

Differential BDS in China and the Research of DBDS standard in the Framework of RTCM

Dr. Liu Hui Wuhan Navigation &LBS Inc.

ICG-8, WG-B, Nov 9-14,2013. Dubai

Contents

- □ About Differential BDS (DBDS)
- Performance of DBDS
- □ Research of DBDS standard

About DBDS

About Differential BDS

- Differential GNSS techniques to improve the accuracy of real time positioning
- Differential GNSS classified by the data sources
 - Code differential(CDBDS), 0.3m~2m
 - □ Phase differential(RTK),0.02m~0.10m
 - □ State Space Representation (SSR),0.1m~1.0m
- □ CORS, GBAS, RBN-DGNSS, etc. are used
- RTCM SC104 protocols are to support the DGNSS applications

Performance of DBDS

HuBei BDS Network RTK system

Reference stations

□ BDS/GPS Receiver, UPS, Route, Switch etc.

Data center □ Located at Hubei Surveying & Mapping Bureau

Software

Functions

- RS management
- Data process
- User management
- Systems
 BDS B1, B2, B3
 GPS L1, L2
 GLONASS L1, L2

User receiver—BDS/GPS OEM

	Specification	
Freq	Beidou B1/B2 + GPS L1/L2	
Positioning Mode	Support point positioning using Beidou only, GPS only, and Beidou/GPS	
BDS	Support Beidou B1/B2, Support Beidou point positioning, differential Beidou, and high precision relative positioning	
Differential Corrections	CMR,CMR+,RTCM2.x,RTCM3.x	
RTK	Support instant RTK and long	
Positioning	range RTK	
RTK accuracy	Horizontal: 1cm+1ppm Vertical: 2cm+1ppm	
Power	1.6W	
WAAS	Support WAAS and PPP	

Testing items

- □ Reference Station Coordinates
- □ Static post-processing
- Network RTK
- Code Differential
- Precision Point Positioning

Experiments and Results

Reference Station Coordinates—CGCS2000(BDS data only)

RMS H:0.006m、RMS V: 0.015m

		I	BDS
ECEF RMS		Baseline Repeative	2.5 - 2.0 -
	RMS	Fixed +Scale	
X	0.007m	6.7mm+2.8×10 ⁻⁸	3.0 2.5 2.5
Y	0.010m	10.0 mm +1.6×10 ⁻⁸	E 20 - 5) 1.5 - δ) 1.0 - δ 1.0 - δ 0.5 -
Z	0.006m	5.8mm +3.0×10 ⁻⁸	³⁰ ₂₅]
2013-1	1-21		2.0 1.5 1.0 0.5 0.0 Esoz Hool Hooz Hoos Hood Hoor Hozi JMol JMos Sydz Szbi Szdz Szzi TMol VHol VHoz VHod XRbz XFos Xooz Xooz XMoz XMos XTO YCd: Station

Experiments and Results-Static post-processing

Experiments and Results—NETRTK

- Network RTK Positioning
 - BDS B1/B2 + GPS L1/L2

Mode	Fixed	Initial	STD/m (Average)		RMS/m (Average)		
	Ilme (s)	H	V	H	V		
GPS+BDS3	100%	5.76	0.004	0.018	0.010	0.036	
GPS+BDS2	80%	27.46	0.003	0.015	0.011	0.042	
BDS3	83%	16.40	0.007	0.020	0.013	0.052	
BDS2	40%	50.78	0.003	0.015	0.014	0.045	
GPS	44%	40.28	0.006	0.021	0.012	0.048	星导航奔资
						16	Ð

Experiments and Results—CDBDS

Dynamic testing
1Hz position output
RMS:0.67m, 1.5m(95%)

Mode	BDS L1
Points number	1344
1Sigma	0.67 m
95%	1.44m

Research of DBDS standard in the framework of RTCM SC104

2013-11-21

RTCM SC104 DGNSS Service

- Radio Technical Commission for Maritime services Special Committee No.104 (RTCM SC104) provides to DGNSS standard
- Using for manufactory, R&D, Service provider etc.
- □ Versions:
 - RTCM SC10402.3 for DGNSS applications
 - RTCM SC10403.2 for high precision applications

The thoughts of adding BDS Messages

- □ For RTCM SC10402.X
 - Add: B1 Code differential messages
 - Modified: Some messages
- □ For RTCM SC10403.X
 - Add: BDS Network RTK Corrections
 - Add: BDS Satellite Ephemeris
 - Add: BDS SSR
 - Comments: MSM messages etc.

The progress in 2013

- □ Attend the RTCM SC104 conference in Nashville, Sept 2013
- Wuhan Navigation & LBS Inc. suggested to form BDS Working Group to provide BDS support to RTCM committee.
- □ Dr. Shaowei Han was elected as RTCM SC104 the BDS WG chair. Dr. HuiLiu is the secretary.
- □ There were 15+ organizations apply to attend the BDS WG
 - \Box Trimble, Novatel, Geo++, Navcomm, etc.

RTCM SC104 WebSite

Upcoming Meetings:

RTCM Bylaws

Galileo ICD BeiDou ICD

30-31 January 2014 Bahia Hotel San Diego, CA, USA Transport and Lodging Information

21-22 May 2014 European Space Operations Centre Darmstadt, Germany

8-9 September 2014 (to be confirmed) Tampa, FL, USA

RTCM Standards Development Policies

RTCM 3.2 Message Sample/Template

Reference Materials

	A A	200 1990-2010 VEARS OF PBACTICING SUSTAINABILITY CREATING IOBS OMMUNSTY SREMIER EVENT SPACE	
	Active Working Groups	Chair	
[RTK Network MSG	Frank Takac	
	Internet Protocol	Georg Weber	
	GALILEO	Hans-Jürgen Euler	
1	GLONASS	Alexei Zinoviev	
	DGNSS Beacon Services	Al Cleveland	
	Private Services	Ivo Milev	
	State Space	Gerhard Wübbena	
Ī	Version 3	Paul Alves	
	Coordinate Transformation	Martin Schmitz	
	RINEX	Ken MacLeod	
	BeiDou	ShaoWei Han	

Conclusions

- □ BDS is in operation. The performance of DBDS in China is satisfied to the most user's requirements
- □ It is necessary to define the DBDS unified interface between service provider and end users.
- The full BDS messages in RTCM SC-104 standards are needed as quick as possible so that worldwide GNSS manufacturers can participate those campaigns.
- □ BDS WG will push it to happen faster.

Thanks you very much for the attention!

loweliu@hotmail.com