

U.S. Space-Based Positioning, Navigation and Timing Policy and Program Update

5th International Committee on GNSS 18 October 2010

Overview

U.S. Space-Based PNT Policy

Global Positioning System Description

GPS Augmentations

Summary

GNSS is Essential to Our Economies and National Critical Infrastructures

IntelliDrive

Satellite Operation

Transit
Operations

U.S. Policy: Maintain leadership in the service, provision and use of GNSS

- Provide continuous worldwide access for peaceful uses, free of direct user charges
- Encourage compatibility and interoperability with foreign GNSS services and promote transparency in civil service provisioning
- Operate and maintain constellation to satisfy civil and national security needs
 - Foreign PNT services may be used to complement services from GPS
- Invest in domestic capabilities and support international activities to detect, mitigate and increase resiliency to harmful interference

Keys to Successful U.S. Program

- Policy Stability
- Transparency
- Program Stability
- Sustained Performance and Credibility
- Continuous Improvement

Policy stability and transparency improve industry confidence and investment

U.S. Objectives in Working with Other GNSS Service Providers

- Ensure compatibility ability of U.S. and non-U.S. space-based PNT services to be used separately or together without interfering with each individual service or signal
 - Radio frequency compatibility
 - Spectral separation between M-code and other signals
- Achieve interoperability ability of civil U.S. and non-U.S. space-based PNT services to be used together to provide the user better capabilities than would be achieved by relying solely on one service or signal
 - Primary focus on the common L1C and L5 signals
- Ensure a level playing field in the global marketplace

Pursue through Bilateral and Multilateral Cooperation

GPS Constellation Status

31 Healthy Satellites

Baseline Constellation: 24

- 11 Block IIA satellites
- 12 Block IIR satellites
- 7 Block IIR-M satellites (8 operational)
 - 1 IIR-M in "test" mode SVN-49
- 1 Block IIF satellite (SVN 62, PRN 25)
 - Launched June 2010
 - Set Healthy 27 August 2010
 - First Operational L5
 - Best GPS clock performance
 - Next IIF Launch Mid 2011

SPS Signal in Space Performance

System accuracy exceeds published standard

Civil Capability Improvements

- L2C
 - 24 operational satellites in FY16
 - Defined in IS-GPS-200
- L5
 - Demonstration payload on IIR-20(M) to ensure frequency spectrum protection
 - 24 operational satellites in FY18
 - Defined in IS-GPS-705
- L1C
 - 24 operational satellites in FY21
 - Defined in IS-GPS-800
- Integrity Monitoring
 - GPS III integrity enhanced by SV reliability and on-board clock monitoring

Public Interface Specifications

- Current versions of the public GPS Signal-in-Space (SIS) Interface Specifications:
 - IS-GPS-200 L1 P(Y) + C/A, L2 P(Y) + L2C
 - IS-GPS-705 L5 I5 + Q5
 - IS-GPS-800 L1 L1CP + L1CD
 - These, and other key IS/ICD documents available at: http://www.losangeles.af.mil/library/factsheets/factsheet.asp
 ?id=9364

WAAS Architecture

38 Reference Stations

3 Master Stations

4 Ground
Earth Stations

2 Geostationary Satellite Links

2 OperationalControl Centers

GEO Satellite Coverage Plot

Global SBAS Coverage

Local Area Augmentation System (LAAS)

National Differential GPS (NDGPS)

National Continuously Operating Reference Stations (CORS)

Sponsor: NOAA

- 1,300+ sites
- Operated by 200+ academic organizations
- Enables highly accurate, 3-D positioning

Global Differential GPS (GDGPS) and TDRSS Augmentation Service for Satellites (TASS)

Sponsor: NASA

GDGPS: More than 100 real-time tracking sites

- Real-Time Positioning, Timing, and Orbit-Determination

TASS: Future plans to disseminate GDGPS corrections to satellites for autonomous orbit determination and science missions

Summary

- The U.S. supports free access to civilian GNSS signals with public domain documentation necessary to develop user equipment and achieve service certification by international regulatory bodies
- GPS is a critical component of the global information infrastructure
 - Compatible with other satellite navigation systems and interoperable at the user level
 - Guided at a national level as multi-use asset
 - Acquired and operated by Air Force on behalf of the USG
- The U.S. policy promotes open competition and market growth for commercial GNSS

GPS continues to provide consistent, predictable, dependable performance,