use the notation p instead of p0 for the adjoint.

Theorem 6 (averaged adjoint method). Suppose that there exists s0 > 0 such
that for every (s, \psi ) \in [0, s0]\times XT the following conditions are satisfied:

(H1) the mapping [0, 1] \ni \zeta \mapsto \rightarrow G(s, \zeta us + (1 - \zeta )u, \psi ) is absolutely continuous;
(H2) the mapping [0, 1] \ni \zeta \mapsto \rightarrow d\varphi G(s, \zeta u

s + (1  - \zeta )u, \psi ; \^\varphi ) belongs to L1(0, 1) for
all \^\varphi \in X0;

(H3) there exists a unique solution ps \in XT to the averaged adjoint equation

(38)

\int 1

0

d\varphi G(s, \zeta u
s + (1 - \zeta )u, ps; \^\varphi ) d\zeta = 0 for all \^\varphi \in X0;

(H4) we have

lim
s\searrow 0

G(s, u, ps) - G(0, u, ps)

s
= \partial sG(0, u, p).

Then J is shape differentiable at \Omega \in P(\scrD ) in direction \theta \in \scrC 0,1
c (\scrD ,\BbbR n) with

(39) dJ(\Omega )(\theta ) = \partial sG(0, u, p).
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In view of (39), the shape derivative depends on the adjoint state p \in XT . Taking
s = 0 in (38), the adjoint equation reads as follows:

Find p \in XT : \partial \varphi G(0, u, p; \^\varphi ) = 0 \forall \^\varphi \in X0,(40)

where u \in X0\cap \scrC ([0, T ], H1
\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )) is the unique solution to (29) with

\kappa = \kappa \Omega and R = R\Omega . Using \partial uF (u, x, t) =
\sum N\rho 

\rho =1 w\rho (x)(u  - d\rho (t)) and (34), the
variational problem (40) is equivalent to\int T

0

\int 
\scrD 
R\nabla \^\varphi \cdot \nabla p - \kappa \^\varphi tpt + \eta \^\varphi tp dx dt

=  - 
\int T

0

\int 
\scrD 
\partial uF (u(x, t), x, t) \^\varphi dx dt \forall \^\varphi \in X0.

(41)

Our goal now is to show that the adjoint state satisfies a backwards wave equation
with terminal conditions and determine the strong form of the adjoint equation. To
this aim, we consider the following auxiliary problem:

\kappa qtt  - div(R\nabla q) + \eta qt =  - \partial uF (u(T  - t), \cdot , T  - t) in \scrD \times [0, T ],(42)

q(0) = 0 in \scrD ,(43)

qt(0) = 0 in \scrD ,(44)

q = 0 on \Gamma \times [0, T ],(45)

R\nabla q \cdot n = 0 on \Gamma n \times [0, T ].(46)

As u \in \scrC 2([0, T ], L2(\scrD )), Assumption 3 ensures that t \mapsto \rightarrow \partial uF (u(T  - t), \cdot , T  - t)
is of class W 1,1((0, T ), L2(\scrD )) such that Corollary 2 yields the existence of a unique
solution q \in \scrC ([0, T ], H1

\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )) of (42)--(46). According to Theorem 4,
the solution to (42)--(46) is exactly the unique solution to the variational problem\int T

0

\int 
\scrD 
R\nabla q \cdot \nabla \psi  - \kappa qt\psi t + \eta qt\psi dx dt

=

\int T

0

\int 
\scrD 
 - \partial uF (u(x, T  - t), x, T  - t)\psi dx dt \forall \psi \in XT .

(47)

Now, introducing \^p(t) := q(T  - t) we obtain

\kappa \^ptt(t) - div(R\nabla \^p(t)) - \eta \^pt(t) =  - \partial uF (u(t), \cdot , t) \forall t \in [0, T ]

and \^p \in XT \cap \scrC ([0, T ], H1
\Gamma (\scrD )) \cap \scrC 2([0, T ], L2(\scrD )). Defining the test function \^\varphi \in X0

by \^\varphi (t) := \psi (T  - t), proceeding with the change of variables t \mapsto \rightarrow T  - t in (47),
and integrating by parts in time the term depending on \eta qt\psi , we obtain the same
equation as (41) for \^p, also using the fact that R is symmetric. This shows that
\^p \in XT \cap \scrC ([0, T ], H1

\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )) is the unique solution to (41) where the
uniqueness follows the same argument as in Theorem 4. In conclusion, we have shown
the following result.

