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Abstract. Identification of all objects in a dataset whose similarity is
not less than a specified threshold is of major importance for manage-
ment, search, and analysis of data. Set similarity joins are commonly
used to implement this operation; they scale to large datasets and are
versatile to represent a variety of similarity notions. Most set similarity
join methods proposed so far present two main phases at a high level of
abstraction: candidate generation producing a set of candidate pairs and
verification applying the actual similarity measure to the candidates and
returning the correct answer. Previous work has primarily focused on the
reduction of candidates, where candidate generation presented the ma-
jor effort to obtain better pruning results. Here, we propose an opposite
approach. We drastically decrease the computational cost of candidate
generation by dynamically reducing the number of indexed objects at the
expense of increasing the workload of the verification phase. Our experi-
mental findings show that this trade-off is advantageous: we consistently
achieve substantial speed-ups as compared to previous algorithms.

1 Introduction

Similarity joins pair objects from a dataset whose similarity is not less than a
specified threshold; the notion of similarity is mathematically approximated by a
similarity function defined on the collection of relevant features representing two
objects. This is a core operation for many important application areas including
data cleaning [1, 5], text data support in relational databases [6], Web indexing
[3], social networks [10], and information extraction [4].

Several issues make the realization of similarity joins challenging. First, the
objects to be matched are commonly sparsely represented in very high dimen-
sionstext data is a prominent example. It is well-known that indexing techniques
based on data-space partitioning achieve only little improvement over a simple
sequential scan at high dimensionality. Moreover, many domains involve very
large datasets, therefore scalability is a prime requirement. Finally, the concept
of similarity is intrinsically application-dependent. Thus, a general purpose sim-
ilarity join realization has to support a variety of similarity functions [5].

Recently, set similarity joins gained popularity as a means to tackle the issues
mentioned above [9, 5, 1, 13]. The main idea behind this special class of similarity
joins is to view operands as sets of features and employ a set similarity function



to assess their similarity. An important property, predicates containing set simi-
larity functions can be expressed by set overlap [9, 5]. Several popular measures
belong to the general class of set similarity functions, including Jaccard, Ham-
ming, and Cosine. Moreover, even when not representing a similarity function on
its own, set overlap constraints can still be used as an effective filter for metric
distances such as the string edit distance [6, 11].

Most set similarity joins algorithms are composed of two main phases: candi-
date generation, which produces a set of candidate pairs, and verification, which
applies the actual similarity measure to the generated candidates and returns
the correct answer. Recently, Xiao et. al [13] improved the previous state-of-the-
art similarity join algorithm due to Bayardo et al. [2] by pushing the overlap
constraint checking into the candidate generation phase. To reduce the num-
ber of candidates even more, the authors proposed the suffix filtering technique,
where a relatively expensive operation is carried out before qualifying a pair as a
candidate. As a result, the number of candidates is substantially reduced, often
to the same order of magnitude of the result set size.

In this paper, we propose a new index-based algorithm for set similarity joins.
Our work builds upon the previous work of [2] and [13], however, we follow an
opposite approach to that of [13]. Our focus is on the decrease of the computa-
tional cost of candidate generation instead of number of candidates reduction.
For this, we introduce the concept of min-prefix, a generalization of the prefix
filtering concept [5]. Min-prefix allows to dynamically maintain the length of
the inverted lists reduced to a minimum, and therefore the candidate generation
time is drastically decreased. We address the increasing in the workload of the
verification phase, a side-effect of our approach, by interrupting the computation
of candidate pairs that will not meet the overlap constraint as early as possible.
Finally, we improve the overlap score accumulation by avoiding the overhead of
dedicated data structures. We experimentally demonstrated that our algorithm
consistently outperforms previous ones for unweighted and weighted sets.

2 Preliminaries

Given a finite universe U of features and a database D of sets, where every set
consists of a number features from U1, let sim (x1, x2) be a set similarity function
that maps a pair of sets x1 and x2 to a number in [0, 1]. We assume the similarity
function is commutative, i.e., sim (x1, x2) = sim (x2, x1). Given a threshold γ,
0 ≤ γ ≤ 1, our goal is to identify all pairs (x1, x2) , x1, x2 ∈ D, which satisfy the
similarity predicate sim (x1, x2) ≥ γ. We focus on a general class of set similarity
functions, for which the similarity predicate can be equivalently represented
as a set overlap constraint of the form |x1 ∩ x2| ≥ minoverlap (x1, x2), where
minoverlap (x1, x2) is a function that maps the constant γ and the sizes of x1

and x2 to an overlap lower bound (overlap bound, for short). Hence, the similarity
join problem is reduced to a set overlap problem, where all pairs, whose overlap
is not less than minoverlap (x1, x2), are returned.
1 In Sect. 5, we consider weighted sets where features have associated weights.



