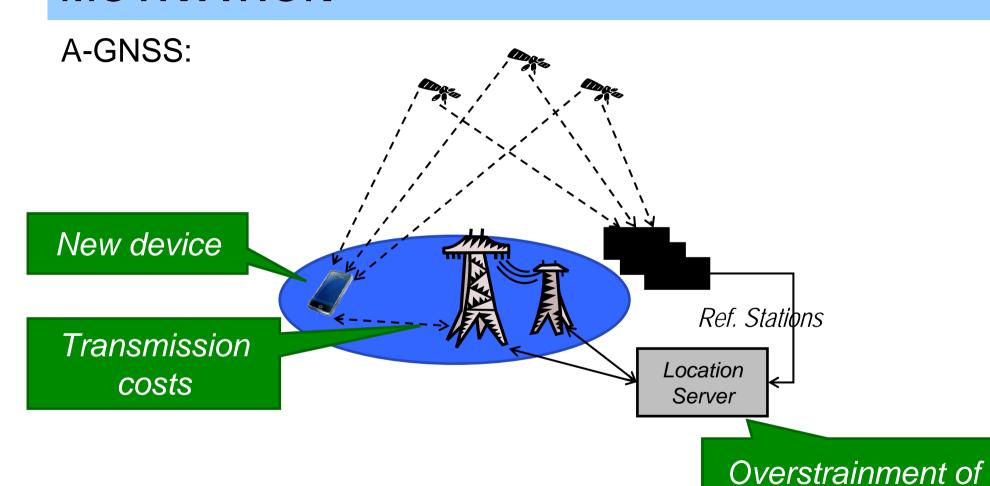
Presentation for: ICG WG-B

SEP 14-18, 2009 St. Petersburg, Russia



A PEER-TO-PEER MODEL FOR INDOOR

Isabelle Krämer, Stefan Wallner, Jose-Angel Avila-Rodriguez and Bernd Eissfeller

Institute of Geodesy and Navigation University FAF Munich, Germany

MOTIVATION

server

COMMON INDOOR & PEDESTRIAN NAVIGATION METHODS

Methods independent of satellite signals

- WLAN fingerprints
- UWB
- RF-ID-Tags

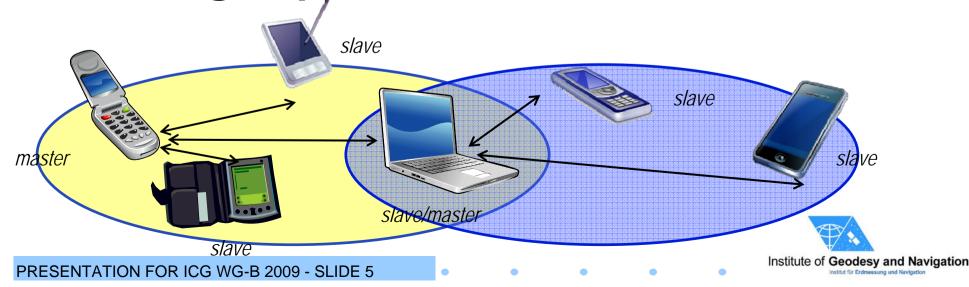
— . . .

Drawbacks

- Area must be surveyed
- Additional devices (RF-ID receiver)
- Low accuracy

PEER-TO-PEER APPROACH

- Using local ad-hoc networks instead of regional infrastructure networks
- Avoidance of additional fees for data transmission
- Cheap as based on few additional measuring units



- Position estimation with satellite signals if possible
- Dead reckoning in weak-signal environment
- Peer-to-peer Kalman Filter with other users' devices using Bluetooth as communication link

BLUETOOTH IEEE 802.15

- Wireless network for connections between various types of mobile devices
- No infrastructure, no costs
- Uses Master / Slave architecture
- Building of piconets and scatternets

DEAD RECKONING

Estimating user's position by

$$X_k = X_{k-1} + s_k \cos(\psi_k)$$
 s_k is stride length
 $Y_k = Y_{k-1} + s_k \sin(\psi_k)$ ψ_k is heading

Requires

- Rough idea about pimary position
- Compass to estimate the heading
- Stride detector
- Measurement unit to estimate the stride length

KALMAN FILTER

- Problem of dead reckoning: Due to the accuracy of the measuring units the position degrades continuously
- Use of a Kalman Filter to correct the position

Time Update
"Predict"

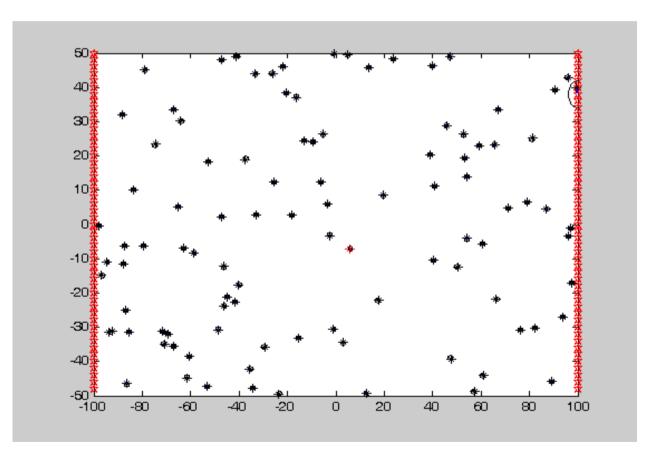
Measurement Update
"Correct"

