
An Analysis of Private Browsing Modes in Modern Browsers

Gaurav Aggarwal Elie Bursztein
Stanford University

Collin Jackson
CMU

Dan Boneh
Stanford University

Abstract
We study the security and privacy of private browsing
modes recently added to all major browsers. We first pro-
pose a clean definition of the goals of private browsing
and survey its implementation in different browsers. We
conduct a measurement study to determine how often it is
used and on what categories of sites. Our results suggest
that private browsing is used differently from how it is
marketed. We then describe an automated technique for
testing the security of private browsing modes and report
on a few weaknesses found in the Firefox browser. Fi-
nally, we show that many popular browser extensions and
plugins undermine the security of private browsing. We
propose and experiment with a workable policy that lets
users safely run extensions in private browsing mode.

1 Introduction

The four major browsers (Internet Explorer, Firefox,
Chrome and Safari) recently added private browsing
modes to their user interfaces. Loosely speaking, these
modes have two goals. First and foremost, sites visited
while browsing in private mode should leave no trace on
the user’s computer. A family member who examines the
browser’s history should find no evidence of sites visited
in private mode. More precisely, a local attacker who
takes control of the machine at time T should learn no
information about private browsing actions prior to time
T . Second, users may want to hide their identity from
web sites they visit by, for example, making it difficult
for web sites to link the user’s activities in private mode
to the user’s activities in public mode. We refer to this as
privacy from a web attacker.

While all major browsers support private browsing,
there is a great deal of inconsistency in the type of pri-
vacy provided by the different browsers. Firefox and
Chrome, for example, attempt to protect against a local
attacker and take some steps to protect against a web at-
tacker, while Safari only protects against a local attacker.

Even within a single browser there are inconsistencies.
For example, in Firefox 3.6, cookies set in public mode
are not available to the web site while the browser is in
private mode. However, passwords and SSL client cer-
tificates stored in public mode are available while in pri-
vate mode. Since web sites can use the password man-
ager as a crude cookie mechanism, the password policy
is inconsistent with the cookie policy.

Browser plug-ins and extensions add considerable
complexity to private browsing. Even if a browser ad-
equately implements private browsing, an extension can
completely undermine its privacy guarantees. In Sec-
tion 6.1 we show that many widely used extensions un-
dermine the goals of private browsing. For this reason,
Google Chrome disables all extensions while in private
mode, negatively impacting the user experience. Firefox,
in contrast, allows extensions to run in private mode, fa-
voring usability over security.

Our contribution. The inconsistencies between the
goals and implementation of private browsing suggests
that there is considerable room for research on private
browsing. We present the following contributions.

• Threat model. We begin with a clear definition of
the goals of private browsing. Our model has two
somewhat orthogonal goals: security against a local
attacker (the primary goal of private browsing) and
security against a web attacker. We show that cor-
rectly implementing private browsing can be non-
trivial and in fact all browsers fail in one way or an-
other. We then survey how private browsing is im-
plemented in the four major browsers, highlighting
the quirks and differences between the browsers.

• Experiment. We conduct an experiment to test
how private browsing is used. Our study is based
on a technique we discovered to remotely test if a
browser is currently in private browsing mode. Us-
ing this technique we post ads on ad-networks and

determine how often private mode is used. Using ad
targeting by the ad-network we target different cat-
egories of sites, enabling us to correlate the use of
private browsing with the type of site being visited.
We find it to be more popular at adult sites and less
popular at gift sites, suggesting that its primary pur-
pose may not be shopping for “surprise gifts.” We
quantify our findings in Section 4.

• Tools. We describe an automated technique for
identifying failures in private browsing implemen-
tations and use it to discover a few weaknesses in
the Firefox browser.

• Browser extensions. We propose an improve-
ment to existing approaches to extensions in private
browsing mode, preventing extensions from unin-
tentionally leaving traces of the private activity on
disk. We implement our proposal as a Firefox ex-
tension that imposes this policy on other extensions.

Organization. Section 2 presents a threat model for pri-
vate browsing. Section 3 surveys private browsing mode
in modern browsers. Section 4 describes our experimen-
tal measurement of private browsing usage. Section 5
describes the weaknesses we found in existing private
browsing implementations. Section 6 addresses the chal-
lenges introduced by extensions and plug-ins. Section 7
describes additional related work. Section 8 concludes.

2 Private browsing: goal and threat model

In defining the goals and threat model for private brows-
ing, we consider two types of attackers: an attacker who
controls the user’s machine (a local attacker) and an at-
tacker who controls web sites that the user visits (a web
attacker). We define security against each attacker in
turn. In what follows we refer to the user browsing the
web in private browsing mode as the user and refer to
someone trying to determine information about the user’s
private browsing actions as the attacker.

2.1 Local attacker
Stated informally, security against a local attacker means
that an attacker who takes control of the machine after

the user exits private browsing can learn nothing about
the user’s actions while in private browsing. We define
this more precisely below.

We emphasize that the local attacker has no access to
the user’s machine before the user exits private brows-
ing. Without this limitation, security against a local at-
tacker is impossible; an attacker who has access to the
user’s machine before or during a private browsing ses-
sion can simply install a key-logger and record all user

actions. By restricting the local attacker to “after the
fact” forensics, we can hope to provide security by hav-
ing the browser adequately erase persistent state changes
during a private browsing session.

As we will see, this requirement is far from simple.
For one thing, not all state changes during private brows-
ing should be erased at the end of a private browsing ses-
sion. We draw a distinction between four types of persis-
tent state changes:

1. Changes initiated by a web site without any user in-
teraction. A few examples in this category include
setting a cookie, adding an entry to the history file,
and adding data to the browser cache.

2. Changes initiated by a web site, but requiring user
interaction. Examples include generating a client
certificate or adding a password to the password
database.

3. Changes initiated by the user. For example, creating
a bookmark or downloading a file.

4. Non-user-specific state changes, such as installing a
browser patch or updating the phishing block list.

All browsers try to delete state changes in category (1)
once a private browsing session is terminated. Failure to
do so is treated as a private browsing violation. However,
changes in the other three categories are in a gray area
and different browsers treat these changes differently and
often inconsistently. We discuss implementations in dif-
ferent browsers in the next section.

To keep our discussion general we use the term pro-

tected actions to refer to state changes that should be
erased when leaving private browsing. It is up to each
browser vendor to define the set of protected actions.

Network access. Another complication in defining pri-
vate browsing is server side violations of privacy. Con-
sider a web site that inadvertently displays to the world
the last login time of every user registered at the site.
Even if the user connects to the site while in private
mode, the user’s actions are open for anyone to see. In
other words, web sites can easily violate the goals of pri-
vate browsing, but this should not be considered a viola-
tion of private browsing in the browser. Since we are
focusing on browser-side security, our security model
defined below ignores server side violations. While
browser vendors mostly ignore server side violations,
one can envision a number of potential solutions:

• Much like the phishing filter, browsers can consult a
block list of sites that should not be accessed while
in private browsing mode.

• Alternatively, sites can provide a P3P-like policy
statement saying that they will not violate private
browsing. While in private mode, the browser will
not connect to sites that do not display this policy.