Table 1: Set similarity functions

Function Definition minoverlap (x1, x2) [minsize (x) ,maxsize (xc)]

Jaccard
|x1 ∩ x2|
|x1 ∪ x2|

γ

1 + γ
(|x1|+ |x2|)

»
γ |x| , |x|

γ

–
Dice

2 |x1 ∩ x2|
|x1|+ |x2|

γ (|x1|+ |x2|)
2

»
γ |x|
2− γ

,
(2− γ) |x|

γ

–
Cosine

|x1 ∩ x2|p
|x1| |x2|

γ
p
|x1| |x2|

»
γ2 |x| , |x|

γ2

–

This set overlap formulation gives rise to several optimizations. First, it is
possible to derive size bounds. Intuitively, observe that |x1 ∩ x2| ≤ |x1| for |x2| ≥
|x1|, i.e., set overlap and, therefore, similarity are trivially bounded by |x1|. By
carefully exploiting the similarity function definition, it is possible to derive
tighter bounds allowing immediate pruning of candidate pairs whose sizes differ
enough. Table 1 shows the overlap constraint and the size bounds of the following
widely-used similarity functions [9, 1, 8, 12, 13]: Jaccard, Dice, and Cosine. An
important observation is that, for all similarity functions, minoverlap (x1, x2)
increases monotonically with one or both set sizes.

Another optimization technique instigated by the set overlap abstraction is
the prefix filtering concept [5]. The idea is to derive a new overlap constraint to
be applied on subsets of the operand sets. More specifically, for any two sets x1

and x2 under a same total order O, if |x1 ∩ x2| ≥ α, the subsets consisting of the
first |x1|−α+1 elements of x1 and the first |x2|−α+1 elements of x2 must share
at least one element [9, 5]. We refer to such subsets as prefix filtering subsets, or
simply prefixes, when the context is clear; further, let pref (x) denote the prefix
of a set x, i.e., pref (x) is the subset of x containing the first |pref (x)| elements
according to the ordering O. It is easy to see that, for α = dminoverlap (x1, x2)e,
the set of all pairs (x1, x2) sharing a common prefix element is a superset of the
correct result. Thus, one can identify matching candidates by examining only a
fraction of the original sets.

The exact prefix size is determined by minoverlap (x1, x2), which varies ac-
cording to each matching pair. Given a set x1, a question is how to deter-
mine |pref (x1)| such that it suffices to identify all x2, such that |x1 ∩ x2| ≥
minoverlap (x1, x2). Clearly, we have to take the largest prefix in relation to all
x2. Because the prefix size varies inversely with minoverlap (x1, x2), |pref (x1)| is
largest when |x2| is smallest (recall that minoverlap (x1, x2) increases monotoni-
cally with |x2|). The smallest possible size of x2, such that the overlap constraint
can be satisfied, is minsize (x1). Let maxpref (x) denote the largest prefix of x;
thus, |maxpref (x)| = |x| − dminsize (x)e+ 1.

A specific feature ordering can be exploited to improve performance in two
ways. First, we rearrange the sets in D according to a feature frequency ordering,
Of , to obtain sets ordered by increasing frequencies. The idea is to minimize
the number of sets agreeing on prefix elements and, in turn, candidate pairs



Algorithm 1: The ppjoin algorithm
Input: A set collection D sorted in increasing order of the set size; each set is

sorted according to the total order Of ; a threshold γ
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ γ
I1, I2, . . . , I|U| ← ∅, S ← ∅1

foreach xp ∈ D do2

M ← empty map from set id to (os, i, j) // os = overlap score3

foreach fi ∈ maxpref (xp) do // candidate generation phase4

Remove all (xc, j) from If s.t. |xc| < minsize (xp)5

foreach (xc, j) ∈ If do6

M (xc)← (M (xc) .os + 1, i, j)7

if M (xc) .os + min (rem (xp, i) , rem (xc, j)) < minoverlap (xp, xc)8

M (xc) .os ← −∞ // do not consider xc anymore9

S ← S ∪Verify (xp, M, γ) // verification phase10

foreach fi ∈ midpref (xp) do11

If ← If ∪ {(xp, i)}12

return S13

by shifting lower frequency features to the prefix positions. Second, because
Of imposes an ordering on the elements of a set x, we can use the positional
information of a common feature between two sets to quickly verify whether or
not there are enough remaining features in both sets to meet a given threshold
(see [13], Lemma 1). Given a set x =