Theorem 7. Let u \in X0 \cap \scrC ([0, T ], H1
\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )) denote the unique

solution to (29), and let Assumption 3 hold. Then the variational problem\int T

0

\int 
\scrD 
R\nabla \^\varphi \cdot \nabla p - \kappa \^\varphi tpt + \eta \^\varphi tp =  - 

\int T

0

\int 
\scrD 
\partial uF (u(x, t), x, t) \^\varphi \forall \^\varphi \in X0(48)
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admits a unique solution p \in XT \cap \scrC ([0, T ], H1
\Gamma (\scrD )) \cap \scrC 2([0, T ], L2(\scrD )) satisfying the

following backwards wave equations with terminal conditions:

\kappa ptt(t) - div(R\nabla p(t)) - \eta pt(t) =  - \partial uF (u(t), \cdot , t) in \scrD \times (0, T ),(49)

p(T ) = 0 in \Omega ,(50)

pt(T ) = 0 in \Omega ,(51)

u = 0 on \Gamma \times (0, T ),(52)

R\nabla u \cdot n = 0 on \Gamma n \times (0, T ).(53)

5. Shape differentiability and shape derivative. Applying the averaged ad-
joint method presented in section 4, we prove the shape differentiability and provide
the expression of the distributed shape derivative of the cost functional using a ten-
sorial representation, in the spirit of [29, 30].

Theorem 8. Let Assumption 3 hold with \eta \in \scrC 1(\scrD ), f \in W 1,1((0, T ), H1(\scrD )),
and suppose that \theta \in \scrC 0,1

c (\scrD ,\BbbR n). Furthermore, let u \in X0 \cap \scrC ([0, T ], H1
\Gamma (\scrD )) \cap 

\scrC 2([0, T ], L2(\scrD )) and p \in XT\cap \scrC ([0, T ], H1
\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )) denote, respectively,

the unique solutions to (29) and (48). Then the shape derivative of J at \Omega in direction
\theta is given by

dJ(\Omega )(\theta ) =

\int 
\scrD 
S1 : D\theta + S0 \cdot \theta ,(54)

with S1 \in L1(\scrD ,\BbbR n\times n) and S0 \in L1(\scrD ,\BbbR n) defined by

S1 =

\Biggl[ \int T

0

F (u(t), \cdot , t) - \kappa utpt +R\nabla u \cdot \nabla p+ \eta utp - fp dt

\Biggr] 
In(55)

 - 
\int T

0

\nabla u\otimes R\sansT \nabla p+\nabla p\otimes R\nabla u dt,

S0 =

\int T

0

\nabla xF (u(t), \cdot , t) + put\nabla \eta  - p\nabla f dt,(56)

where \nabla xF (u, x, t) =
1
2

\sum N\rho 

\rho =1 \nabla w\rho (x)(u  - d\rho (t))
2 and In \in \BbbR n\times n is the identity ma-

trix.

Proof. We check that the assumptions of Theorem 6 are satisfied. Before comput-
ing the shape-Lagrangian G defined in (36), a few remarks are in order. Introducing
\kappa s = \kappa \Omega s

= \kappa 0\chi \Omega s
+ \kappa 1\chi \scrD \setminus \Omega s

, we have

(57) \kappa \Omega s \circ \Phi s = \kappa 0\chi \Omega s \circ \Phi s + \kappa 1\chi \scrD \setminus \Omega s
\circ \Phi s = \kappa 0\chi \Omega + \kappa 1\chi \scrD \setminus \Omega = \kappa \Omega ,

and in a similar way R\Omega s
\circ \Phi s = R\Omega . We also have \partial t(\varphi \circ \Phi  - 1

s ) = \partial t\varphi \circ \Phi  - 1
s since \Phi s

is independent of t.
Applying definitions (36) and (34) as well as \Phi s(\scrD ) = \scrD , and proceeding with

the change of coordinates x \mapsto \rightarrow \Phi s(x) in the integrals, we get the shape-Lagrangian
G : [0, s0]\times X0 \times XT \rightarrow \BbbR as

G(s, \varphi , \psi ) =

\int T

0

\int 
\scrD 
F (\varphi (x, t),\Phi s(x), t)\xi (s)

+

\int T

0

\int 
\scrD 
A(s)\nabla \varphi \cdot \nabla \psi  - \kappa \varphi t\psi t\xi (s) + \eta s\varphi t\psi \xi (s) - fs\psi \xi (s),

(58)
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with \xi (s) := | det(D\Phi s)| , A(s) := \xi (s)(D\Phi s)
 - 1R(D\Phi s)

 - \sansT , fs := f \circ \Phi s, and \eta s =
\eta \circ \Phi s. For s sufficiently small we have \xi (s) = det(D\Phi s) > 0. The following asymptotic
expansions hold (see [42, Lemma 2.31]):

(59) \xi (s) = 1 + sdiv(\theta ) + o(s), D\Phi s = I + sD\theta + o(s), D\Phi  - 1
s = I  - sD\theta + o(s),

with o(s)/s \rightarrow 0 as s \rightarrow 0 with respect to \| \cdot \| \scrC (\scrD ) and \| \cdot \| \scrC (\scrD ,\BbbR 3\times 3), respectively.
Note that A(s) is definite positive due to (59). The asymptotic expansions (59) imply
that there exists a constant C > 0 dependent only on \theta such that

(60) \| \xi (s)\| L\infty (\scrD ) + \| D\Phi s\| L\infty (\scrD ,\BbbR 3\times 3) + \| D\Phi  - 1
s \| L\infty (\scrD ,\BbbR 3\times 3) \leq 1 + Cs0.

