

Objectives of GNSS application for the high orbit spacecraft navigation

High orbit spacecrafts are the spacecrafts in geostationary and high elliptical orbits (GEO and HEO)

High-precision spacecraft orbit determination to provide the corresponding communication link, monitoring and keeping in unattended mode the GEO satellite within an orbital slot with a required accuracy of $\pm 0.1^{\circ}$ ($\pm 0.05^{\circ}$)

To reduce the load on ground control segment and to decrease its cost

Reliability enhancement of the satellite orbit control system by reducing the influence of human factors

Navigation features of high orbit spacecrafts using GNSS signals

- □ The GNSS signals coverage in GEO is discontinuous. Geometrically, it looks like a set of intersecting annular bands formed by navigational signals transmitted from the other side of the Earth. The GNSS signals coverage in HEO is continuous only near the perigee.
- □ Traditional methods for positioning of a terrestrial user are not applicable.

GLONASS SPACE SERVICE VOLUME

GLONASS SPACE SERVICE VOLUME

Definitions	Notes	
Lower Space Service Volume (also	Four GLONASS signals available simultaneously a majority	
known as 'MEO altitudes'): 3000 to	of the time but GLONASS signals over the limb of the Earth	
8000 km altitude	become increasingly important. One-meter orbit accuracies	
	are feasible (post processed).	
Upper Space Service Volume (GEO	Nearly all GLONASS signals received over the limb of the	
and HEO with the exception of the	Earth. Accuracies ranging from 20 to 200 meters are	
perigee area): 8000 to 36000 km	feasible (post-processed) depending on receiver sensitivity	
altitude	and local oscillator stability.	

GLONASS SPACE SERVICE VOLUME

Parameters	Value	
User range error	1.4 meters	
Minimum Received Civilian Signal	With account of the	Reference Off-Boresite Angle
Power (GEO)	GLONASS satellite's	
	transmitter antenna gain	
	pattern	
L1 ^{1,2}	-180 ÷ -185 dBW	14 - 20 deg
L2	-177 ÷ -184.4 dBW	$14 - 28 \deg$
L3	-176 ÷ -184 dBW	$14 - 28 \deg$
Signal availability ³		
MEO at 8000 km	At least 1 signal	4 or more signals
L1	81%	64%
L2, L3	100%	66%
Upper Space Service Volume (HEO/GEO)	At least 1 signal	4 or more signals
L1	70%	2.7%
L2, L3	100%	29%

Note 1 – FDMA signals in L1 and L2 bands and CDMA signals in L3

Note 2 – L1, L2 signals are transmitted by GLONASS-M and GLONASS-K satellites. At present, the L3 signal is transmitted by the GLONASS-K satellite. Furthermore, the final 7 GLONASS-M satellites will also transmit L3 signal (starting with the GLONASS-M No. 55 satellite).

Note: Bat the high Dibit Sty has at dear base 2008 ASS satellite in view.

GEO satellite's positioning accuracy (orbit is determined using GLONASS and GPS measurements)

0

ICG-8 WG B Dubai, November 2013

Experience in the application of GLONASS and GPS for the GEO spacecraft navigation

- The radionavigation equipment (RNE) has been used successfully on board geostationary spacecraft since 2008
- The possibility of reception and measurement of GLONASS/GPS signals as well as the possibility of positioning in GEO is confirmed
- Orbit accuracies ranging from 20 to 200 m are feasible (a posteriori data)
- The possibility of keeping of a geostationary spacecraft in an orbital slot with a required accuracy (±0,05°) is realized without ground control segment
- The Elektro-L meteorological satellite which will be launched in 2013 is equipped with RNE

Application of GLONASS and GPS for the HEO spacecraft navigation

- Radionavigation equipment for spacecrafts in a Molniya orbit is developed
- Two antennas are mounted onboard: the first one is directed towards the Earth for activity near apogee, the another one is oriented in the opposite direction for activity near perigee
- Orbit accuracies ranging from 200 to 300 m are feasible (a priori data)

Possible GNSS development to improve the high orbit spacecraft navigation

- Supplementary antenna installation to transmit navigational signals in the opposite direction
- The HEO and GEO spacecraft navigation accuracy can be increased up to 30 m if a navigational signal in the opposite direction is transmitted
- A stable navigation on the Earth-Moon line with accuracies ranging from 250 to 2500 m will become possible with a navigational signal in the opposite direction