{
f1, . . . , f|x|

}
, let rem (x, i) denote the

number of features following the feature fi in x; thus, rem (x, i) = |x| − i.
A further optimization consists of sorting the database D in increasing order

of the set sizes. By exploiting this ordering, one can ensure that x1 is only
matched against x2, such that |x1| ≤ |x2|. As a result, the prefix size of x
can be reduced: instead of maxpref (x), we obtain a shorter prefix by using
minoverlap (x, x) to calculate the prefix size. Let midpref (x) denote the prefix
of x for sorted input; therefore |midpref (x)| = |x| − dminoverlap (x, x)e+ 1.

We are now ready to present a “baseline” algorithm for set similarity joins.
Algorithm 1 shows ppjoin [13], a state-of-the-art, index-based algorithm that
comprises all optimizations previously described. The top-level loop of ppjoin
scans the dataset D, where, for each set xp, a candidate generation phase de-
livers a set of candidates by probing the index with the feature elements of
maxpref (xp) (lines 4–9). We call the set xp, whose features are used to probe
the index, a probing set ; any set xc that appears in the scanned inverted lists
is a candidate set of xp. Besides the accumulated overlap score, the hash-based
map M also stores the feature positional information of xp and xc (line 7). In
the verification phase, the probing set and its candidates are checked against
the similarity predicate and those pairs satisfying the predicate are added to the
result set (line 10); we defer details about the Verify procedure to Sect. 4.1. Fi-
nally, a pointer to set xp is appended to each inverted list If associated with the
features of midpref (xp) (lines 11–12). Note that the algorithm also indexes the
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Fig. 1: Number of candidates vs. runtime efficiency

feature positional information, which is needed for checking the overlap bound
(line 8). Additionally, the algorithm employs the lower bound of the set size to
dynamically remove sets from inverted lists (line 5).

3 Min-prefix Concept

In this section, we first empirically show that the number of generated candidates
can be highly misleading as a measure of runtime efficiency. Motivated by this
observation, we introduce the min-prefix concept and propose a new algorithm
that focuses on minimizing the computational cost of candidate generation.

3.1 Candidate Reduction vs. Runtime Efficiency

Most set similarity join algorithms operate on shorter set representations in the
candidate generation phase (e.g., prefixes and signatures) followed by a poten-
tially more expensive stage where a thorough verification is conducted on each
candidate. Accordingly, previous work has primarily focused on candidates re-
duction where increased effort is dedicated to candidate generation to achieve
stronger filtering effectiveness. In this vein, an intuitive approach consists of
moving part of the verification into candidate generation. For example, we can
generalize the prefix filtering concept to subsets of any size: (|x| − α + c)-sized
prefixes must share at least c features. This idea has already been used for related
similarity operations, but in different algorithmic frameworks [8, 4]. Lets exam-
ine this approach applied to ppjoin. We can easily swap part of the workload
between verification and candidate generation by increasing feature indexing
from midpref (x) to maxpref (x) (Alg. 1, line 11). We call this version u-ppjoin,
because it exactly corresponds to a variant of ppjoin for unordered datasets. Al-
though u-ppjoin considers more sets for candidate generation, a larger number
of candidate sets are pruned by the overlap constraint (Alg. 1, lines 8–9). Figure
1 shows the results of both algorithms w.r.t. number of candidates and runtime
for varying Jaccard thresholds on a 100K sample taken from the DBLP dataset
(details about the datasets are given in Sect. 6). As we see in Fig. 1a, u-ppjoin
indeed reduces the amount of candidates, especially for lower similarity thresh-



olds, thereby reducing the verification workload2. However, the run time results
showed in Fig. 1b are reversed: u-ppjoin is considerably slower than ppjoin. Sim-
ilar results were reported by Bayardo et al. [2] for the unordered version of their
All-pairs algorithm. We also observed identical trends on several other real world
datasets as well as for different growth pattern of feature indexing. These results
reveal that, at least for inverted-list-based algorithms, candidate set reduction
alone is a poor measure of the overall efficiency. Moreover, they suggest that the
trade-off of workload shift between candidate generation and verification can be
exploited in an opposite way.