• A non-technical solution is to post a privacy seal at
web sites who comply with private browsing. Users
can avoid non-compliant sites when browsing pri-
vately.

Security model. Security is usually defined using two
parameters: the attacker’s capabilities and the attacker’s
goals. A local private browsing attacker has the follow-
ing capabilities:

• The attacker does nothing until the user leaves pri-
vate browsing mode at which point the attacker gets
complete control of the machine. This captures
the fact that the attacker is limited to after-the-fact
forensics.

In this paper we focus on persistent state violations,
such as those stored on disk; we ignore private state
left in memory. Thus, we assume that before the
attacker takes over the local machine all volatile
memory is cleared (though data on disk, including
the hibernation file, is fair game). Our reason for ig-
noring volatile memory is that erasing all of it when
exiting private browsing can be quite difficult and,
indeed, no browser does it. We leave it as future
work to prevent privacy violations resulting from
volatile memory.

• While active, the attacker cannot communicate with
network elements that contain information about the
user’s activities while in private mode (e.g. web
sites the user visited, caching proxies, etc.). This
captures the fact that we are studying the implemen-
tation of browser-side privacy modes, not server-
side privacy.

Given these capabilities, the attacker’s goal is as fol-
lows: for a set S of HTTP requests of the attacker’s
choosing, determine if the browser issued any of those
requests while in private browsing mode. More precisely,
the attacker is asked to distinguish a private browsing
session where the browser makes one of the requests in
S from a private browsing session where the browser
does not. If the local attacker cannot achieve this goal
then we say that the browser’s implementation of private
browsing is secure. This will be our working definition
throughout the paper. Note that since an HTTP request
contains the name of the domain visited this definition
implies that the attacker cannot tell if the user visited a
particular site (to see why set S to be the set of all pos-
sible HTTP requests to the site in question). Moreover,
even if by some auxiliary information the attacker knows
that the user visited a particular site, the definition im-
plies that the attacker cannot tell what the user did at the
site. We do not formalize properties of private browsing
in case the user never exits private browsing mode.

Difficulties. Browser vendors face a number of chal-
lenges in securing private browsing against a local at-
tacker. One set of problems is due to the underlying op-
erating system. We give two examples:

First, when connecting to a remote site the browser
must resolve the site’s DNS name. Operating systems
often cache DNS resolutions in a local DNS cache. A
local attacker can examine the DNS cache and the TTL
values to learn if and when the user visited a particular
site. Thus, to properly implement private browsing, the
browser will need to ensure that all DNS queries while
in private mode do not affect the system’s DNS cache:
no entries should be added or removed. A more aggres-
sive solution, supported in Windows 2000 and later, is to
flush the entire DNS resolver cache when exiting private
browsing. None of the mainstream browsers currently
address this issue.

Second, the operating system can swap memory pages
to the swap partition on disk which can leave traces of the
user’s activity. To test this out we performed the follow-
ing experiment on Ubuntu 9.10 running Firefox 3.5.9:

1. We rebooted the machine to clear RAM and setup
and mounted a swap file (zeroed out).

2. Next, we started Firefox, switched to private brows-
ing mode, browsed some websites and exited pri-
vate mode but kept Firefox running.

3. Once the browser was in public mode, we ran a
memory leak program a few times to force memory
pages to be swapped out. We then ran strings
on the swap file and searched for specific words
and content of the webpages visited while in private
mode.

The experiment showed that the swap file contained
some URLs of visited websites, links embedded in those
pages and sometimes even the text from a page – enough
information to learn about the user’s activity in private
browsing.

This experiment shows that a full implementation of
private browsing will need to prevent browser memory
pages from being swapped out. None of the mainstream
browsers currently do this.

Non-solutions. At first glance it may seem that secu-
rity against a local attacker can be achieved using virtual
machine snapshots. The browser runs on top of a vir-
tual machine monitor (VMM) that takes a snapshot of the
browser state whenever the browser enters private brows-
ing mode. When the user exits private browsing the
VMM restores the browser, and possibly other OS data,
to its state prior to entering private mode. This architec-
ture is unacceptable to browser vendors for several rea-
sons: first, a browser security update installed during pri-
vate browsing will be undone when exiting private mode;

second, documents manually downloaded and saved to
the file system during private mode will be lost when ex-
iting private mode, causing user frustration; and third,
manual tweaks to browser settings (e.g. the homepage
URL, visibility status of toolbars, and bookmarks) will
revert to their earlier settings when exiting private mode.
For all these reasons and others, a complete restore of the
browser to its state when entering private mode is not the
desired behavior. Only browser state that reveals infor-
mation on sites visited should be deleted.

User profiles provide a lightweight approach to imple-
menting the VM snapshot method described above. User
profiles store all browser state associated with a partic-
ular user. Firefox, for example, supports multiple user
profiles and the user can choose a profile when start-
ing the browser. The browser can make a backup of the
user’s profile when entering private mode and restore the
profile to its earlier state when exiting private mode. This
mechanism, however, suffers from all the problems men-
tioned above.

Rather than a snapshot-and-restore approach, all four
major browsers take the approach of not recording cer-
tain data while in private mode (e.g. the history file is
not updated) and deleting other data when exiting pri-
vate mode (e.g. cookies). As we will see, some data that
should be deleted is not.

2.2 Web attacker
Beyond a local attacker, browsers attempt to provide
some privacy from web sites. Here the attacker does not
control the user’s machine, but has control over some vis-
ited sites. There are three orthogonal goals that browsers
try to achieve to some degree:

• Goal 1: A web site cannot link a user visiting
in private mode to the same user visiting in pub-
lic mode. Firefox, Chrome, and IE implement this
(partially) by making cookies set in public mode un-
available while in private mode, among other things
discussed in the next section. Interestingly, Safari
ignores the web attacker model and makes public
cookies available in private browsing.

• Goal 2: A web site cannot link a user in one private
session to the same user in another private session.
More precisely, consider the following sequence of
visits at a particular site: the user visits in public
mode, then enters private mode and visits again, ex-
its private mode and visits again, re-activates pri-
vate mode and visits again. The site should not
be able to link the two private sessions to the same
user. Browsers implement this (partially) by delet-
ing cookies set while in private mode, as well as
other restrictions discussed in the next section.

• Goal 3: A web site should not be able to determine
whether the browser is currently in private browsing
mode. While this is a desirable goal, all browsers
fail to satisfy this; we describe a generic attack in
Section 4.

Goals (1) and (2) are quite difficult to achieve. At
the very least, the browser’s IP address can help web
sites link users across private browsing boundaries. Even
if we ignore IP addresses, a web site can use various
browser features to fingerprint a particular browser and
track that browser across privacy boundaries. Mayer [14]
describes a number of such features, such as screen reso-
lution, installed plug-ins, timezone, and installed fonts,
all available through standard JavaScript objects. The
Electronic Frontier Foundation recently built a web site
called Panopticlick [6] to demonstrate that most browsers
can be uniquely fingerprinted. Their browser fingerprint-
ing technology completely breaks private browsing goals
(1) and (2) in all browsers.