Using (58), we obtain the following explicit expression for the equation of us := us\circ \Phi s
given by (37): \int T

0

\int 
\scrD 
A(s)\nabla us \cdot \nabla \^\psi  - \kappa \partial tu

s\partial t \^\psi \xi (s) + \eta s\partial tu
s \^\psi \xi (s)

=

\int T

0

\int 
\scrD 
fs \^\psi \xi (s) for all \^\psi \in XT .

(61)

We first check condition (H1) of Theorem 6. We compute

d

d\zeta 
G(s, \zeta us + (1 - \zeta )u, \psi )

=

\int T

0

\int 
\scrD 
\partial uF (\zeta u

s + (1 - \zeta )u,\Phi s(x), t)(u
s  - u)\xi (s)

+

\int T

0

\int 
\scrD 
A(s)\nabla (us  - u) \cdot \nabla \psi  - \kappa \partial t(u

s  - u)\psi t\xi (s) + \eta s\partial t(u
s  - u)\psi \xi (s),

where

\partial uF (u, x, t) =

N\rho \sum 
\rho =1

w\rho (x)(u - d\rho (t)).(62)

Using Assumption 3, \zeta \in [0, 1], (60), (62), \psi \in XT , and us \in \scrC ([0, T ], H1
\Gamma (\scrD )) \cap 

\scrC 1([0, T ], L2(\scrD )) we get\bigm| \bigm| \bigm| \bigm| dd\zeta G(s, \zeta us + (1 - \zeta )u, \psi )

\bigm| \bigm| \bigm| \bigm| = C1 + C

\int T

0

\int 
\scrD 
(1 + | us| + | u| )| us  - u| \leq C2.

This shows that the mapping [0, 1] \ni \zeta \mapsto \rightarrow G(s, \zeta us + (1  - \zeta )u, \psi ) is Lipschitz and
therefore absolutely continuous; hence condition (H1) is satisfied.

Now we check condition (H2) of Theorem 6. We have, using Assumption 3,\int 1

0

| d\varphi G(s, \zeta us + (1 - \zeta )u, \psi ; \^\varphi )| d\zeta \leq 
\int T

0

\int 
\scrD 
| A(s)\nabla \^\varphi \cdot \nabla \psi  - \kappa \^\varphi t\psi t\xi (s) + \eta s \^\varphi t\psi \xi (s)| \underbrace{}  \underbrace{}  

\leq C1 due to (59),\psi \in XT and \^\varphi \in X0

+

\int T

0

\int 
\scrD 

\biggl( \int 1

0

| \partial uF (\zeta us + (1 - \zeta )u,\Phi s(x), t)\xi (s) \^\varphi | d\zeta 
\biggr) 
.

\leq C1 + C

\int T

0

\int 
\scrD 
| \xi (s) \^\varphi | 

\biggl( \int 1

0

1 + | \zeta us + (1 - \zeta )u| d\zeta 
\biggr) 

\underbrace{}  \underbrace{}  
\leq C2 due to us\in X0 and (60)

,
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where we have used (62) and Assumption 3. This shows that condition (H2) is satis-
fied.

Then it is easy to check that the averaged adjoint equation (38) for ps \in XT is
given by\int T

0

\int 
\scrD 
A(s)\nabla \^\varphi \cdot \nabla ps  - \kappa \^\varphi tp

s
t\xi (s) + \eta \^\varphi tp

s\xi (s) dx dt

=  - 
\int 1

0

\int T

0

\int 
\scrD 

\^\varphi \partial uF (\zeta u
s + (1 - \zeta )u,\Phi s(x), t)\xi (s) dx dt d\zeta \forall \^\varphi \in X0.

(63)

Introducing an auxiliary function qs(t) := ps(T - t) and test functions \~\varphi (t) := \^\varphi (T - t),
we have that qs \in X0 and \~\varphi \in XT . Using Fubini's theorem, a change of variables
t \mapsto \rightarrow T  - t in (63), an integration by parts with respect to t for the term \eta \~\varphi tq

s\xi (s),
and the fact that A(s) is symmetric, one obtains the following equation for qs:\int T

0

\int 
\scrD 
A(s)\nabla qs \cdot \nabla \~\varphi  - \kappa \~\varphi tq

s
t \xi (s) + \eta \~\varphi qst \xi (s) dx dt

=  - 
\int T

0

\int 
\scrD 

\^fs \~\varphi dx dt \forall \~\varphi \in XT ,

(64)

where

\^fs(x, t) := \xi (s)

\int 1

0

\partial uF (\zeta u
s(x, T  - t) + (1 - \zeta )u(x, T  - t),\Phi s(x), T  - t) d\zeta .(65)

Using (62) we get

\^fs(x, t) = \xi (s)

N\rho \sum 
\rho =1

w\rho (\Phi s(x))

\biggl( 
1

2
us(x, T  - t) +

1

2
u(x, T  - t) - d\rho (T  - t)

\biggr) 
,

(66)

\partial t \^fs(x, t) =  - \xi (s)
N\rho \sum 
\rho =1

w\rho (\Phi s(x))

\biggl( 
1

2
\partial tu

s(x, T  - t) +
1

2
\partial tu(x, T  - t) - d\prime \rho (T  - t)

\biggr) 
.