3.2 Min-prefix Concept

A set xc is indexed by appending a pointer to the inverted lists associated with
features fj ∈ midpref (xc) which results in an indexed set, denoted by I (xc);
accordingly, let I (xc, fj) denote a feature fj ∈ xc whose associated list has a
pointer to xc. A list holds a reference to xc until being accessed by a probing set
with size |xp| > maxsize (xc), when this reference is eventually removed by size
bound checking (Alg. 1, line 5). We call the interval between the processing of
the set xc following in DB sort order and the last set with size less than or equal
to maxsize (xc) the validity window of I (xc). Within its validity window, any
appearance of I (xc) in lists accessed by a probing set either elects I (xc) as a
new candidate, if the first appearance thereof, or accumulates its overlap score.

As previously mentioned, the exact (and minimal) size of pref (xc) is deter-
mined by the lower bound of pairwise overlaps between xc and a reference set xp.
As our key observation, the minimal size of pref (xc) monotonically decreases
along the validity window of I (xc) due to dataset pre-sorting. Hence, as the va-
lidity window of xc is processed, an increasing number of the indexed features in
midpref (xc) no longer alone suffices to elect xc as a candidate. More specifically,
we introduce the concept of min-prefix, formally stated as follows.

Definition 1 (Min-prefix). Let xc be a set and let pref (xc) be a prefix of xc.
Let xp be a reference set. Then pref (xc) is a min-prefix of xc relative to xp,
denoted as minpref (xc, xp), iff 1 + rem (xc, j) ≥ minoverlap (xp, xc) holds for
all fj ∈ pref (xc).

When processing a probing set xp, the following fact is obvious: if xc first
appears in an inverted list associated with a feature fj /∈ minpref (xc, xp), then
(xc, xp) cannot meet the overlap bound. We call a feature I (xc, fj), which is not
an element of minpref (xc, xp), a stale feature relative to xp.

Example 1. Fig. 2a shows an example with an indexed set I (x1) of size 10
and two probing sets x2 and x3 of size 10 and 16, respectively. Given Jac-
card as similarity function and a threshold of 0.6, we have midpref (x1) = 3,

2 Actually, the verification workload is even more reduced than suggested by number
of candidates. Due to the increased overlap score accumulation in the candidate
generation, many more candidates are discarded at the very beginning of Verify.
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which corresponds to the number of indexed features of I (x1). For x2, we have
minpref (x1, x2) = 3; thus, no stale features are present. On the other hand, for
x3 as reference set, we have minpref (x1, x3) = 1. Hence, I (x1, f2) and I (x1, f3)
are stale features.

The relationship between the prefix types is shown in Fig. 2b. The three
prefixes are minimal in different stages of an index-based set similarity join by
exploiting different kinds of information. In the candidate generation phase, the
size lower bound of a probing set x defines maxpref (x), which is used to find
candidates among (shorter) sets indexed. To index x, the database sort order
allows reducing the prefix to midpref (x). Finally, min-prefix determines the
minimum amount of information that needs to remain indexed to identify x as
a candidate. Differently from the previous prefixes, minpref (x, xp) is defined in
terms of a reference set xp, which corresponds to the current probing set within
the validity window of x. The following lemma states important properties of
stale features according to the database and the feature ordering.

Lemma 1. Let D be a database of sets of features; each set is sorted according
to a total order Of . Let I (xc) be an indexed set and xp be a probing set. If a
feature I (xc, fj) is stale in relation to xp, then I (xc, fj) is stale for any xp′ such
that |xp′| ≥ |xp|. Moreover, if I (xc, fj) is stale, then any I (xc, fj′), such that
j′ > j, is also stale.

3.3 The mpjoin Algorithm

Algorithm ppjoin only uses stale features for score accumulation. Candidate
pairs whose first common element is a stale feature are pruned by the overlap
constraint. Because set references are only removed from lists due to size bound
checking, repeated processing of stale features are likely to occur very often
along the validity window of indexed sets. As strongly suggested by the results
reported in Sect. 3.1, such overhead in candidate generation can have a negative
impact on the overall runtime efficiency.

