Presentation for:

ICG-5 - Working Group A
October 19, 2010
Torino, Italy

MBOC Multi-constellation Interoperable Signal: Consequences on the Noise Floor

Matteo Paonni, Diana Fontanella, Marco Anghileri and Bernd Eissfeller

Institute of Geodesy and Navigation
University FAF Munich, Germany

Introduction

- Scope of this presentation is to contribute to the discussion about the raise of the noise floor resulting from the pollution of the L1/E1 band
- Simulations of a Multi-Constellation Interoperable system based on an MBOC signal transmitted at 1575.42 MHz have been run
- Results on DOP and Interference caused by the presence of Multi-Constellation signals are presented as a function of the number of available satellites

Simulation Settings

- A full simulation approach has been followed
 - Full orbit propagator
 - Dynamic link budgets performed at different places and times for the different satellites in visibility
- 3°x 3° grid for the user locations has been used
- Each constellation propagated over 10 days
- Post-correlator aggregate interference power spectral density to which the MBOC receiver is subjected computed following ITU-R M. 1831

Simulation Scenarios - 1

- The performance of the Multi-Constellation Interoperable GNSS System are assessed with respect to the number of available satellites (systems)
 - For the moment GPS and Galileo are the only systems that have adopted MBOC for their baseline in E1/L1
 - Compass has announced the intention to transmit an MBOC Open Service Signal at 1575.42 MHz
 - A fourth and a fifth constellation are here taken into account

Simulation Scenarios - 2

- Starting from a Galileo-Only constellation, four further steps are performed:
 - ✓ Galileo
 - ✓ Galileo + GPS
 - ✓ Galileo + GPS + Compass
 - ✓ Galileo + GPS + Compass + MBOC4
 - ✓ Galileo + GPS + Compass + MBOC4 + MBOC5
- Reasonable realistic assumptions for constellation characteristics and link budgets have been also considered

Dilution of Precision

95th percentile of Horizontal and Vertical DOPs

Comments on DOPs Results

- Very big improvement from first to second systems (as very well known)
 - ✓ DOP improves of almost 33%
- The contribution of each further constellation to the DOP improvement is decreasing with increasing the number of constellations:
 - Third constellation: 22%
 - Fourth constellation: 15%
 - Fifth constellation: 11 %

Aggregate Interference

- I_{int_total} = I_{interop} + I_{inter}
 - ✓ I_{interop} is the contribution from the Interoperable MBOC signal transmitted by all the constellations
 - ✓ I_{inter} Is the inter-system interference (in this case interference from GPS C/A and P(Y))

Conclusions - 1

- The little improvement in terms of DOP for more than three systems (very limited) is annulated by the increase of interference level and code noise
- The level of the interference for more than three systems (reaching the noise floor) could cause harmful problems for the acquisition of many satellites

Conclusions - 2

- Apportionment of the noise floor is an important criterion that should be discussed in order to limit the problem
- Compatibility is a fundamental prerequisite to achieve interoperability

Way Forward

- This presentation is just an intermediate step of an ongoing activity on the topic of Multi-Constellation Interoperable GNSS system and receiver performance
- A more complete set of results based on several different simulation scenarios will be presented at a later stage