Using Assumption 3 and (62) we obtain the estimates\int 
\scrD 

\Biggl( \int T

0

\bigm| \bigm| \bigm| \^fs\bigm| \bigm| \bigm| dt\Biggr) 2

dx \leq C0

N\rho \sum 
\rho =1

\| d\rho \| 2L1(0,T )

+ C1

\int 
\scrD 

\Biggl( \int T

0

| us(x, T  - t) + u(x, T  - t)| dt

\Biggr) 2

dx <\infty ,

\int 
\scrD 

\Biggl( \int T

0

\bigm| \bigm| \bigm| \partial t \^fs\bigm| \bigm| \bigm| dt\Biggr) 2

dx \leq C0

N\rho \sum 
\rho =1

\| d\rho \| 2W 1,1(0,T )

+ C1

\int 
\scrD 

\Biggl( \int T

0

| \partial tus(x, T  - t) + \partial tu(x, T  - t)| dt

\Biggr) 2

dx <\infty ,

where we have used (60) and the fact that us \in \scrC ([0, T ], H1
\Gamma (\scrD )) \cap \scrC 1([0, T ], L2(\scrD )).

This shows that \^fs \in W 1,1((0, T ), L2(\scrD )). Thus, we can apply Corollary 2 to (64) with
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A(s) instead of R, \kappa \xi (s) instead of \kappa , and \eta \xi (s) instead of \eta , since A(s), \kappa \xi (s), and
\eta \xi (s) satisfy Assumption 1. This shows that the equation for qs admits a unique mild
solution qs \in \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 1([0, T ], L2(\scrD )). Consequently, (63) also admits
a unique mild solution ps \in \scrC ([0, T ], H1

\Gamma (\scrD )) \cap \scrC 1([0, T ], L2(\scrD )). This shows that
condition (H3) of Theorem 6 is satisfied.

Now we verify assumption (H4) of Theorem 6. First of all, we have

G(s, u, ps) - G(0, u, ps)

s
=

\int T

0

\int 
\scrD 

F (u,\Phi s(x), t)\xi (s) - F (u, x, t)

s

+

\int T

0

\int 
\scrD 

A(s) - In
s

\nabla u \cdot \nabla ps  - \kappa utp
s
t

\xi (s) - 1

s

+

\int T

0

\int 
\scrD 

\eta s\xi (s) - \eta 

s
utp

s  - fs\xi (s) - f

s
ps.

(67)

To calculate the limit s\rightarrow 0 of the above expression, we first need a uniform estimate
on ps. In view of (9) and (65), using Assumption 3 and the fact that \kappa \xi (s) is uniformly
bounded, we also have

C1\| qs\| 2X \leq 
\int T

0

\int 
\scrD 
\kappa \xi (s)(qst )

2(t) dx+

\int 
\scrD 
A(s)\nabla qs(t) \cdot \nabla qs(t) dx

\leq \underbrace{}  \underbrace{}  
(9)

\int T

0

\biggl( \int t

0

\| (\kappa \xi (s)) 1
2 \^fs(x, \sigma )\| L2(\scrD )d\sigma 

\biggr) 2

\leq C2

\int T

0

\int 
\scrD 

\^fs(x, \sigma )
2 \leq \underbrace{}  \underbrace{}  

(66)

C3

\int T

0

\int 
\scrD 
1 + | us| 2 + | u| 2.(68)

In view of (61), using (8) and uniform bounds on fs, \xi (s), we have\int 
\scrD 
\kappa \xi (s)(us)2(t) dx \leq t

\int t

0

\| (\kappa \xi (s)) 1
2 fs(\sigma )\xi (s)\| L2(\scrD )d\sigma 

\leq Ct

\int t

0

\| f(\sigma )\| L2(\scrD )d\sigma \forall t \in [0, T ],

(69)

with C independent of s and t. Thus, using (68) and (69) we obtain

\| qs\| 2X \leq C4

\int T

0

\| f(t)\| L2(\scrD ) dt \leq C5,

where the constant C5 does not depend on s, and consequently, due to qs(t)=ps(T  - t),
we also get \| ps\| X \leq C for some constant C independent of s.

