

The TC-OFDM System for Seamless Outdoor & Indoor Positioning in Wide Area

Prof. Deng Zhongliang

Beijing University of Posts and Telecommunications
Beijing, China

Outline

1.1 Requirement Analysis

1.2 Limitation of GNSS in indoor positioning

☐ The strength of GNSS signal is about -130dBm on the ground (without sheltering).

Receiver Sensitivity

Signal Attenuation(L-Band)

Year	Acquisition Sensitivity (dBm)	Tracking Sensitivity (dBm)		Window	Wall	Mental	Ceiling
1997	-142	-150	Attenuation	3dB	18dB	25dB	23dB
2004	-142	-159					
2012	-148	-162					

Conclusion: GNSS can not provide stable positioning services in urban canyon or indoor environments.

1.3 The Current Situation of Indoor Positioning

Conclusion: The research on Indoor & Outdoor Positioning based on the integration of mobile BS & GNSS is promising and meaningful.

1.4 Problems to resolve

- 1.NLOS(Non Line of Sight)
- 2.The Ranging Accuracy affected by Terrestrial Channel
- 3. The Accuracy of Time Synchronization

Positioning Error comes to more than 100m

Since 2008, we have researched and developed TC-OFDM (Time & Code Division-Orthogonal Frequency Division Multiplexing) system for Seamless Outdoor & Indoor Positioning in Wide Area

Outline

2.1 The Architecture of TC-OFDM System

2.2 Signal Design

2.3 Signal Coverage

A few complex buildings (yellow parts) require signal supplement based on the existed wire system.

Stimulation of Signal Coverage

Points	BS1 (Service BS)	BS2	BS3	BS4	BS5	BS6	BS7
A1, A2	-92dBm	-127dBm	uncertain	-91 dBm	-91dbm	uncertain	-127dBm
B1, B2	-72dBm	-109dBm	-91dBm	-109 dBm	-109 dBm	-91 dBm	-109dBm
D1, D2	-56 dBm	-91dBm	uncertain	-127dBm	-127dbm	uncertain	-91dBm

2.3.3 Differential Positioning with TDOA

U3 User, 15/10/2012

2.3.4 TC-OFDM & GNSS Integration

The function of TC-OFDM System:

- 1. Sending GNSS differential signal through communication channel;
- 2. Combined Positioning Solution;
- 3. Providing assisted information for shortening TTFF.

2.4 TC-OFDM & GNSS Integration

Promoting the Accuracy of Positioning in 3D:

- •Optimizing the DOP of satellite positioning system;
- •Providing 1m vertical accuracy positioning result.

Integrated positioning: improve the accuracy up to 60%

Fast Satellite Acquisition Assisted with TC-OFDM

5 times faster for acquisition

Outline

3.1 Prototype of TC-OFDM System

Base Station Placement

Equipments in Base Station

Principle Terminal

Signal Monitor

Antennas

3.2 Positioning Test of TC-OFDM Terminals

Indoor Positioning

Messages Monitoring

Outdoor Positioning

Signal Monitoring

3.3 Results of Outdoor Positioning Test

Testing the positioning accuracy of the integrated system at 8 points in **upbaraceary**on

Standard Deviation of the Result ≤ 1m

No.	RMS (X)	RMS (Y)		RMS (Z)	(Z) 27
G9	0.39	0.65	0	.62	19
G10	0.37	0.71	0	.68	37
G11	0.33	0.55	0).53	36 69
G6	0.52	0.46		0.	55
G7	0.4	0.4		0.	44

Absolute Precision of the Result < 3m

No.	X	Y	\mathbf{Z}	
G9	-0.36	2.17	-1.1	
G10	-0.25	1.69	-1.4	
G11	-0.66	1.58	-1.02	

3.4 Results of Indoor Positioning Test

- The standard deviation (Inner average precision) is almost less than 1.5m;
- The error of point-to-point distance measurement is less than 3m;
- The error of height measurement is less than 1m.

Vertical Accuracy

Horizontal Accuracy

Standard Deviation of the Result

No.	RMS (X)	RMS (Y)	RMS (Z)
T0	0.64	0.57	0.45
T1	0.65	0.39	0.63
T2	0.76	0.74	0.36
T3	0.64	1.07	0.3
T4	0.05	0.04	0.44
T5	0.75	0.7	0.52
T6	2.98	0.72	0.43
T7	0.79	0.74	0.6
T8	0.34	0.16	0.51
T9	0.23	0.16	0.57
T10	0.15	0.48	0.58
T11	0.94	0.58	0.33
T12	0.29	0.84	0.59

3.5 Comparison with Other Technique

	Positioning Methods	Network	Accuracy	Feature		
	CELL-ID (Cell- Identity)	All Mobile Network	250m- 20km			
	EFLT (Enhanced Forward Link Trilateration)	CDMA	250-350m	Low cost		
	AFLT (Advanced Forward Link Trilateration)	CDMA	50-200m	positioning signal covering; Lack of accuracy		
	E-OTD (Enhanced Observed Time Difference)	GSM	50-200m	to meet the demand of indoor		
TOA/TDOA (Time of Arrival/Time Difference Of Arrival)		All Mobile Network	40-150m	positioning service.		
	AOA(Arrival Of Angle)	All Mobile Network	50-150m			
	TC-OFDM (Time & Code Division-Orthogonal Frequency Division Multiplexing)	Mobile Communication Network	3-5m	Multi-signal: the positioning signal and the service signal; Low cost of signal covering; High accuracy.		
_				Bir accaracy:		

3.6 Demonstration & Application of TC-OFDM System

Plan for TC-OFDM

2013: Demonstrated in a large scale in Tianjin

2015: Applied domestically in 339 cities

The experimental and commercial frequency band has been authorized.

Tianjin, China

Tianjin Binhai New Area For Demonstration

Outline

4. Conclusions

The TC-OFDM System:

- □Offers a navigation and communication integration scheme with low cost.
- Promotes the continuity, stability and accuracy of indoor & outdoor positioning.
- □Achieves 1m vertical accuracy and 3-5m horizontal accuracy.

Thank you

for your attention!