Listed in Alg. 2, we now present algorithm mpjoin which builds upon the
previous algorithms All-pairs and ppjoin. However, it adopts a novel strategy in



Algorithm 2: The mpjoin algorithm
Input: A set collection D sorted in increasing order of the set size; each set is

sorted according to the total order Of ; a threshold γ
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ γ
I1, I2, . . . I|U| ← ∅, S ← ∅1

foreach xp ∈ D do2

M ← empty map from set id to (os, i, j) // os = overlap score3

foreach fi ∈ maxpref (xp) do // candidate generation phase4

Remove all (xc, j) from If s.t. |xc| < minsize (xp)5

foreach (xc, j) ∈ If do6

if xc.prefsize < m7

Remove (xc, j) from If // I (xc, j) is stale8

continue9

M (xc)← (M (xc) .os + 1, i, j)10

if M (xc) .os + min (rem (xp, i) , rem (xc, j)) < minoverlap (xp, xc)11

M (xc) .os ← −∞ // do not consider xc anymore12

if M (xc) .os + rem (xc, j) < minoverlap (xp, xc)13

Remove (xc, j) from If // I (xc, j) is stale14

xc.prefsize← |xc| −minoverlap (xp, xc) + 1// update prefix size15

S ← S ∪Verify (xp, M, γ) // verification phase16

xp.prefsize ← |midpref (x)|// set initial prefix size information17

foreach fi ∈ midpref (xp) do18

If ← If ∪ {(xp, i)}19

return S20

the candidate generation phase. The main idea behind mpjoin is to exploit the
concept of min-prefixes to dynamically reduce the lengths of the inverted lists to
a minimum. As a result, a larger number of irrelevant candidate sets are never
accessed and processing costs for inverted lists are drastically reduced.

To employ min-prefixes in an index-based similarity join, we need to keep
track of the min-prefix size of each indexed set in relation to the current probing
set. For this reason, we define min-prefix size information as an attribute of
indexed sets, which is named as prefsize in the algorithm. At indexing time,
prefsize is initialized with the value of midprefix (line 17). Further, whenever
a particular inverted list is scanned during candidate generation, prefsize of all
related indexed sets is updated using the overlap bound relative to the current
probing set (line 15). Stale features can be easily identified by verifying if the
prefsize attribute is smaller than the feature positional information in a given
indexed set. This verification is done for each set as soon as it is encountered in
a list; set references in lists associated with stale features are promptly removed
and the algorithm moves to the next list element (lines 07–09). Additionally, for
a given indexed set, stale features may be probed, before its prefsize is updated.
Because features of an indexed set are accessed as per the feature order by a
probing set (they can be accessed in any order by different probing sets though),



Algorithm 3: The Verify algorithm
Input: A probing set xp; a map of candidate sets M ; a threshold γ
Output: A set S containing all pairs (xp, xc) such that sim (xp, xc) ≥ γ
S ← ∅1

foreach xc ∈Ms.t. (overlap←M (xc) .os) 6= −∞ do2

if(fc ← featureAt (xc, xc.prefpos)) < (fp ← featureAt (xp,maxpref (x)))3

fp ← featureAt (xp,M (xc) .i + 1) , fc++4

else5

fc ← featureAt (xc)M (xc) .j + 1, fp++6

while fp 6= end and fc 6= end do // merge-join-based overlap calc.7

if fp = fc then overlap++, fp++, fc++8

else9

if rem (min (fp, fc)) + overlap < minoverlap (xp, xc) then break10

min (fp, fc)++ // advance cursor of lesser feature11

if overlap ≥ minoverlap (xp, xc)12

S ← S ∪ {(xp, xc)}13

return S14

stale feature can only appear as a first common element. In this case, it follows
from Definition 1 that the overlap constraint cannot be met and the set reference
can be removed from the list (lines 13–14).

The correctness of mpjoin partially follows from Lemma 1: it can be triv-
ially shown that the inverted-list reduction strategy of mpjoin does not lead to
missing any valid result. Another important property of mpjoin is that score
accumulation is done exclusively on min-prefix elements. This property ensures
the correctness of the Verify procedure, which is described in the next section.

4 Further Optimizations

4.1 Verification Phase

A side-effect of the index-minimization strategy is the growth of candidate sets.
Besides that, as overlap score accumulation is performed only on min-prefixes,
larger subsets have to be examined to calculate the complete overlap score. Thus,
high performance is a crucial demand for the verification phase. In [13], feature
positional information is used to leverage prior overlap accumulation during
the candidate generation. We can further optimize the overlap calculation by
exploiting the feature order to design a merge-join-based algorithm and the
overlap bound to define break conditions.