SinceX is a Hilbert space, we can extract a weakly converging subsequence ps \rightharpoonup p
in X, using the uniform boundedness of \| ps\| X . Due to (59) and \eta \in \scrC 1(\scrD ), we have
the strong convergences (\xi (s)  - 1)/s \rightarrow div \theta in \scrC (\scrD ), and then (\eta s\xi (s)  - \eta )/s \rightarrow 
\eta div \theta +\nabla \eta \cdot \theta in \scrC (\scrD ). Using f \in L1((0, T ), H1(\scrD )), we also have (fs\xi (s) - f)/s\rightarrow 
f div \theta +\nabla f \cdot \theta in L1((0, T ), L2(\scrD )); see [42, section 2.14]. Using again (59) we obtain
the strong convergence

lim
s\searrow 0

A(s) - I

s
= (div \theta )R - D\theta R - RD\theta \sansT in L\infty (\scrD ,\BbbR n\times n).
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We now prove that

lim
s\searrow 0

F (u,\Phi s(x), t)\xi (s) - F (u, x, t)

s

= F (u, x, t) div(\theta ) +\nabla xF (u, x, t) \cdot \theta in L1((0, T ), L1(\scrD )).

(70)

Using a Taylor expansion we have

w\rho (\Phi s(x)) = w\rho (x) + s\nabla w\rho (x) \cdot \theta +
s2

2

d2

ds2
[w\rho (\Phi s(x))]

\bigm| \bigm| \bigm| \bigm| 
s=\lambda 

(71)

for some \lambda \in [0, s]. We compute the following using (33):

d2

ds2
[w\rho (\Phi s(x))] = \nabla 2w\rho (\Phi s(x))(\partial s\Phi s(x), \partial s\Phi s(x)) +\nabla w\rho (\Phi s(x)) \cdot \partial 2s\Phi s(x)

= \nabla 2w\rho (\Phi s(x))(\theta (\Phi s(x)), \theta (\Phi s(x))) +\nabla w\rho (\Phi s(x)) \cdot D\theta (\Phi s(x))\theta (\Phi s(x)).

Using w\rho \in \scrC 2(\scrD ) and \theta \in \scrC 0,1
c (\scrD ,\BbbR n) we obtain

(72)

\bigm\| \bigm\| \bigm\| \bigm\| d2

ds2
[w\rho (\Phi s(x))]

\bigm| \bigm| \bigm| \bigm| 
s=\lambda 

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (\scrD )

< C,

where C is independent of \lambda . Using Assumption 3 we get\int T

0

\int 
\scrD 

\bigm| \bigm| \bigm| \bigm| F (u,\Phi s(x), t)\xi (s) - F (u, x, t)

s
 - F (u, x, t) div(\theta ) - \nabla xF (u, x, t) \cdot \theta 

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int T

0

\int 
\scrD 

\bigm| \bigm| \bigm| \bigm| F (u,\Phi s(x), t) - F (u, x, t)

s
 - \nabla xF (u, x, t) \cdot \theta 

\bigm| \bigm| \bigm| \bigm| 
+

\int T

0

\int 
\scrD 

\bigm| \bigm| \bigm| \bigm| F (u, x, t)\xi (s) - 1

s
 - F (u, x, t) div(\theta )

\bigm| \bigm| \bigm| \bigm| 
+

\int T

0

\int 
\scrD 

\bigm| \bigm| \bigm| \bigm| (F (u,\Phi s(x), t) - F (u, x, t))
\xi (s) - 1

s

\bigm| \bigm| \bigm| \bigm| 
\leq 1

2

N\rho \sum 
\rho =1

\bigm\| \bigm\| \bigm\| \bigm\| w\rho (\Phi s(x)) - w\rho (x)

s
 - \nabla w\rho (x) \cdot \theta 

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (\scrD )\underbrace{}  \underbrace{}  

\rightarrow 0 due to (71) - (72)

\int T

0

\int 
\scrD 
(u - d\rho )

2\underbrace{}  \underbrace{}  
<+\infty 

+
1

2

\bigm\| \bigm\| \bigm\| \bigm\| \xi (s) - 1

s
 - div(\theta )

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (\scrD )\underbrace{}  \underbrace{}  

\rightarrow 0 due to (59)

N\rho \sum 
\rho =1

\int T

0

\int 
\scrD 
| w\rho | (u - d\rho )

2\underbrace{}  \underbrace{}  
<+\infty 

+
1

2

N\rho \sum 
\rho =1

\| w\rho (\Phi s(x)) - w\rho (x)\| L\infty (\scrD )\underbrace{}  \underbrace{}  
\rightarrow 0

\bigm\| \bigm\| \bigm\| \bigm\| \xi (s) - 1

s

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (\scrD )\underbrace{}  \underbrace{}  

\rightarrow div(\theta )

\int T

0

\int 
\scrD 
(u - d\rho )

2\underbrace{}  \underbrace{}  
<+\infty 

,

where we used the strong convergences (\xi (s) - 1)/s\rightarrow div \theta in \scrC (\scrD ), (\Phi s(x) - x)/s\rightarrow \theta 
in \scrC (\scrD ,\BbbR n), and also d\rho \in W 1,1((0, T ),\BbbR ), w\rho \in \scrC 2(\scrD ), and u \in \scrC ([0, T ], H1

\Gamma (\scrD )).
This proves (70).
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Gathering the previous results and using (67), we have shown that

lim
s\searrow 0

G(s, u, ps) - G(0, u, ps)

s
= \partial sG(0, u, p).