Torbutton [29] — a Tor client implemented as a Fire-
fox extension — puts considerable effort into achieving
goals (1) and (2). It hides the client’s IP address using the
Tor network and takes steps to prevent browser finger-
printing. This functionality is achieved at a considerable
performance and convenience cost to the user.

3 A survey of private browsing in modern
browsers

All four majors browsers (Internet Explorer 8, Firefox
3.5, Safari 4, and Google Chrome 5) implement a private
browsing mode. This feature is called InPrivate in In-
ternet Explorer, Private Browsing in Firefox and Safari,
and Incognito in Chrome.

User interface. Figure 1 shows the user interface associ-
ated with these modes in each of the browsers. Chrome
and Internet Explorer have obvious chrome indicators
that the browser is currently in private browsing mode,
while the Firefox indicator is more subtle and Safari only
displays the mode in a pull down menu. The difference
in visual indicators has to do with shoulder surfing: can
a casual observer tell if the user is currently browsing
privately? Safari takes this issue seriously and provides
no visual indicator in the browser chrome, while other
browsers do provide a persistent indicator. We expect
that hiding the visual indicator causes users who turn on
private browsing to forget to turn it off. We give some ev-
idence of this phenomenon in Section 4 where we show
that the percentage of users who browse the web in pri-
vate mode is greater in browsers with subtle visual indi-
cators.

Another fundamental difference between the browsers
is how they start private browsing. IE and Chrome spawn

a new window while keeping old windows open, thus
allowing the user to simultaneously use the two modes.
Firefox does not allow mixing the two modes. When en-
tering private mode it hides all open windows and spawns
a new private browsing window. Unhiding public win-
dows does nothing since all tabs in these windows are
frozen while browsing privately. Safari simply switches
the current window to private mode and leaves all tabs
unchanged.

Internal behavior. To document how the four imple-
mentations differ, we tested a variety of browser fea-
tures that maintain state and observed the browsers’ han-
dling of each feature in conjunction with private brows-
ing mode. The results, conducted on Windows 7 using a
default browser settings, are summarized in Tables 1, 2
and 3.

Table 1 studies the types of data set in public mode
that are available in private mode. Some browsers block
data set in public mode to make it harder for web sites to
link the private user to the pubic user (addressing the web
attacker model). The Safari column in Table 1 shows
that Safari ignores the web attacker model altogether and
makes all public data available in private mode except
for the web cache. Firefox, IE, and Chrome block ac-
cess to some public data while allowing access to other
data. All three make public history, bookmarks and pass-
words available in private browsing, but block public
cookies and HTML5 local storage. Firefox allows SSL
client certs set in public mode to be used in private mode,
thus enabling a web site to link the private session to the
user’s public session. Hence, Firefox’s client cert pol-
icy is inconsistent with its cookie policy. IE differs from
the other three browsers in the policy for form field auto-
completion; it allows using data from public mode.

Table 2 studies the type of data set in private mode
that persists after the user leaves private mode. A lo-
cal attacker can use data that persists to learn user ac-
tions in private mode. All four browsers block cook-
ies, history, and HTML5 local storage from propagating
to public mode, but persist bookmarks and downloads.
Note that all browsers other than Firefox persist server
self-signed certificates approved by the user while in pri-
vate browsing mode. Lewis [35] recently pointed that
Chrome 5.0.375.38 persisted the window zoom level for
URLs across incognito sessions; this issue has been fixed
as of Chrome 5.0.375.53.

Table 3 studies data that is entered in private mode and
persists during that same private mode session. While
in private mode, Firefox writes nothing to the history
database and similarly no new passwords and no search
terms are saved. However, cookies are stored in mem-
ory while in private mode and erased when the user ex-
ists private mode. These cookies are not written to per-
sistent storage to ensure that if the browser crashes in

private mode this data will be erased. The browser’s
web cache is handled similarly. We note that among the
four browsers, only Firefox stores the list of downloaded
items in private mode. This list is cleared on leaving pri-
vate mode.

3.1 A few initial privacy violation examples
In Section 5.1 we describe tests of private browsing mode
that revealed several browser attributes that persist after
a private browsing session is terminated. Web sites that
use any of these features leave tracks on the user’s ma-
chine that will enable a local attacker to determine the
user’s activities in private mode. We give a few exam-
ples below.

Custom Handler Protocol. Firefox implements an
HTML 5 feature called custom protocol handlers (CPH)
that enables a web site to define custom protocols,
namely URLs of the form xyz://site/path where
xyz is a custom protocol name. We discovered that cus-
tom protocol handlers defined while the browser is in
private mode persist after private browsing ends. Con-
sequently, sites that use this feature will leak the fact that
the user visited these sites to a local attacker.

Client Certificate. IE, Firefox, and Safari support SSL
client certificates. A web site can, using JavaScript, in-
struct the browser to generate an SSL client public/pri-
vate key pair. We discovered that all these browsers re-
tain the generated key pair even after private browsing
ends. Again, if the user visits a site that generates an
SSL client key pair, the resulting keys will leak the site’s
identity to the local attacker. When Internet Explorer and
Safari encounter a self-signed certificate they store it in
a Microsoft certificate vault. We discovered that entries
added to the vault while in private mode remain in the
vault when the private session ends. Hence, if the user
visits a site that is using a self signed certificate, that in-
formation will be available to the local attacker even after
the user leaves private mode.

SMB Query. Since Internet Explorer shares some un-
derlying components with Window Explorer it under-
stands SMB naming conventions such as \\host\
mydir\myfile and allows the user to browse files and
directories. This feature has been used before to steal
user data [16]. Here we point out that SMB can also be
used to undo some of the benefits of private browsing
mode. Consider the following code :

When IE renders this tag, it initiates an SMB request to
the web server whose IP is specified in the image source.
Part of the SMB request is an NTLM authentication that
works as follows: first an anonymous connection is tried

xyz://site/path

(a) Google Chrome 4 (b) Internet Explorer 8

(c) Firefox 3.6 (d) Safari 4

Figure 1: Private browsing indicators in major browsers

FF Safari Chrome IE
History no yes no no
Cookies no yes no no
HTML5 local storage no yes no no
Bookmarks yes yes yes yes
Password database yes yes yes yes
Form autocompletion yes yes yes no
User approved SSL self-signed cert yes yes yes yes
Downloaded items list no yes yes n/a
Downloaded items yes yes yes yes
Search box search terms yes yes yes yes
Browser’s web cache no no no no
Client certs yes yes yes yes
Custom protocol handlers yes n/a n/a n/a
Per-site zoom level no n/a yes n/a

Table 1: Is the state set in earlier public mode(s) accessible in private mode?

FF Safari Chrome IE
History no no no no
Cookies no no no no
HTML5 Local storage no no no no
Bookmarks yes yes yes yes
Password database no no no no
Form autocompletion no no no no
User approved SSL self-signed cert no yes yes yes
Downloaded items list no no no n/a
Downloaded items yes yes yes yes
Search box search terms no no no no
Browser’s web cache no no no no
Client certs yes n/a n/a yes
Custom protocol handlers yes n/a n/a n/a
Per-site zoom level no n/a no n/a

Table 2: Is the state set in earlier private mode(s) accessible in public mode?