In Alg. 3, we present the algorithm corresponding to the Verify procedure of
mpjoin, which applies the optimizations mentioned above. (Note that we have
switched to a slightly simplified notation.) The algorithm iterates over each
candidate set xc evaluating its overlap with the probing set xp. First, the starting
point for scanning both sets is located (lines 03–06). The approach used here is



similar to ppjoin (see [13] for more details). Note for both sets, the algorithm
starts scanning from the feature following either the last match of candidate
generation, i.e., i+1 or j+1, or the prefixes. No common feature between xp and
xc is missed, because only min-prefix elements were used for score accumulation
during candidate generation. Otherwise, we could miss a match on a stale feature
at position j, xc.prefpos < j, whose reference to xc in the associate inverted list
had been previously removed.

The merge-join-based overlap takes place thereafter (lines 7–11). Feature
matches increment the overlap accordingly; for each mismatch, the break condi-
tion is tested, which consists in verifying if there are enough remaining features
in the set relative to the currently tested feature (line 10). Finally, the overlap
constraint is checked and the candidate pair is added to the result if there is
enough overlap (lines 12–13).

4.2 Optimizing Overlap Score Accumulation

Reference [2] argues that hash-based score accumulators and sequential list pro-
cessing provide superior performance compared to the heap-based merging ap-
proach of other algorithms (e.g., [9]). We now propose a simpler approach by
eliminating dedicated data structures and corresponding operations for score
accumulation altogether: overlap scores (and the matching positional informa-
tion) can be stored in the indexed set itself as attributes in the same way as the
min-prefix size information. Therefore, overlap score can be directly updated
as indexed sets are encountered in inverted lists. We just have to maintain an
(re-sizeable) array to store the candidate sets, which will be passed to the Verify
procedure. Finally, after verifying each candidate, we clear its overlap score and
matching positional information.

5 The Weighted Case

We now consider the weighted version of the set similarity join problem. In
this version, sets are drawn from a universe of features Uw, where each feature
f is associated with a weight w (f). All concepts presented in Sect. 2 can be
easily modified to accord with weighted sets. The weighted size of a set x, de-
noted as w (x), is given by the summation of the weight of its elements, i.e.,
w (x) =

∑
f∈x w (f). Correspondingly, the weighted Jaccard similarity (WJS),

for example, is defined as WJS (x1, x2) = w (x1 ∩ x2)/w (x1 ∪ x2). The prefix
definition has to be slightly modified as well. Given an overlap bound α, the
weighted prefix of a set x, denoted as pref (x), is the shortest subset of x such
that w (pref (x)) > w (x)− α.

We now present the weighted version of mpjoin, called w-mpjoin. The most
relevant modifications are listed in Alg. 4. As main difference to mpjoin, w-
mpjoin uses the sum of all feature weights up to a given feature instead of
feature positional information. For this reason, we define the cumulative weight
of a feature fi ∈ x as c (fi) =

∑
w (fj), where 1 ≤ j ≤ i. We then index c (fi),



Algorithm 4: The w-mpjoin algorithm
. . .
foreach fi ∈ maxpref (xp) do // candidate generation phase

Remove all (xc, c (fj) , j) ∈ If from If s.t. w (xc) < minsize (xp)5

foreach (xc, c (fj) , j) ∈ If do6

if xc.prefsize + w (fj) < c (fj)7

Remove (xc, c (fj) , j) from If // I (xc, c (fj) , j) is stale8

continue9

M (xc)← (M (xc) .os + w (fj) , i, j)10

if M (xc) .os + min (crem (xp, i) , crem (xc, j)) < minoverlap (xp, xc)11

M (xc) .os← −∞ // do not consider xi anymore12

if M (xc) .os + crem (xc, j) < minoverlap (xp, xc)13

Remove (xc, c (fj) , j) from If // I (xc, c (fj) , j) is stale14

xc.prefsize ← w (xc)−minoverlap (xp, xc) // update prefix size15

S ← S ∪Verify (xp, M, γ) // verification phase16

cweight ← 017

foreach fi ∈ midpref (x) do18

cweight ← cweight + w (fi)19

If ← If ∪ {(xp, cweight , i)}20

xp.prefsize ← cweight21

. . .22

for each fi ∈ midpref (x) and set the prefsize to the cumulative weight of the last
feature in midpref (x) (lines 17–21). Note that feature positional information is
still necessary to find the starting point of scanning in the Verify procedure.