Thus, Assumption (H4) is satisfied and we can apply Theorem 6. This yields the
shape derivative

dJ(\Omega )(\theta ) = \partial sG(0, u, p)

=

\int T

0

\int 
\scrD 
F (u, x, t) div(\theta ) +\nabla xF (u, x, t) \cdot \theta 

+

\int T

0

\int 
\scrD 
((div \theta )R - D\theta R - RD\theta \sansT )\nabla u \cdot \nabla p - \kappa utpt div(\theta )

+

\int T

0

\int 
\scrD 
\eta utp div(\theta ) + utp\nabla \eta \cdot \theta  - fpdiv(\theta ) - p\nabla f \cdot \theta .

Using the tensor formulae

D\theta R\nabla u \cdot \nabla p = D\theta : (\nabla p\otimes R\nabla u) and RD\theta \sansT \nabla u \cdot \nabla p = D\theta : (\nabla u\otimes R\sansT \nabla p),

the fact that R is symmetric, and div \theta = D\theta : In, we obtain the distributed shape
derivative in tensorial form (54).

Using the assumption f \in W 1,1((0, T ), H1(\scrD )), Theorem 7, and Corollary 2, we
obtain the regularity

u \in \scrC ([0, T ], H1
\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )) and p \in \scrC ([0, T ], H1

\Gamma (\scrD ))\cap \scrC 2([0, T ], L2(\scrD )).

Then, using \eta \in \scrC 1(\scrD ) and the fact that F satisfies the conditions of Assumption
3, we obtain the regularity S1 \in L1(\scrD ,\BbbR n\times n) and S0 \in L1(\scrD ,\BbbR n) in view of the
expressions (55) and (56) of S1 and S0.

6. The particular case of FWI. In section 5 we have obtained a general
expression for distributed shape derivatives of cost functionals depending on the solu-
tion of the acoustic wave equation with damping and discontinuous coefficients. The
acoustic approximation in time-domain FWI fits into this general framework, with the
following choice of parameters: \scrD is a rectangle, the Neumann conditions correspond
to the free surface of the Earth, and we choose R = In in (1)--(5). This yields the
following damped acoustic wave equation with discontinuous coefficient \kappa :

\kappa utt  - \Delta u+ \eta ut = f in \scrD \times [0, T ],(73)

u(0) = 0 in \scrD ,(74)

ut(0) = 0 in \scrD ,(75)

u = 0 on \Gamma \times [0, T ],(76)

\partial nu = 0 on \Gamma n \times [0, T ].(77)

In this context, u represents the acoustic pressure and \kappa denotes the square slow-
ness defined as \kappa = 1/c2, where c is the acoustic wave speed in the given physi-
cal media. Here c =

\sqrt{} 
K/r, where K is the bulk modulus and r is the density;

see [16, section 2.3] for a detailed discussion of this acoustic approximation. We
assume that f \in W 1,1((0, T ), H1(\scrD )) and \kappa \in L\infty (\scrD ) is piecewise constant, i.e.,
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\kappa = \kappa \Omega = \kappa 0\chi \Omega + \kappa 1\chi \scrD \setminus \Omega for some \Omega \in P(\scrD ), where \kappa 0, \kappa 1 > 0 are positive con-
stants; see Figure 1. In the context of FWI, the damping \eta is used to prevent the
reflection of waves on the artificial boundary \Gamma in order to simulate an unbounded
domain. In this case, \eta is chosen equal to 0 inside the physical domain and positive
inside a boundary layer, sometimes called sponge layer or damping mask, in the vicin-
ity of the Dirichlet part \Gamma of \partial \scrD ; see Figure 2 for an illustration of the damping mask
used in our numerical experiments.

\Omega , \kappa 0

\scrD \setminus \Omega , \kappa 1

\Omega , \kappa 0

\scrD 

\Gamma 

\Gamma n

Fig. 1. Partition \scrD = \Omega \cup \Omega c.

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

25

50

75

100

x

z

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

z

Fig. 2. 3D view (left) and 2D view (right) of the damping mask \eta . In the physical domain,
whose limits are represented by the dashed lines, we have \eta \equiv 0, while \eta is large close to the artificial
boundary \Gamma in order to mitigate wave reflections.

We assume that N\rho receivers are located at a set of points x\rho \in \Gamma n for \rho =
1, . . . , N\rho , i.e., the receivers are located on the surface. For \rho = 1, . . . , N\rho , the seismo-
grams d\rho \in W 1,\infty ((0, T ),\BbbR ) denote the gathered data at these receivers. For the FWI
application, the function F : \BbbR \times \scrD \times [0, T ] \rightarrow \BbbR in the shape optimization problem
(31) is given by (30) with w\rho (x) := w(x  - x\rho ), where w is a mollifier of the Dirac
measure at 0. We assume that w has compact support on a small open subset \omega \subset \scrD .