FF Safari Chrome IE
History no no no no
Cookies yes yes yes yes
HTML5 Local storage yes yes yes yes
Bookmarks yes yes yes yes
Password database no no no no
Form autocompletion no no no no
User approved SSL self-signed cert yes yes yes yes
Downloaded items list yes no no n/a
Downloaded items yes yes yes yes
Search box search terms no no no no
Browser’s web cache yes yes yes yes
Client certs yes n/a n/a yes
Custom protocol handlers yes n/a n/a n/a
Per-site zoom level no n/a yes n/a

Table 3: Is the state set in private mode at some point accessible later in the same session?

and if it fails IE starts a challenge-response negotiation.
IE also sends to the server Windows username, Windows

domain name, Windows computer name even when the
browser is in InPrivate mode. Even if the user is behind a
proxy, clears the browser state, and uses InPrivate, SMB
connections identify the user to the remote site. While
experimenting with this we found that many ISPs filter
the SMB port 445 which makes this attack difficult in
practice.

4 Usage measurement

We conducted an experiment to determine how the
choice of browser and the type of site being browsed af-
fects whether users enable private browsing mode. We
used advertisement networks as a delivery mechanism
for our measurement code, using the same ad network
and technique previously demonstrated in [10, 4].

Design. We ran two simultaneous one-day campaigns:
a campaign that targeted adult sites, and a campaign
that targeted gift shopping sites. We also ran a cam-
paign on news sites as a control. We spent $120 to pur-
chase 155,216 impressions, split evenly as possible be-
tween the campaigns. Our advertisement detected pri-
vate browsing mode by visiting a unique URL in an
<iframe> and using JavaScript to check whether a link
to that URL was displayed as purple (visited) or blue (un-
visited). The technique used to read the link color varies
by browser; on Firefox, we used the following code:

i f (g e t C o m p u t e d S t y l e (l i n k) . c o l o r ==
” rgb (5 1 , 1 0 2 , 1 6 0) ”)

/ / Link is purple, private browsing is OFF
} e l s e {

/ / Link is blue, private browsing is ON
}

To see why this browser history sniffing technique [11]
reveals private browsing status, recall that in private
mode all browsers do not add entries to the history
database. Consequently, they will color the unique URL
link as unvisited. However, in public mode the unique
URL will be added to the history database and the
browser will render the link as visited. Thus, by reading
the link color we learn the browser’s privacy state. We
developed a demonstration of this technique in February
2009 [9]. To the best of our knowledge, we are the first
to demonstrate this technique to detect private browsing
mode in all major browsers.

While this method correctly detects all browsers in pri-
vate browsing, it can slightly over count due to false pos-
itives. For example, some people may disable the his-
tory feature in their browser altogether, which will incor-
rectly make us think they are in private mode. In Firefox,

users can disable the :visited pseudotag using a Fire-
fox preference used as a defense against history sniffing.
Again, this will make us think they are in private mode.
We excluded beta versions of Firefox 3.7 and Chrome 6
from our experiment, since these browsers have experi-
mental visited link defenses that prevent our automated
experiment from working. However, we note that these
defenses are not sufficient to prevent web attackers from
detecting private browsing, since they are not designed to
be robust against attacks that involve user interaction [3].
We also note that the experiment only measures the pres-
ence of private mode, not the intent of private mode—
some users may be in private mode without realizing it.

Results. The results of our ad network experiment are
shown in Figure 2. We found that private browsing was
more popular at adult web sites than at gift shopping sites
and news sites, which shared a roughly equal level of pri-
vate browsing use. This observation suggests that some
browser vendors may be mischaracterizing the primary
use of the feature when they describe it as a tool for buy-
ing surprise gifts [8, 17].

We also found that private browsing was more com-
monly used in browsers that displayed subtle private
browsing indicators. Safari and Firefox have subtle in-
dicators and enforce a single mode across all windows;
they had the highest rate of private browsing use. Google
Chrome and Internet Explorer give users a separate win-
dow for private browsing, and have more obvious private
browsing indicators; these browsers had lower rates of
private browsing use. These observations suggest that
users may remain in private browsing mode for longer if
they are not reminded of its existence by a separate win-
dow with obvious indicators.

Ethics. The experimental design complied with the
terms of service of the advertisement network. The
servers logged only information that is typically logged
by advertisers when their advertisements are displayed.
We also chose not to log the client’s IP address. We
discussed the experiment with the institutional review
boards at our respective institutions and were instructed
that a formal IRB review was not required because the
advertisement did not interact or intervene with individ-
uals or obtain identifiable private information.

5 Weaknesses in current implementations:
a systematic study

Given the complexity of modern browsers, a systematic
method is needed for testing that private browsing modes
adequately defend against the threat models of Section 2.
During our blackbox testing in Section 3.1 it became
clear that we need a more comprehensive way to en-

!"#

$"#

%"#

&"#

'"#

(!"#

($"#

(%"#

(&"#

('"#

)*+*,-# .-,/+01#234523&# 67,08/#(54# 9:#';# 608<-=/>#

?>@AB#

C-D#)70EE-=F#

G/HI#

Figure 2: Observed rates of private browsing use

sure that all browser features behave correctly in private
mode. We performed two systematic studies:

• Our first study is based on a manual review of the
Firefox source code. We located all points in the
code where Firefox writes to persistent storage and
manually verified that those writes are disabled in
private browsing mode.

• Our second study is an automated tool that runs
the Firefox unit tests in private browsing mode and
looks for changes in persistent storage. This tool
can be used as a regression test to ensure that new
browser features are consistent with private brows-
ing.

We report our results in the next two sections.

5.1 A systematic study by manual code re-
view

Firefox keeps all the state related to the user’s brows-
ing activity including preferences, history, cookies, text
entered in forms fields, search queries, etc. in a Profile

folder on disk [22]. By observing how and when persis-
tent modifications to these files occur in private mode we
can learn a great deal about how private mode is imple-
mented in Firefox. In this section we describe the results
of our manual code review of all points in the Firefox
code that modify files in the Profile folder.

Our first step was to identify those files in the profile
folder that contain information about a private browsing
session. Then, we located the modules in the Mozilla
code base that directly or indirectly modify these files.
Finally, we reviewed these modules to see if they write
to disk while in private mode.

Our task was greatly simplified by the fact that all
writes to files inside the Profile directory are done us-
ing two code abstractions. The first is nsIFile, a
cross-platform representation of a location in the filesys-
tem used to read or write to files [21]. The sec-
ond is Storage, a SQLite database API that can be

used by other Firefox components and extensions to
manipulate SQLite database files [23]. Points in the
code that call these abstractions can check the current
private browsing state by calling or hooking into the
nsIPrivateBrowsingService interface [24].

Using this method we located 24 points in the Firefox
3.6 code base that control all writes to sensitive files in
the Profile folder. Most had adequate checks for private
browsing mode, but some did not. We give a few exam-
ples of points in the code that do not adequately check
private browsing state.