KALMAN FILTER

• Time Update:

Calculation of the current state and the error covariance

$$\hat{x}_k^- = A\hat{x}_{k-1} + Bu_k$$


$$P_k^- = AP_{k-1}A^T + Q$$

Measurment Update:

$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$
 Kalman Gain $\hat{x}_k = \hat{x}_k^- + K_k (z_k - H \hat{x}_k^-)$ State after correction $P_k = (I - K_k H) P_k^-$

SIMULATED INDOOR-AREA

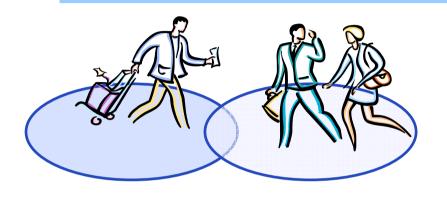
SIMULATION PROPERTIES

Known to the simulated walker

- Estimated position
- Error variance
- Estimated error
- Estimated heading (compass) and standard deviation of heading: $\sigma_{compass}$ = 15 $^{\circ}$
- Constant stride length of 0.7 m and standard deviation of stride length: $\sigma_{\it stride}=0.1[m]$

Known only to the simulation

- True position of each walker
- True heading and stride length
- True error

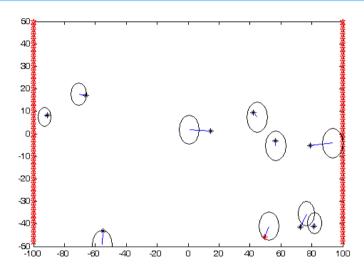


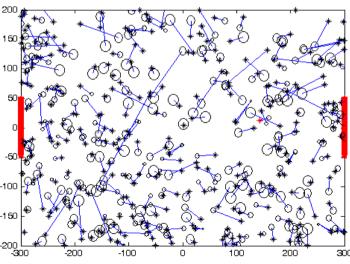
CORRECTION WITH REFERENCE POSITION

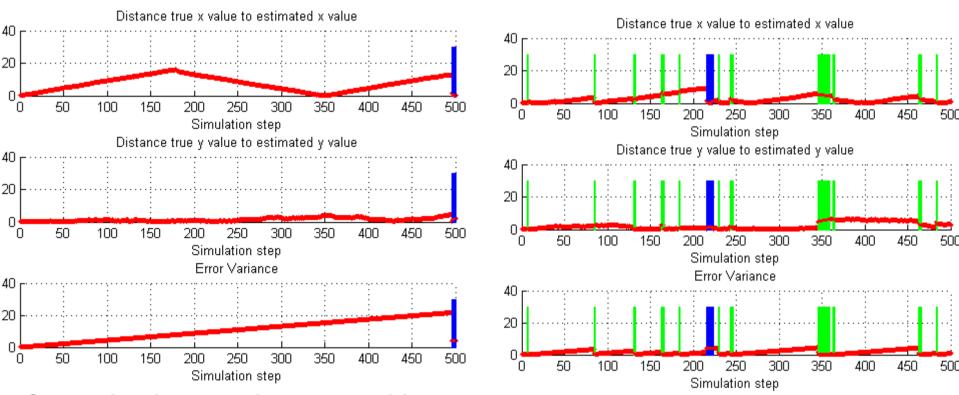
- In each simulation step only one correction is allowed:
 - with a reference position or
 - with one walker
- Reference position is preferred against walker
- Distance to reference position for correction:<2m
- Calculation of the residual between reference position and estimated position of the walker and the error variance
- Storing of the residual in the walker's device as error

Institute of Geodesy and Navigation

CORRECTION WITH OTHER WALKER


Maximum distance for correction:2 m Choosing the nearest


- Re-Calculation of position based on error and estimated position
- 2. Calculate a new position for both walkers based on weighted average of the error variance and the recalculated position
- 3. Update the error variance for both walkers based on weighted average


EXPECTATION & TEST SETUP

- The more participants the better the overall position
- Two test setups
 - Small Indoor Area: 100 x 200 [m] and 200 reference points
 - Large Indoor Area: 400 x 600 [m] and 200 reference points
- Variation of number of walkers in simulation

PERFORMANCE

Correction just at reference positions

Correction at reference positions and with other walkers

Significant reduction of error if peer-to-peer model is applied

DRAWBACKS AND SOLUTIONS

Privacy issues:

Exchange of position information

Establishing a security protocol that makes it impossible for a user to read position related information from other users

Power consumption

Keeping Bluetooth enabled all the time

Enabling Bluetooth only when error variance or error exceeds some threshold

Institute of Geodesy and Navigation

SUMMARY

- Innovative approach for enhancing indoor positioning based on peer-to-peer model is presented
 - Sharing of estimated positioning information of close-by users significantly improves positioning accuracy
 - No additional infrastructure required
 - Utilization of communication link
 - Bluetooth already available in most modern user terminals
 - Combination of communication and navigation

CONCLUSIONS

A PEER-TO-PEER MODEL FOR INDOOR

THANKS FOR YOUR ATTENTION!

