GNSS is the Core Technology to Support GGOS Applications

Chris Rizos

President, IAG

IAG Structure

International Union of Geodesy and Geophysics (IUGG)

Member of ICSU, 65 Member Countries, 8 Associations

International Association of Geodesy (IAG)

Council Exec Committee

Bureau

Office

COB

Commission 1

Reference Frames

Commission 2

Gravity Field

Commission 3

Earth Rotation & Geodynamics

Commission 4

Positioning & Applications

Inter-Commission Committee on Theory (ICCT)

Services:

IERS

IGS

IGFS

BGI

ICET

BIPM

IAS

ILRS

IVS

IDS

ICGEM

IGeS

IDEMS

PSMSL

IBS

- GGOS links all components of the IAG, e.g. Services, Commissions, ICCT, etc.
- GGOS is the combined global geodetic infrastructure, i.e. physical, IT & analysis components.
- GGOS products include individual service products that have been "value-added", e.g. WHS, time series, etc.
- GGOS will support long term geodesy goals, e.g. stable reference frames.
- GGOS seeks integrated modelling of all observations, so as to improve geodetic parameter estimation for earth science.
- GGOS will provide single "portal" for users, i.e. a "one stop shop".

International Terrestrial Reference Frame (ITRFxx)

International Earth Rotation and Reference Systems Service (IERS)

Radio source positions, precise GNSS orbits and clocks, Earth orientation parameters (EOP), station coordinates and velocities

International Terrestrial Reference System (ITRS)

- Realised and maintained by ITRS Product Centre of the IERS.
- Its realisation is the "International Terrestrial Reference Frame" (ITRF).
- Set of station positions and velocities, estimated by combination of VLBI, SLR, GPS and DORIS individual TRF solutions.
- Based on Co-location sites.

http://itrf.ign.fr

Adopted by IAG & IUGG in 1991 and 2007 for all Earth Science Applications

Available: ITRF88,..., 2000, 2005

Latest: ITRF2008 Coming: ITRF2013

Current Space Geodesy Networks for ITRF

Illuminating the Earth With GNSS

Scientific Drivers – Extending the Reference Frame to Multiple Applications

Example of Complexity of Data & Missions: Sea Level Change & Ice-Mass Balances

Such complexity requires the coordination of several geodetic technologies & services... integrated to generate "high level products" that science and society can directly use...

- Vision: continuous, synoptic, high-accuracy Earth Observing
 System that can monitor geometric & gravimetric effects in 4D.
- The goal of GGOS: improve the accuracy, resolution, reliability & timeliness of geodetic products by an order of magnitude by end of decade.
- Operationalise "millimetre-geodesy" in order to monitor faint global change & geodetic signatures.
- Support centimetre-level Precise Positioning GNSS for geoscience & geospatial applications.
- 1mm accuracy Reference Frame, & stability of 0.1mm/yr.
- GNSS is the key space geodesy technology to deliver GGOS's vision.