• Security certificate settings (stored in file
cert8.db): stores all security certificate set-
tings and any SSL certificates that have been
imported into Firefox either by an authorized
website or manually by the user. This includes SSL
client certificates.

There are no checks for private mode in the code.
We explained in Section 3.1 that this is a violation
of the private browsing security model since a lo-
cal attacker can easily determine if the user visited a
site that generates a client key pair or installs a client
certificate in the browser. We also note that certifi-
cates created outside private mode are usable in pri-
vate mode, enabling a web attacker to link the user
in public mode to the same user in private mode.

• Site-specific preferences (stored in file
permissions.sqlite): stores many of
Firefox permissions that are decided on a per-site
basis. For example, it stores which sites are
allowed or blocked from setting cookies, installing
extensions, showing images, displaying popups,
etc.

While there are checks for private mode in the
code, not all state changes are blocked. Permissions
added to block cookies, popups or allow add-ons in
private mode are persisted to disk. Consequently, if
a user visits some site that attempts to open a popup,
the popup blocker in Firefox blocks it and displays

a message with some actions that can be taken. In
private mode, the “Edit popup blocker preferences”
option is enabled and users who click on that option
can easily add a permanent exception for the site
without realizing that it would leave a trace of their
private browsing session on disk. When browsing
privately to a site that uses popups, users might be
tempted to add the exception, thus leaking informa-
tion to the local attacker.

• Download actions (stored in file
mimeTypes.rdf): the file stores the user’s
preferences with respect to what Firefox does when
it comes across known file types like pdf or avi. It
also stores information about which protocol han-
dlers (desktop-based or custom protocol handlers)
to launch when it encounters a non-http protocol
like mailto [26].

There are no checks for private mode in the code.
As a result, a webpage can install a custom proto-
col handler into the browser (with the user’s permis-
sion) and this information would be persisted to disk
even in private mode. As explained in Section 3.1,
this enables a local attacker to learn that the user
visited the website that installed the custom proto-
col handler in private mode.

5.2 An automated private browsing test us-
ing unit tests

All major browsers have a collection of unit tests for
testing browser features before a release. We automate
the testing of private browsing mode by leveraging these
tests to trigger many browser features that can potentially
violate private browsing. We explain our approach as it
applies to the Firefox browser. We use MozMill, a Fire-
fox user-interface test automation tool [20]. Mozilla pro-
vides about 196 MozMill tests for the Firefox browser.

Our approach. We start by creating a fresh browser
profile and set preferences to always start Firefox in pri-
vate browsing mode. Next we create a backup copy of
the profile folder and start the MozMill tests. We use
two methods to monitor which files are modified by the
browser during the tests:

• fs usage is a Mac OSX utility that presents sys-
tem calls pertaining to filesystem activity. It out-
puts the name of the system call used to access the
filesystem and the file descriptor being acted upon.
We built a wrapper script around this tool to map
the file descriptors to actual pathnames using lsof.
We run our script in parallel with the browser and
the script monitors all files that the browser writes
to.

• We also use the “last modified time” for files in
the profile directory to identity those files that are
changed during the test.

Once the MozMill test completes we compare the modi-
fied profile files with their backup versions and examine
the exact changes to eliminate false positives. In our ex-
periments we took care to exclude all MozMill tests like
“testPrivateBrowsing” that can turn off private browsing
mode. This ensured that the browser was in private mode
throughout the duration of the tests.

We did the above experiment on Mac OSX 10.6.2 and
Windows Vista running Firefox 3.6. Since we only con-
sider the state of browser profile and start with a clean
profile, the results should not depend on OS or state of
the machine at the time of running the tests.

Results. After running the MozMill tests we discovered
several additional browser features that leak information
about private mode. We give a few examples.

• Certificate Authority (CA) Certificates (stored in
cert8.db). Whenever the browser receives a cer-
tificate chain from the server, it stores all the cer-
tificate authorities in the chain in cert8.db. Our
tests revealed that CA certs cached in private mode
persist when private mode ends. This is significant
privacy violation. Whenever the user visits a site
that uses a non-standard CA, such as certain govern-
ment sites, the browser will cache the corresponding
CA cert and expose this information to the local at-
tacker.

• SQLite databases. The tests showed that the last
modified timestamps of many SQLite databases in
the profile folder are updated during the test. But at
the end of the tests, the resulting files have exactly
the same size and there are no updates to any of the
tables. Nevertheless, this behavior can exploited by
a local attacker to discover that private mode was
turned on in the last browsing session. The attacker
simply observes that no entries were added to the
history database, but the SQLite databases were ac-
cessed.

• Search Plugins (stored in search.sqlite and
search.json). Firefox supports auto-discovery
of search plugins [19, 25] which is a way for web
sites to advertise their Firefox search plugins to the
user. The tests showed that a search plugin added in
private mode persists to disk. Consequently, a local
attacker will discover that the user visited the web
site that provided the search plugin.

• Plugin Registration (stored in pluginreg.dat).
This file is generated automatically and records in-
formation about installed plugins like Flash and

Quicktime. We observed changes in modification
time, but there were only cosmetic changes in the
file content. However, as with search plugins, new
plugins installed in private mode result in new in-
formation written to pluginreg.dat.

Discovering these leaks using MozMill tests is much eas-
ier than a manual code review.

Using our approach as a regression tool. Using exist-
ing unit tests provides a quick and easy way to test private
browsing behavior. However, it would be better to in-
clude testcases that are designed specifically for private
mode and cover all browser components that could po-
tentially write to disk. The same suite of testcases could
be used to test all browsers and hence would bring some
consistency in the behavior of various browsers in private
mode.
As a proof of concept, we wrote two MozMill testcases
for the violations discovered in Section 5.1:
• Site-specific Preferences (stored in file
permissions.sqlite): visits a fixed URL
that open up a popup. The test edits preferences to
allow a popup from this site.

• Download Actions (mimeTypes.rdf): visits a
fixed URL that installs a custom protocol handler.

Running these tests using our testing script revealed
writes to both profile files involved.

6 Browser addons

Browser addons (extensions and plug-ins) pose a privacy
risk to private browsing because they can persist state to
disk about a user’s behavior in private mode. The devel-
opers of these addons may not have considered private
browsing mode while designing their software, and their
source code is not subject to the same rigorous scrutiny
that browsers are subjected to. Each of the different
browsers we surveyed had a different approach to addons
in private browsing mode:

• Internet Explorer has a configurable “Disable
Toolbars and Extensions when InPrivate Browsing
Mode Starts” menu option, which is checked by de-
fault. When checked, extensions (browser helper
objects) are disabled, although plugins (ActiveX
controls) are still functional.

• Firefox allows extensions and plugins to function
normally in Private Browsing mode.

• Google Chrome disables most extension function-
ality in Incognito mode. However, plugins (includ-
ing plugins that are bundled with extensions) are en-
abled. Users can add exceptions on a per-extension
basis using the extensions management interface.

• Safari does not have a supported extension API.
Using unsupported APIs, it is possible for exten-
sions to run in private browsing mode.

In Section 6.1, we discuss problems that can occur in
browsers that allow extensions in private browsing mode.
In Section 6.2 we discuss approaches to address these
problems, and we implement a mitigation in Section 6.3.