Since the damping \eta is concentrated on a boundary layer in the vicinity of \Gamma ,
and the source f is concentrated near the surface \Gamma n, we can make the following
assumption.
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Assumption 4. The supports of f, \eta , and \theta satisfy

supp(\theta ) \cap [supp(\eta ) \cup supp(f)] = \emptyset .

Under Assumptions 3 and 4, and with the specific choice of parameters described
at the beginning of this section to model the acoustic approximation used in FWI,
the distributed shape derivative (54) is given by

dJ(\Omega )(\theta ) =

\int 
\scrD 
S1 : D\theta + S0 \cdot \theta ,(78)

with

S1 =

\Biggl[ \int T

0

 - \kappa utpt +\nabla u \cdot \nabla p dt

\Biggr] 
In  - 

\int T

0

\nabla u\otimes \nabla p+\nabla p\otimes \nabla u dt,(79)

S0 = 0.(80)

The adjoint satisfies (49)--(53), and with the parameters used for the acoustic approx-
imation of FWI, (49) becomes in particular

\kappa ptt  - \Delta p - \eta pt =  - 
N\rho \sum 
\rho =1

w\rho (u - d\rho ) in \scrD \times [0, T ].(81)

7. Numerical implementation. For the numerical tests we take \scrD = \{ (x, z) \in 
[0, 1]\times [0, 0.65]\} . Here, the Cartesian coordinates (x, z) represent the position on the
surface and the depth, respectively, i.e., z = 0 corresponds to the surface. In the
previous sections we have considered only one source f to simplify the presentation
of the results. In FWI, a set of point sources \{ f\sigma \} N\sigma 

\sigma =1 is available, typically Ricker
wavelets at various locations. In this case an acoustic pressure u\sigma and an adjoint p\sigma 
are computed for each source f\sigma , and we simply sum the individual contributions of
the cost functionals (30) over \sigma = 1, . . . , N\sigma , i.e., we replace the objective functional
of (31) by

(82)
1

2

N\sigma \sum 
\sigma =1

N\rho \sum 
\rho =1

\int T

0

\int 
\scrD 
w\rho (x)(u\sigma (x, t) - d\rho ,\sigma (t))

2dx dt,

where d\rho ,\sigma denotes the seismogram corresponding to f\sigma and to the receiver at x\rho .
The global shape derivative is then also the sum of the expressions (78) over

\sigma = 1, . . . , N\sigma . Also, from the perspective of the FWI application, it is natural to
assume that the support of the mollifier w\rho is smaller than the grid size so that, from
a numerical viewpoint, w\rho is indistinguishable from a Dirac measure at x\rho . In this
case, the numerical discretization of (82) approximates

1

2

N\sigma \sum 
\sigma =1

N\rho \sum 
\rho =1

\int T

0

(u\sigma (x\rho , t) - d\rho ,\sigma (t))
2dt,

which is typically used in FWI as the objective functional.
In order to obtain a smooth descent direction \theta , i.e., a vector field satisfying

dJ(\Omega )(\theta ) < 0, we solve the following elliptic equation: Find \theta \in H1
0 (\scrD )2 such that\int 

\scrD 
\alpha 1gD\theta : D\xi + \alpha 2g\theta \cdot \xi dx =  - dJ(\Omega )(\xi ) \forall \xi \in H1

0 (\scrD ,\BbbR 2),
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which means\int 
\scrD 
\alpha 1gD\theta : D\xi + \alpha 2g\theta \cdot \xi dx =  - 

\int 
\scrD 
S1 : D\xi + S0 \cdot \xi \forall \xi \in H1

0 (\scrD ,\BbbR 2),(83)

where \alpha 1 = 0.01, \alpha 2 = 0.97. The function g : \BbbR 2 \mapsto \rightarrow \BbbR is designed to be almost
constant inside \scrD and take large values close to the boundary, in order to force \theta to
take small values close to the boundary, and in particular in the damping layer where
\eta is positive.

The evolution of the domain is modeled via a level set method, introduced in [38].
The key idea of this numerical method is to implicitly represent the boundary of the
moving domain \Omega s \subset \scrD \in \BbbR N as the zero level set of a Lipschitz continuous function
\phi : \scrD \times [0, s0] \rightarrow \BbbR . A family of moving domains \Omega s \subset \scrD is defined as

\Omega s := \{ (x, z) \in \scrD | \phi (x, z, s) < 0\} , so that \partial \Omega s = \{ (x, z) \in \scrD | \phi (x, z, s) = 0\} ,

where we assume | \nabla \phi (\cdot , s)| \not = 0 on \partial \Omega s for all s \in [0, s0]. It can be shown that the
evolution of \phi depends on the descent direction \theta through the following transport
equation:

\partial s\phi (x, z, s) + \theta (x, z) \cdot \nabla \phi (x, z, s) = 0 in \scrD \times [0, s0] .(84)

The algorithm consists in first calculating \theta using (83) and then solving (84) to update
the domain \Omega s. We use a Lax--Friedrichs flux for the discretization of (84) and refer
the reader to [28] for implementation details.

