

Performance enhancement in BeiDou system - Integrity and Accuracy

Yongchao GENG¹, Rui LI², Hongliang XU³, Xingqun ZHAN³

- 1. CETC-20 Institute
- 2. Beihang University
- 3. Shanghai Jiao Tong University

Presented by Prof. Xingqun ZHAN

Contents

- Introduction
- Part I: Research on GNSS Integrity
- Part II: Autonomous precise ephemeris determination

Background

Future trend of PNT service

- GNSS: Interoperable Multi-constellation
- Objective: Ubiquitous positioning and seamless navigation
- Techniques: Fusion of GNSS and other positioning techniques
 - Indoor positioning
 - Mobile communication technology
- Extended application: LBS, GIS, etc.
- GNSS provider's obligation
 - GNSS performance enhancement

Our views on Performance enhancement

GNSS service performance

− Accuracy: Differential positioning

− Availability: Constellation design

− Continuity: System operation

Integrity: ➤ Integrity monitoring

etc.

Part I: Research on GNSS Integrity

The Definition of Integrity:

The Alarming Ability Under the Occurrence of fault

The Component of Integrity:

- ➤ Integrity risk: Related to the Fault Probability and the Monitoring Method
- ➤ Alert Threshold: Related to the Application
- ➤ Time to alarm: Related to the User Dynamic and the Surrounding Scenario

Necessity of Integrity

Requirement of Integrity

- SOL Service: Civil Aviation, Railway
- **Reliability Service:** ITS, Fishing, Disaster Alarm.....

To 2012, in China, forecasted amount of automobiles is over 200 millions, while that of cell phone is over 800 millions. Most mass- market users also require integrity.

Satellite Based Augmentation System

- WAAS (US)
- EGNOS (EU)
- MSAS (JAPAN)
- GAGAN(INDIA)

-

Necessity of Integrity

Developing Trend

The modernization of GPS:

➤ Use URA to broadcast the integrity information;
➤ The development of WAAS;

The Construction of GALILEO:

▶ Providing SOL Service;

▶Providing Augmentation Service of the European Users;

Considering The Integrity Issue In the design of BeiDou

Integrity Solution of CAAC

CAAC Integrity Monitoring System Solutions

Integrity Solutions of CAAC

Ground based Regional Integrity Monitoring System-GRIMS

10

Integrity Solutions of CAAC

RAIM Availability Prediction System-RAPS

Integrity Solutions of CAAC

Ground Based Augmentation System-GBAS

Research on the Integrity concept of BeiDou

- Integrity Monitoring and Processing On the System Level
 - ➤ The Global and Multi-frequency Broadcasted Integrity Information;
 - ➤ Providing Satellite-Based Augmentation Service in China;
 - ➤ Conforming to the Standard of ICAO;

Research on the Integrity concept of BeiDou

- Global Integrity Concept of the BeiDou
 - Capability of Global Broadcasting;
 - ➤ Open Service;
 - ➤ The Feasibility of Disposing Reference Station Beyond China Region;
 - ➤ The interoperability with GPS and GALILEO;
 - ➤ Global Integrity Performance Expectation NPA

Research on the Integrity concept of BeiDou

SBAS Performance Expectation

- ➤ Capability of Wide Area Augmentation in China
- ➤ Supporting Both Single and Multi-frequency Users
- ➤ Capability of Compass, GPS and Galileo Compatible Augmentation Service
- ➤ Taking Full Advantage of Compass GSO and IGSO Communication Link
- ➤ Discussing the possibility of the Interoperability with EGNOS and WAAS
- > Performance-CAT I

Influence of BeiDou on Multi-constellation Interoperability

Contribution:

- ➤ Smaller and More Uniform GDOP;
- ➤ More Redundancy;

Influence of BeiDou on Multi-constellation Interoperability

Challenges:

- ➤ More Probability of the Multi-constellation System;
- ➤ Current RAIM Methods Only Monitoring Single Fault

$$P_{\text{failure}}^n = C_m^n \times (P_{\text{failure}})^n \times (1 - P_{\text{failure}})^{(m-n)}$$

Influence of BeiDou on Multi-constellation Interoperability

Solution:

➤ Analyze the Fault's Num by observing HMI; Research the New Monitoring Methods;

Summary (Part I)

- Integrity is an essential part of future GNSS
- BeiDou has taken integrity as a critical design objective
- Global service: broadcasting, open service, interoperability, NPA
- Regional service: CAT-I

Part II : Autonomous precise ephemeris determination

- Most GNSSs have Inter-satellite ranging ability, primarily designed for autonomous ephemeris determination (autonomous navigation).
- The capability is not fully exploited
 - Ground monitor stations are available on most of the times
 - Observability problem in ephemeris determination
- A new application
 - Generate precise ephemeris (ephemeris corrections) using inter-satellite ranging (ISR)

Principle

Concept

- Calculate satellite clock and orbit errors for user correction using ISR only.
- Provide higher User Ranging Accuracy (URA)
- Provide system-level autonomous integrity monitoring (SAIM) as well.

Prerequisite

- Ranging: between visible satellites
- Communication: within constellation

Process

- Measurement
- Decoupling
- **Estimation** 2010-10-20

Simulation

Ephemeris improvement

	RMS Error (before correction)	RMS Error (after correction)
Radial	1.0300	0.2623
Along-track	1.1236	0.6167
Cross-track	0.6956	0.5597
Clock	0.2378	0.1662
URE	1.0533	0.3276

- Orbit: ~1m to 0.5m

- Clock: 0.24m to 0.17m

- URE: 1m to 0.3m

Comparison

	Broadcast ephemeris	IGS product Ultra-Rapid (predicted half)	SBAS(WAAS)	GDGPS (JPL 2010)	Proposed method
Origins of Measurements	Monitoring Stations	Ground reference stations	Ground reference stations	Ground reference stations	Inter-satellite ranging
Accuracy (orbit)	~100cm	~5cm	>0.75m (UDRE)	<20 cm RMS	~20cm RMS (radial) ~50cm RMS (otherwise)
Accuracy (clock)	~150 cm RMS ~75 cm SDev	~90cm RMS ~45cm SDev	-	<20 cm RMS	~20cm RMS
Coverage	Global	Global	Regional	Global	Global
Update rate	4~6h	6h		1Hz	15min
Sample interval	daily	15 min		30s (orbit) / 1s (clock)	15 min
Latency	Real time	Real time	<15 seconds	4-6 seconds	~3 min
Accessibility	broadcast	Internet	SBAS GEO satellites	Network / GEO sat. (TDRSS)	broadcast
Receiver compatibility	Y	N	Y	N	Y

Summary (Part II)

- Significant User Ranging Accuracy improvement: 1m to 0.3m
- Satellite autonomous integrity monitoring is possible with this technique.
- Fully autonomously operated within constellation
- Ideal for developing navigation system.

Conclusions

- Performance enhancement involves every aspects of the GNSS
- From the system provider's point of view, the most important parameters include: accuracy, availability, continuity, integrity and health.
- Presentation talks about the accuracy and integrity.

谢谢!

Thanks for your attention!