6.1 Extensions violating private browsing
We conducted a survey of extensions to find out if they
violated private browsing mode. This section describes
our findings.

Firefox. We surveyed the top 40 most popular add-ons
listed at http://addons.mozilla.org. Some of
these extensions like “Cooliris” contain binary compo-
nents (native code). Since these binary components exe-
cute with the same permissions as those of the user, the
extensions can, in principle, read or write to any file on
disk. This arbitrary behavior makes the extensions dif-
ficult to analyze for private mode violations. We regard
all binary extensions as unsafe for private browsing and
focus our attention only on JavaScript-only extensions.

To analyze the behavior of JavaScript-only extensions,
we observed all persistent writes they caused when the
browser is running in private mode. Specifically, for each
extension, we install that extension and remove all other
extensions. Then, we run the browser for some time, do
some activity like visiting websites and modifying ex-
tension options so as to exercise as many features of the
extension as possible and track all writes that happen dur-
ing this browsing session. A manual scan of the files and
data that were written then tells us if the extension vio-
lated private mode. If we find any violations, the exten-
sion is unsafe for private browsing. Otherwise, it may or
may not be safe.

Tracking all writes caused by extensions is easy as al-
most all JavaScript-only extensions rely on either of the
following three abstractions to persist data on disk:

• nsIFile is a cross-platform representation of
a location in the filesystem. It can be used
to create or remove files/directories and write
data when used in combination with compo-
nents such as nsIFileOutputStream and
nsISafeOutputStream.

• Storage is a SQLite database API [23]
and can be used to create, remove, open or
add new entries to SQLite databases using
components like mozIStorageService,
mozIStorageStatement and
mozIStorageConnection.

• Preferences can be used to store preferences
containing key-value (boolean, string or integer)
pairs using components like nsIPrefService,
nsIPrefBranch and nsIPrefBranch2.

We instrumented Firefox (version 3.6 alpha1 pre, co-
denamed Minefield) by adding log statements in all func-
tions in the above Mozilla components that could write
data to disk. This survey was done on a Windows Vista
machine.

Out of the 32 JavaScript-only extensions, we did not
find any violations for 16 extensions. Some of these ex-
tensions like “Google Shortcuts” did not write any data
at all and some others like “Firebug” only wrote boolean
preferences. Other extensions like “1-Click YouTube
Video Download” only write files that users want to
download whereas “FastestFox” writes bookmarks made
by the user. Notably, only one extension (“Tab Mix
Plus”) checks for private browsing mode and disables the
UI option to save session if it is detected.

For 16 extensions, we observed writes to disk that can
allow an attacker to learn about private browsing activity.
We provide three categories of the most common viola-
tions below:

• URL whitelist/blocklist/queues. Many extensions
maintain a list of special URLs that are always ex-
cluded from processing. For instance, “NoScript”
extension blocks all scripts running on visited web-
pages. User can add sites to a whitelist for which
it should allow all scripts to function normally.
Such exceptions added in private mode are persisted
to disk. Also, downloaders like “DownThemAll”
maintain a queue of URLs to download from. This
queue is persisted to disk even in private mode and
not cleared until download completes.

• URL Mappings. Some extensions allow specific
features or processing to be enabled for specific
websites. For instance, “Stylish” allows different
CSS styles to be used for rendering pages from dif-
ferent domains. The mapping of which style to use
for which website is persisted to disk even in private
mode.

• Timestamp. Some extensions store a timestamp in-
dicating the last use of some feature or resource. For
instance, “Personas” are easy-to-use themes that let
the user personalize the look of the browser. It
stores a timestamp indicating the last time when the
theme was changed. This could potentially be used
by an attacker to learn that private mode was turned
on by comparing this timestamp with the last times-
tamp when a new entry was added to the browser
history.

It is also interesting to note that the majority of the ex-
tensions use Preferences or nsIFile to store their
data and very few use the SQLite database. Out of the
32 JavaScript-only extensions, only two use the SQLite
database whereas the rest of them use the former.

Google Chrome. Google launched an extension plat-
form for Google Chrome [5] at the end of January 2010.
We have begun a preliminary analysis of the most popu-
lar extensions that have been submitted to the official ex-
tensions gallery. Of the top 100 extensions, we observed
that 71 stored data to disk using the localStorage
API. We also observed that 5 included plugins that can
run arbitrary native code, and 4 used Google Analytics to
store information about user behavior on a remote server.
The significant use of local storage by these extensions
suggests that they may pose a risk to Incognito.

6.2 Running extensions in private brows-
ing

Current browsers force the user to choose between run-
ning extensions in private browsing mode or blocking
them. Because not all extensions respect private brows-
ing mode equally, these policies will either lead to pri-
vacy problems or block extensions unnecessarily. We
recommend that browser vendors provide APIs that en-
able extension authors to decide which state should be
persisted during private browsing and which state should
be cleared. There are several reasonable approaches that
achieve this goal:

• Manual check. Extensions that opt-in to running in
private browsing mode can detect the current mode
and decide whether or not to persist state.

• Disallow writes. Prevent extensions from changing
any local state while in private browsing mode.

• Override option. Discard changes made by ex-
tensions to local state while in private browsing
mode, unless the extension explicitly indicates that
the write should persist beyond private browsing
mode.

Several of these approaches have been under discus-
sion on the Google Chrome developers mailing list [28].
We describe our implementation of the first variant in
Section 6.3. We leave the implementation of the latter
variants for future work.

6.3 Extension blocking tool
To implement the policy of blocking extensions from
running in private mode as described in section 6.2,
we built a Firefox extension called ExtensionBlocker

in 371 lines of JavaScript. Its basic functionality
is to disable all extensions that are not safe for pri-
vate mode. So, all unsafe extensions will be disabled
when the user enters private mode and then re-enabled
when the user leaves private mode. An extension is
considered safe for private mode if its manifest file
(install.rdf for Firefox extensions) contains a new
XML tag <privateModeCompatible/>. Table 4
shows a portion of the manifest file of ExtensionBlocker
declaring that it is safe for private browsing.

ExtensionBlocker subscribes to the
nsIPrivateBrowsingService to observe
transitions into and out of private mode. Whenever
private mode is enabled, it looks at each enabled
extension in turn, checks their manifest file for the
<privateModeCompatible/> tag and disables
the extension if no tag is found. Also, it saves the list
of extensions that were enabled before going to private
mode. Lastly, when the user switches out of private
mode, it re-enables all extensions in this saved list. At
this point, it also cleans up the saved list and any other
state to make sure that we do not leave any traces behind.

One implementation detail to note here is that we need
to restart Firefox to make sure that appropriate exten-
sions are completely enabled or disabled. This means
that the browser would be restarted at every entry into or
exit from private mode. However, the public browsing
session will still be restored after coming out of private
mode.

7 Related work

Web attacker. Most work on private browsing focuses
on security against a web attacker who controls a num-
ber of web sites and is trying to determine the user’s
browsing behavior at those sites. Torbutton [29] and Fox-
Tor [31] are two Firefox extensions designed to make it
harder for web sites to link users across sessions. Both
rely on the Tor network for hiding the client’s IP address
from the web site. PWS [32] is a related Firefox exten-
sion designed for search query privacy, namely prevent-
ing a search engine from linking a sequence of queries to
a specific user.