The utility of the cumulative weight in the candidate generation is twofold.
First, it is used for overlap bound checking. Given c (fi), the cumulative weight
of the features following fi in x is crem (x, i) = w (x)− c (fi). Hence, crem can
be used to verify whether or not there are enough remaining cumulative weights
to reach the overlap bound (lines 11 and 13). Second, the cumulative weight is
used to identify stale features by comparing it with prefsize (line 07). Note that
the cumulative weight of the last feature in minpref (xc, xp) is always greater
than w (xc) − α, for α = minoverlap (xp, xc). Hence, to be sure that a given
feature is stale, we have to add the weight of the current feature to prefsize
before comparing it to the cumulative weight.

Due to space constraints, we do not discuss the weighted version of the Verify
procedure, but the modifications needed are straightforward.

6 Experiments

6.1 Experimental Setup

The main goal of our experiments is to measure the runtime performance of our
algorithms, mpjoin and w-mpjoin, and compare them against previous, state-of-
the-art set similarity join algorithms. All tests were run on an Intel Xeon Quad
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Fig. 3: Feature frequency and set size distributions

Core 3350 2,66GHz Intel Pentium IV computer (two 3.2 GHz CPUs, about 2.5
GB main memory, Java Sun JDK 1.6.0).
Algorithms: We focused on index-based algorithms, because they consistently
outperform competitor signature-based algorithms [2] (see discussion in Sect.
7) and implemented the best known index-based algorithms due to Xiao et. al
[13]. For unweighted sets, we used ppjoin+, an improved version of ppjoin, which
applies a suffix filtering technique in the candidate generation phase to substan-
tially reduce the number of candidates. This algorithm constitutes an interesting
counterpoint to mpjoin. We also investigated a hybrid version, which combines
mpjoin and ppjoin+ by adding the suffix filtering procedure in mpjoin (Alg. 2,
inside the loop of line 6 and after line 15). As recommended by the authors,
we performed suffix filtering only once for each candidate pair and limited the
recursion level to 2. For weighted sets, however, it is not clear how to adapt the
suffix filtering technique, because the underlying algorithm largely employs set
partitioning based on subset size. In contrast, when working with weighted sets,
cumulative weights have to be used, which requires subset scanning to calculate
them also for unseen elements. For this reason, this approach is likely to result
in poor performance. Therefore, we refrained from using ppjoin+ and instead
employed our adaptation of ppjoin for weighted sets, denoted w-ppjoin. We only
considered the in-memory version of all algorithms. Reference [2] presented a
simple nested-loop algorithm fetching entire blocks of disk-resident data, which
could be easily adapted for the algorithms evaluated here. Because the same
in-memory algorithm is used in each outer-loop iteration and IO overhead is
similar in all algorithms, the relative difference in the results reported for the
in-memory algorithms should also hold for their external-memory version. For
evaluation of weighted sets, we used the well-known IDF weighting scheme. Fi-
nally, due to space constraints, we only report results for the Jaccard similarity.
The corresponding results for other similarity functions follow identical trends.
Datasets: We used two well-known real datasets: DBLP (dblp.uni-trier.de/xml)
containing computer science publications and IMDB (www.imdb.com) storing
information about movies. We extracted 0.5M strings from each dataset; each
string is a concatenation of authors and title, for DBLP, and movie title together
with actor and actress names, for IMDB. We converted all strings to upper case
letters and eliminated repeated white spaces. We then generated 4 additional
“dirty” copies of each string, i.e., duplicates to which we injected textual mod-
ifications consisting of 1–5 character-level modifications (insertions, deletions,
and substitutions). Finally, we tokenized all strings into sets of 3-grams, ordered
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Fig. 4: Runtime experiments

the tokens as described in Sect. 2, and stored the sets in ascending size order.
With this procedure, we simulated typical duplicate elimination scenarios [1,
5]. Figure 3 shows the feature frequency and set size distributions. The feature
frequency distribution of both data sets follows a similar power-law distribution
and therefore only the distribution of IMDB is shown. In contrast, the set size
distributions are quite different: DBLP has a clear average around 100, whereas
IMDB does not seem to cluster around any particular value.

