Role and importance of the International Terrestrial Reference Frame (ITRF) for sustainable development

Zuheir Altamimi

Head of the IERS ITRF Product Center
Institut National de l'Information
Géographique et Forestière
IGN, France

E-mail: zuheir.altamimi@ign.fr

Outline

- Introduction
- The International Terrestrial Reference Frame (ITRF)
 - current status, results and quality (ITRF2008)
- Access to the ITRF and the IGS role
- GNSS and their associated reference frames
- Some wishes toward GNSS Providers

What is a Reference Frame in practice?

- Earth fixed/centred RF: allows determination of station location/position as a function of time
- It seems simple, but ... we have to deal with:
 - Relativity theory
 - Forces acting on the satellite
 - The atmosphere
 - Earth rotation
 - Solid Earth and ocean tides
 - Tectonic motion
 - ...
- Station positions and velocities are now determined with mm and mm/yr precision

Why is a Reference Frame needed?

Precise Orbit Determination for:

- GNSS: Global Navigation Satellite Systems
- Other satellite missions: Altimetry, Oceanography,
 Gravity

Earth Sciences Applications

- Earth rotation
- Tectonic motion and crustal deformation
- Glacial Isostatic Adjustment (GIA)
- Mean sea level variations

– ...

Geo-referencing applications

- Navigation: Aviation, Terrestrial, Ocean
- Surveying
- Positioning

The International Terrestrial Reference Frame (ITRF)

- Established and maintained by the International Earth Rotation and Reference Systems Service (IERS)
- Numerical realization of the International Terrestrial Reference System (ITRS)
- Adopted by IAG & IUGG in 1991 & 2007 and by CGPM in 2011 for Earth science & timing applications
- Combination of VLBI, SLR, GNSS and DORIS TRFs
- Operated by the ITRS Center, hosted by IGN- France
- Based on co-location sites (see next)
- Updated every 3-5 years: ITRF88,...,2000,2005
- Current Version: ITRF2008

Space Geodesy Techniques Contributing to the ITRF

- Very Long Baseline Interferometry (VLBI)
- Satellite Laser Ranging (SLR)
- DORIS
- GNSS: GPS, GLONASS, (Future: GALILEO, COMPASS, QZSS)
- ITRF Defining Parameters:
 - Origin: CoM of the Earth System: defined by SLR
 - Scale: Consistent with TCG: defined by VLBI & SLR
 - Orientation: Equatorial: Same for all ITRF versions:
 Currently ensured by mainly GNSS/IGS network
- ITRF Origin & Scale are very critical for science applications, e.g. monitoring of sea level variation
- Science Requirement: ITRF to be stable at 0.1mm/yr level

Weaknesses of GNSS

• Imprecise TRF origin (esp in Z) due to mainly orbit mis-modeling errors, e.g. solar radiation pressure

 Under-determined TRF scale due to satellite antenna phase center offset (APCO).
 GNSS TRF scale & APCO are 100% correlated

Strengths of GNSS

- GNSS/IGS IS the link between DORIS, SLR and VLBI networks in the ITRF combination
- Geographic density
 - Covering most tectonic plates
 - Allows maintaining the same orientation and its time evolution between successive ITRF solutions

- Most precise and accurate polar motion
- Real, near real time and universal access to ITRF using IGS products

Co-location site

- Site where two or more instruments are operating
- Surveyed in three dimensions, using classical or GPS geodesy
- Differential coordinates (DX, DY, DZ) are available

$$\mathbf{DX}_{(GPS,VLBI)} = \mathbf{X}_{VLBI} - \mathbf{X}_{GPS}$$

ITRF2008 Network

ET FORESTIÈRE

ITRF precision (formal errors)

ITRF Accuracy in Origin and Scale ~1 cm (ITRF2008) over its time-span

ALL ITRF2008 Site Velocities:

time-span > 3 yrs, ($\sigma \sim 0.1 - 1 \text{ mm/yr}$)

ET FORESTIÈRE

ITRF2008 Plate Motion Model Available for 14 plates

Plate boundaries: Bird (2003) & MORVEL, DeMets et al. (2010)

Altamimi et al., JGR, 2012

ITRF Website (itrf.ign.fr)

GÉOGRAPHIQUE ET FORESTIÈRE

Access to the ITRF and the IGS role (1/2)