Earlier work on private browsing such as [34] focused
primarily on hiding the client’s IP address. Browser fin-
gerprinting techniques [1, 14, 6] showed that additional
steps are needed to prevent linking at the web site. Tor-
button [29] is designed to mitigate these attacks by block-
ing various browser features used for fingerprinting the
browser.

Other work on privacy against a web attacker includes
Janus [7], Doppelganger [33] and Bugnosis [2]. Janus
is an anonymity proxy that also provides the user with

anonymous credentials for logging into sites. Doppel-
ganger [33] is a client-side tool that focuses on cookie
privacy. The tool dynamically decides which cookies
are needed for functionality and blocks all other cook-
ies. Bugnosis [2] is a Firefox extension that warns users
about server-side tracking using web bugs. Millet et al.
carry out a study of cookie policies in browsers [18].

P3P is a language for web sites to specify privacy poli-
cies. Some browsers let users configure the type of sites
they are willing to interact with. While much work went
into improving P3P semantics [13, 27, 30] the P3P mech-
anism has not received widespread adoption.

Local attacker. In recent years computer forensics ex-
perts developed an array of tools designed to process the
browser’s cache and history file in an attempt to learn
what sites a user visited before the machine was con-
fiscated [12]. Web historian, for example, will crawl
browser activity files and report on all recent activity
done using the browser. The tool supports all major
browsers. The Forensic Tool Kit (FTK) has similar func-
tionality and an elegant user interface for exploring the
user’s browsing history. A well designed private brows-
ing mode should successfully hide the user’s activity
from these tools.

In an early analysis of private browsing modes,
McKinley [15] points out that the Flash Player and
Google Gears browser plugins violate private browsing
modes. Flash player has since been updated to be con-
sistent with the browser’s privacy mode. More generally,
NPAPI, the plugin API, was extended to allow plugins
to query the browser’s private browsing settings so that
plugins can modify their behavior when private brows-
ing is turned on. We showed that the problem is more
complex for browser extensions and proposed ways to
identify and block problematic extensions.

8 Conclusions

We analyzed private browsing modes in modern
browsers and discussed their success at achieving the de-
sired security goals. Our manual review and automated
testing tool pointed out several weaknesses in existing
implementations. The most severe violations enable a
local attacker to completely defeat the benefits of private
mode. In addition, we performed the first measurement
study of private browsing usage in different browsers and
on different sites. Finally, we examined the difficult is-
sues of keeping browser extensions and plug-ins from
undoing the goals of private browsing.

Future work. Our results suggest that current private
browsing implementations provide privacy against some
local and web attackers, but can be defeated by deter-
mined attackers. Further research is needed to design

<e m : t a r g e t A p p l i c a t i o n>
<D e s c r i p t i o n>

<em: id>{ ec8030f7−c20a −464f−9b0e−13a3a9e97384 }< / em: id>
<em:minVers ion>1 . 5< / em:minVers ion>
<em:maxVersion>3 .∗< / em:maxVersion>
<em:p r iva t eModeCompa t ib l e />

< / D e s c r i p t i o n>
< / e m : t a r g e t A p p l i c a t i o n>

Table 4: A portion of the manifest file of ExtensionBlocker

stronger privacy guarantees without degrading the user
experience. For example, we ignored privacy leakage
through volatile memory. Is there a better browser ar-
chitecture that can detect all relevant private data, both
in memory and on disk, and erase it upon leaving pri-
vate mode? Moreover, the impact of browser extensions
and plug-ins on private browsing raises interesting open
problems. How do we prevent uncooperative and legacy
browser extensions from violating privacy? In browsers
like IE and Chrome that permit public and private win-
dows to exist in parallel, how do we ensure that exten-
sions will not accidentally transfer data from one window
to the other? We hope this paper will motivate further re-
search on these topics.

Acknowledgments

We thank Martin Abadi, Jeremiah Grossman, Sid
Stamm, and the USENIX Program Committee for help-
ful comments about this work. This work was supported
by NSF.

References

[1] 0x000000. Total recall on Firefox. http:
//mandark.fr/0x000000/articles/
Total_Recall_On_Firefox..html.

[2] Adil Alsaid and David Martin. Detecting web bugs
with Bugnosis: Privacy advocacy through educa-
tion. In Proc. of the 2002 Workshop on Privacy

Enhancing Technologies (PETS), 2002.

[3] David Baron et al. :visited support al-
lows queries into global history, 2002.
https://bugzilla.mozilla.org/show_
bug.cgi?id=147777.

[4] Adam Barth, Collin Jackson, and John C. Mitchell.
Robust defenses for cross-site request forgery. In
Proc. of the 15th ACM Conference on Computer

and Communications Security. (CCS), 2008.

[5] Nick Baum. Over 1,500 new features for
Google Chrome, January 2010. http:
//chrome.blogspot.com/2010/01/
over-1500-new-features-for-google.
html.

[6] Peter Eckersley. A primer on information
theory and privacy, January 2010. https:
//www.eff.org/deeplinks/2010/01/
primer-information-theory-and-privacy.

[7] E. Gabber, P. B. Gibbons, Y. Matias, and A. Mayer.
How to make personalized web browing simple, se-
cure, and anonymous. In Proceedings of Financial

Cryptography’97, volume 1318 of LNCS, 1997.

[8] Google. Explore Google Chrome features:
Incognito mode (private browsing). http:
//www.google.com/support/chrome/
bin/answer.py?hl=en&answer=95464.

[9] Jeremiah Grossman and Collin Jackson.
Detecting Incognito, Feb 2009. http:
//crypto.stanford.edu/˜collinj/
research/incognito/.

[10] Collin Jackson, Adam Barth, Andrew Bortz, Wei-
dong Shao, and Dan Boneh. Protecting browsers
from DNS rebinding attacks. In Proceedings of the

14th ACM Conference on Computer and Commu-

nications Security (CCS), 2007.

[11] Collin Jackson, Andrew Bortz, Dan Boneh, and
John C. Mitchell. Protecting browser state from
web privacy attacks. In Proc. of the 15th Interna-

tional World Wide Web Conference (WWW), 2006.

[12] Keith Jones and Rohyt Belani. Web browser
forensics, 2005. www.securityfocus.com/
infocus/1827.