To simulate noisy seismic data, each synthetic seismogram d\rho ,\sigma is first generated
using the ground truth, and then corrupted by adding a normal Gaussian noise with
mean zero and standard deviation \delta \cdot | | d\rho ,\sigma | | \infty , where \delta is a parameter. Let d\rho ,\sigma and
\~d\rho ,\sigma denote, respectively, the noiseless and noisy seismograms corresponding to the
source f\sigma and recorded at the receiver \rho . The noise level is then computed as

noise level =

\Biggl[ \int T
0

\sum N\sigma 

\sigma =1

\sum N\rho 

\rho =1 | d\rho ,\sigma (t) - \~d\rho ,\sigma (t)| 2\int T
0

\sum N\sigma 

\sigma =1

\sum N\rho 

\rho =1 | d\rho ,\sigma (t)| 2

\Biggr] 1/2
.

We present three numerical experiments with the acoustic wave speed c0 = 4.12
km/s and c1 = 1.95 km/s, with \kappa 0 = 1/c20 and \kappa 1 = 1/c21. These specific values
of c0, c1 are based on common geophysics standards and correspond to real data of
wave speed propagation inside salt and sediments, respectively. The domain \scrD is a
rectangle of length 1 km on the x-axis and depth 0.65 km on the z-axis, which is
meshed using a regular grid with nx \times nz grid points.

The wave equations (73)--(77) are solved using a second-order explicit finite-
difference scheme. The time step \Delta t is constrained by the CFL condition

\Delta t \leq a

cmax(\Delta x - 1 +\Delta z - 1)
,

with the grid steps \Delta x = 1/nx and \Delta z = 0.65/nz, where cmax = max\{ c(x) | x \in \scrD \} 
is the maximum of the wave speed inside the domain \scrD , and a is the Courant number
equal to 0.4 in our numerical experiments.

In all three numerical experiments, we use N\sigma = 10 shots modeled by Ricker
wavelets with dominant frequency of 5Hz to simulate the data acquisition, and N\rho =
80 receivers placed on the surface \Gamma n with a spacing of 0.01 km between the receivers.
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Fig. 3. Reconstruction of one inclusion, using 10 shots modeled by Ricker wavelets with dom-
inant frequency of 5Hz, 80 receivers placed on the surface \Gamma n, a 200 \times 130 grid, and a noise level
of 2.05\%. Superposition of ground truth (gray shape) and dashed contour of the initialization (top
left), ground truth (top right), contour of the reconstructed shape \Omega (bottom left), and superposition
of the reconstruction and of the ground truth (bottom right).

The shots and receivers are placed at grid points for simplicity. We use a regular grid
with nx \times nz = 200 \times 130 grid points, and synthetic seismograms of T = 2 seconds
are recorded at the receivers using the ground truth.

In the first experiment, the ground truth consists of one block representing the salt
body, and we initialize \Omega using a large ellipse; see Figure 3. In the second experiment,
the ground truth consists of two disconnected blocks representing two salt bodies,
and we initialize \Omega using two small disks; see Figure 4. In the third experiment,
the ground truth consists of three disconnected blocks representing three salt bodies,
and we initialize \Omega using three small disks; see Figure 5. We observe that in all
three experiments the interface reconstruction is very accurate in the upper region
of the salt body. In the first experiment (Figure 3) the reconstruction is also very
accurate in the lower part of the salt body, although small defects can be observed.
In the second and third experiments (Figures 4 and 5), the reconstruction is still
reasonably accurate in the lower region, but the defects are visibly larger than in the
first experiment. These inaccuracies were expected due to the lack of illumination of
the lower parts of the salt bodies and are standard in FWI.

These numerical results show that the method is capable of accurate reconstruc-
tions in the framework of piecewise constant velocities. A line for future research
consists in filling the gap towards more realistic applications. In particular, this in-
cludes applications to large-scale 2D and 3D problems, and extending the method to
handle more complex structures such as piecewise smooth reconstructions.
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Fig. 4. Reconstruction of two inclusions, using 10 shots modeled by Ricker wavelets with
dominant frequency of 5Hz, 80 receivers placed on the surface \Gamma n, a 200 \times 130 grid, with a noise
level of 2.0\%. Superposition of ground truth (gray shape) and dashed contour of the initialization (top
left), ground truth (top right), contour of the reconstructed shape \Omega (bottom left), and superposition
of the reconstruction and of the ground truth (bottom right).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

Fig. 5. Reconstruction of three inclusions, using 10 shots modeled by Ricker wavelets with
dominant frequency of 5Hz, 80 receivers placed on the surface \Gamma n, a 200\times 130 grid, and a noise level
of 1.88\%. Superposition of ground truth (gray shape) and dashed contour of the initialization (top
left), ground truth (top right), contour of the reconstructed shape \Omega (bottom left), and superposition
of the reconstruction and of the ground truth (bottom right).
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