6.2 Results

Figure 4a and 4b illustrate the performance results for the unweighted ver-
sion of the algorithms with varying Jaccard similarity threshold. In all settings,
mpjoin clearly exhibits the best performance. For the DBLP dataset, mpjoin
achieves more than twofold speed-ups over ppjoin+ for thresholds lower than
0.85, whereas the performance gains are up to a factor of 3 for the IMDB dataset.
Note, the performance advantage of mpjoin is more prominent at lower thresh-
olds. In such cases, more stale features are present in the inverted lists, for which
a larger number of unqualified candidate sets is generated. Hence, as a result,
the performance of ppjoin+ degrades by a substantially stronger degree.

Note, even the hybrid version is slower than mpjoin. The candidate reduction
does not pay-off the extra-effort of suffix filtering. To highlight this observation,
Fig. 5 shows the filtering behavior of the algorithms. In the charts, we show the
number of candidates eliminated by suffix filtering (SUFF) and overlap bounds
(O BOUND) during cadidate generation (see Alg. 1, line 8), and the number
of candidate pairs considered in the verification phase (CAND). Note, ppjoin+
eliminates more candidates using O BOUND than mpjoin and hybrid. But, a
large part of them are candidates related to stale features, i.e., irrelevant candi-
dates that are repeatedly considered along their validity window.
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Finally, we observe that all al-
gorithms are about two times faster
on the IMDB dataset. This is due
to the wider set size distribution in
the IMDB dataset, which results in
shorter validity windows for indexed
sets. The results for weighted sets are
shown in Fig. 4c and 4d. Again, w-
mpjoin is the most efficient algorithm:
it consistently achieves about twofold
speed-ups compared to w-ppjoin. In general, the results for weighted sets show
the same trends as those of the unweighted sets. As expected, the results of all
algorithms are considerably faster than those for the unweighted case, because
the weighting scheme results in shorter prefixes.

7 Related Work

A rich variety of techniques have been proposed to improve time efficiency of set
similarity joins. Some examples of such techniques are probabilistic dimension
reduction methods [3], signature schemes [1, 5], derivation of bounds (e.g., size
bound [9, 1, 2, 13, 7]), and exploitation of a specific data set order [9, 2, 13]. Addi-
tionally, there are two main query processing models. The first uses an unnested
representation of sets in which each set element is represented together with
the corresponding object identifier. Here, query processing is based on signa-
ture schemes and commonly relies on relational database machinery: equi-joins
suported by clustered indexes are used to identify all pairs sharing signatures,
whereas grouping and aggregation operators together with UDFs are used for
verification [5, 1]. In the second model, an index is built for mapping features
to the list of objects containing that feature [9, 2, 13]—for self-joins, which can
be dynamically performed as the query is processed. The index is then probed
for each object to generate the set of candidates which will be later evaluated
against the overlap constraint. Previous work has shown that approaches based
on indexes consistently outperform signature-based approaches [2] (see also [7]
for selection queries). As primary reason, a query processing model based on
indexes provides superior optimization opportunities. A major method for that
uses an index reduction technique [2, 13], which minimizes the number of fea-
tures to be indexed. Furthermore, most signature schemes are binary, i.e., a
single shared signature suffices to elect a pair of sets as candidates. Also, signa-
tures are solely used to find candidates; matching signatures are not leveraged in
the verification phase. As a result, each set in a candidate pair must be scanned
from the beginning to compute their similarity. In contrast, approaches based on
indexes accumulate overlap scores already during candidate generation. Hence,
the set elements accessed in this phase can be ignored in the verification.



8 Conclusion

In this paper, we proposed a new index-based algorithm for set similarity joins.
Following a completely different approach from previous work, we focused on
a reduction of the computational cost for candidate generation as opposed to
a lower number of candidates. For this reason, we introduced the concept of
min-prefix, a generalization of the prefix filtering concept, which allows to dy-
namically and safely minimize the length of the inverted lists; hence, a larger
number of irrelevant candidate pairs are never considered and, in turn, a drastic
decrease of the candidate generation time is achieved. As a side-effect of our
approach, the workload of the verification phase is increased. Therefore, we op-
timized this phase by stopping as early as possible the computation of candidate
pairs that do not meet the overlap constraint. Finally, we improved the over-
lap score accumulation by storing scores and auxiliary information within the
indexed set itself instead of using a hash-based map. Our experimental results
on real datasets confirm that the proposed algorithm consistently outperforms
previous ones for both unweighted and weighted sets.
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