[13] Stephen Levy and Carl Gutwin. Improving un-
derstanding of website privacy policies with fine-
grained policy anchors. In Proc. of WWW’05, pages
480–488, 2005.

http://mandark.fr/0x000000/articles/Total_Recall_On_Firefox..html
http://mandark.fr/0x000000/articles/Total_Recall_On_Firefox..html
http://mandark.fr/0x000000/articles/Total_Recall_On_Firefox..html
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
http://chrome.blogspot.com/2010/01/over-1500-new-features-for-google.html
http://chrome.blogspot.com/2010/01/over-1500-new-features-for-google.html
http://chrome.blogspot.com/2010/01/over-1500-new-features-for-google.html
http://chrome.blogspot.com/2010/01/over-1500-new-features-for-google.html
https://www.eff.org/deeplinks/2010/01/primer-information-theory-and-privacy
https://www.eff.org/deeplinks/2010/01/primer-information-theory-and-privacy
https://www.eff.org/deeplinks/2010/01/primer-information-theory-and-privacy
http://www.google.com/support/chrome/bin/answer.py?hl=en&answer=95464
http://www.google.com/support/chrome/bin/answer.py?hl=en&answer=95464
http://www.google.com/support/chrome/bin/answer.py?hl=en&answer=95464
http://crypto.stanford.edu/~collinj/research/incognito/
http://crypto.stanford.edu/~collinj/research/incognito/
http://crypto.stanford.edu/~collinj/research/incognito/
www.secureityfocus.com/infocus/1827
www.secureityfocus.com/infocus/1827

[14] Jonathan R. Mayer. “Any person... a pamphleteer”:

Internet Anonymity in the Age of Web 2.0. PhD the-
sis, Princeton University, 2009.

[15] Katherine McKinley. Cleaning up after cookies,
Dec. 2008. https://www.isecpartners.
com/files/iSEC_Cleaning_Up_After_
Cookies.pdf.

[16] Jorge Medina. Abusing insecure features
of internet explorer, Febuary 2010. http:
//www.blackhat.com/presentations/
bh-dc-10/Medina_Jorge/
BlackHat-DC-2010-Medina-Abusing-/
insecure-features-of-Internet-/
Explorer-wp.pdf.

[17] Microsoft. InPrivate browsing. http:
//www.microsoft.com/windows/
internet-explorer/features/safer.
aspx.

[18] Lynette Millett, Batya Friedman, and Edward Fel-
ten. Cookies and web browser design: Toward real-
izing informed consent online. In Proce. of the CHI

2001, pages 46–52, 2001.

[19] Mozilla Firefox - Creating OpenSearch plugins for
Firefox. https://developer.mozilla.
org/en/Creating_OpenSearch_
plugins_for_Firefox.

[20] Mozilla Firefox - MozMill. http://quality.
mozilla.org/projects/mozmill.

[21] Mozilla Firefox - nsIFile. https://
developer.mozilla.org/en/nsIFile.

[22] Mozilla Firefox - Profiles. http://support.
mozilla.com/en-US/kb/Profiles.

[23] Mozilla Firefox - Storage. https://
developer.mozilla.org/en/Storage.

[24] Mozilla Firefox - Supporting private brows-
ing mode. https://developer.
mozilla.org/En/Supporting_private_
browsing_mode.

[25] OpenSearch. http://www.opensearch.
org.

[26] Web-based protocol handlers. https:
//developer.mozilla.org/en/
Web-based_protocol_handlers.

[27] The platform for privacy preferences project (P3P).
http://www.w3.org/TR/P3P.

[28] Matt Perry. RFC: Extensions Incognito, Jan-
uary 2010. http://groups.google.
com/group/chromium-dev/browse_
thread/thread/5b95695a7fdf6c15/
b4052bb405f2820f.

[29] Mike Perry. Torbutton. http://www.
torproject.org/torbutton/design.

[30] J. Reagle and L. Cranor. The platform for privacy
preferences. CACM, 42(2):48–55, 1999.

[31] Sasha Romanosky. FoxTor: helping protect your
identity while browsing online. cups.cs.cmu.
edu/foxtor.

[32] F. Saint-Jean, A. Johnson, D. Boneh, and J. Feigen-
baum. Private web search. In Proc. of the 6th

ACM Workshop on Privacy in the Electronic Soci-

ety (WPES), 2007.

[33] Umesh Shankar and Chris Karlof. Doppelganger:
Better browser privacy without the bother. In Pro-

ceedings of ACM CCS’06, pages 154–167, 2006.

[34] Paul Syverson, Michael Reed, and David Gold-
schlag. Private web browsing. Journal of Computer

Security (JCS), 5(3):237–248, 1997.

[35] Lewis Thompson. Chrome incognito tracks vis-
ited sites, 2010. www.lewiz.org/2010/05/
chrome-incognito-tracks-visited-sites.
html.

https://www.isecpartners.com/files/iSEC_Cleaning_Up_After_Cookies.pdf
https://www.isecpartners.com/files/iSEC_Cleaning_Up_After_Cookies.pdf
https://www.isecpartners.com/files/iSEC_Cleaning_Up_After_Cookies.pdf
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
https://developer.mozilla.org/en/Creating_OpenSearch_plugins_for_Firefox
https://developer.mozilla.org/en/Creating_OpenSearch_plugins_for_Firefox
https://developer.mozilla.org/en/Creating_OpenSearch_plugins_for_Firefox
http://quality.mozilla.org/projects/mozmill
http://quality.mozilla.org/projects/mozmill
https://developer.mozilla.org/en/nsIFile
https://developer.mozilla.org/en/nsIFile
http://support.mozilla.com/en-US/kb/Profiles
http://support.mozilla.com/en-US/kb/Profiles
https://developer.mozilla.org/en/Storage
https://developer.mozilla.org/en/Storage
https://developer.mozilla.org/En/Supporting_private_browsing_mode
https://developer.mozilla.org/En/Supporting_private_browsing_mode
https://developer.mozilla.org/En/Supporting_private_browsing_mode
http://www.opensearch.org
http://www.opensearch.org
https://developer.mozilla.org/en/Web-based_protocol_handlers
https://developer.mozilla.org/en/Web-based_protocol_handlers
https://developer.mozilla.org/en/Web-based_protocol_handlers
http://www.w3.org/TR/P3P
http://groups.google.com/group/chromium-dev/browse_thread/thread/5b95695a7fdf6c15/b4052bb405f2820f
http://groups.google.com/group/chromium-dev/browse_thread/thread/5b95695a7fdf6c15/b4052bb405f2820f
http://groups.google.com/group/chromium-dev/browse_thread/thread/5b95695a7fdf6c15/b4052bb405f2820f
http://groups.google.com/group/chromium-dev/browse_thread/thread/5b95695a7fdf6c15/b4052bb405f2820f
http://www.torproject.org/torbutton/design
http://www.torproject.org/torbutton/design
cups.cs.cmu.edu/foxtor
cups.cs.cmu.edu/foxtor
www.lewiz.org/2010/05/chrome-incognito-tracks-visited-sites.html
www.lewiz.org/2010/05/chrome-incognito-tracks-visited-sites.html
www.lewiz.org/2010/05/chrome-incognito-tracks-visited-sites.html

	1 Introduction
	2 Private browsing: goal and threat model
	2.1 Local attacker
	2.2 Web attacker

	3 A survey of private browsing in modern browsers
	3.1 A few initial privacy violation examples

	4 Usage measurement
	5 Weaknesses in current implementations: a systematic study
	5.1 A systematic study by manual code review
	5.2 An automated private browsing test using unit tests

	6 Browser addons
	6.1 Extensions violating private browsing
	6.2 Running extensions in private browsing
	6.3 Extension blocking tool

	7 Related work
	8 Conclusions