- How to express a GNSS network in the ITRF using IGS products (orbit, clocks, ERP: all expressed in the ITRF)?
- Select a reference set of ITRF/IGS stations and collect RINEX data from IGS data centers;
- Process your stations together with ITRF/IGS ones:
- Fix IGS orbits, clocks and ERPs
- Eventually, add minimum constraints conditions in the processing:

Access to the ITRF and the IGS role (2/2)

- ==> Your solution will be expressed in the ITRFyy consistent with IGS orbits
- Propagate official ITRF station positions at the central epoch (t_c) of the observations:

$$X(t_c) = X(t_0) + \dot{X}(t_c - t_0)$$

- Compare your estimated ITRF station positions to official ITRF values and check for consistency:
 - Transformation parameters should be zeros
 - No outliers: residuals smaller than a certain threshold.

Regional & National Reference Systems/Frames

• IAG Commission 1(Reference Frames) ==> Sub-Commission 1.3 (Regional Reference Frames):

- EUREF/EUROP: ETRS89

NAREF/North America: NAD83

SIRGAS/South America: SIRGAS

– AFREF/Africa

- APREF/Asia & Pacifis
- SCAR/Antarctica
- Regional Reference Frames: all related to ITRF
- Many countries have redefined their geodetic systems to be compatible/related to ITRF

GNSS and their associated reference systems

GNSS	Ref. System/Frame
 GPS (broadcast orbits) 	WGS84
 GPS (precise IGS orbits) 	ITRS/ITRF
• GLONASS	PZ-90
• GALILEO	ITRS/ITRF/GTRF
• COMPASS	CGCS 2000
• QZSS	JGS

- All are "aligned" to the ITRF
- WGS84 ≈ ITRF at the decimeter level
- GTRF ≈ ITRF at the mm level
- σ -Position using broadcast ephemerides = 150 cm

7 7 7 7

The World Geodetic System 84 (WGS 84)

- WGS 84 realizations aligned to the ITRF
 - G730 in 1994
 - G873 in 1997
 - G1150 in 2002
 - G1674 in 2012 (aligned to ITRF2008)

Coincides with any ITRF at 10 cm level

WGS84 - NGA Stations in ITRF2008

NGA: National Geospatial-Intelligence Agency

Galileo Terrestrial Reference Frame (GTRF) Current Network

Number of stations 127 (19 GESS)

GGSP Consortium (GFZ, ESOC, AIUB, BKG, IGN)

GTRF09v01 horizontal velocities

GTRF: Orbit and Clock Combination

- Orbit RMS agreement btw PFs and co_ orbits for GPS satellites is mostly at the level of 5-12 mm
- co_ difference to the IGS Final is in the same order

agreement for the clocks shows an RMS of about 15 to 25 ps (all biases subtracted)

Conclusion

The ITRF

- is the most optimal global TRF available today
- gathers the strengths of space geodesy techniques
- is more precise and accurate than any individual RF
- is the achievement of 30 years of international collaboration and investment
- needs to be maintained and improved over time
- Using the ITRF as a common standard facilitates the interoperability between the GNSS and regional & national reference frames
- There exists a well established procedure to ensure optimal alignment of GNSS and regional RFs to ITRF, using the publicly available IGS products
- Improving GNSS contribution to the ITRF is essential

Geodetic Community Wishes Toward GNSS Providers

- Satellite antennas should be calibrated before launch
 - ==> Ensure the scale stability of the GNSS Reference Frame
- Why not add an accelerometer to each GNSS satellite?
 - ==> Improve the geocenter determination by GNSS
- Contribute to IGS and ITRF for the benefit of all:
 - -Provide data of subset of GNSS control stations to IGS for inclusion in the ITRF (cf. ICG-6 WG-D Recommendation)
 - ==> (1) facilitate GNSS RF alignment to ITRF &
 - (2) ensure interoperability between GNSS RFs
 - -Contribute to IGS M-GEX Project
 - Provide antenna offsets and attitude modes
 - Provide RINEX navigation data: frequency and signal identifiers

backups

VLBI, SLR, DORIS sites & their co-locations with GPS

Processed IGS/GNSS sites, since 1994

Red < 5yrs (118), **Blue** 5-10yrs (138), **Green** 10-18yrs (396)

