
Congenital Zika virus syndrome consists of a large spectrum 
of neurologic abnormalities seen in infants infected with Zika 
virus in utero. However, little is known about the effects of Zika 
virus intrauterine infection on the neurocognitive development 
of children born without birth defects. Using a case-control 
study design, we investigated the temporal association of 
a cluster of congenital defects with Zika virus infection. In a 
nested study, we also assessed the early childhood develop-
ment of children recruited in the initial study as controls who 
were born without known birth defects,. We found evidence for 
an association of congenital defects with both maternal Zika 
virus seropositivity (time of infection unknown) and symptom-
atic Zika virus infection during pregnancy. Although the early 
childhood development assessment found no excess burden 
of developmental delay associated with maternal Zika virus in-
fection, larger, longer-term studies are needed.

Zika virus is a mosquito-vectored flavivirus first isolated 
in 1947 in the Zika forest in Uganda (1). For the next 60 

years, Zika virus was considered to cause sporadic and mild 

infection in humans (2). In 2007, Zika virus emerged in the 
Western Pacific island of Yap, Federated States of Micro-
nesia (3). In 2013, Zika virus emerged in French Polynesia, 
causing a large outbreak (>30,000 clinical cases estimated 
during October 2013–April 2014) before spreading rapidly 
to other Pacific Islands (4–6). Zika virus emerged in Brazil 
in 2015 and spread to most of the Americas in 2016 (7).

Like some other members of the family Flaviviridae, 
such as West Nile virus and Japanese encephalitis virus, 
Zika virus is neurotropic (8). The link between Zika virus 
and neurologic disorders such as Guillain-Barré syndrome 
in adults and microcephaly in newborns is now established 
(9–15). Of 84 countries or territories with active autoch-
thonous transmission of Zika virus (as of March 2017), 23 
have reported an increase in incidence of Guillain-Barré 
syndrome, and 31 have reported patients with microceph-
aly, central nervous system (CNS) malformations, or both 
potentially associated with Zika virus infection (16). After 
the French Polynesia Zika virus outbreak, health authori-
ties reported an unusual increase in microcephaly and other 
rare CNS abnormalities of unknown etiology, including 
corpus callosum or septal agenesis, spina bifida, and brain-
stem dysfunction (17).

Zika virus may be associated with multiple congenital 
abnormalities (18–20). The malformations and dysfunc-
tions caused by Zika virus infection during pregnancy 
are known as congenital Zika syndrome (CZS), but the 
anatomic, functional, and neurocognitive impairments as-
sociated with in utero Zika virus infection have not been 
precisely defined (21). Characterizing the factors contrib-
uting to neurocognitive deficits in children born to moth-
ers infected with Zika virus during pregnancy but without 
overt anatomic malformations, and quantifying the risk of 
neurocognitive dysfunction, may have major, substantive 
clinical and public health implications.
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We report 2 linked studies conducted in French Poly-
nesia: a retrospective case-control study to determine 
whether the unusual cluster of CNS congenital defects dur-
ing and after the Zika virus outbreak in French Polynesia 
was associated with maternal Zika virus infection, and a 
cross-sectional study to identify neurocognitive deficits in 
young children without known birth defects born to moth-
ers who were pregnant during the outbreak. Both studies 
were powered on the case-control study.

Methods

Study Design and Population

Case-Control Study
The case-patient definition was any fetus or neonate with a 
CNS congenital defect of unexplained etiology and a ma-
ternal gestational period that overlapped the extended Zika 
virus circulation period (June 1, 2013–August 31, 2014) by 
>1 weeks (17). Unexplained etiology meant that most com-
monly suspected etiologies (toxoplasmosis, other, rubella, 
cytomegalovirus, and herpes [TORCH] infections and ge-
netics) were excluded. We identified cases and controls 
among fetuses and newborns from the Centre Hospitalier de 
Polynésie Française in Pirae, French Polynesia, where 60% 
of all deliveries in this country occur. We identified eligible 
fetuses from pregnancy terminations using the medical re-
cords of the prenatal diagnosis center and eligible newborns 
from a previously reported case series of congenital cerebral 
malformations and dysfunctions (17) and from the in-hospi-
tal discharge records of the neonatology ward and the neo-
natal intensive care unit. We matched each case-patient to 5 
controls by age of the mother at pregnancy (±5 y) and date 
of conception (date of mother’s last prepregnancy menstrual 
period ±14 d). We selected the controls randomly from hos-
pital birth records. For logistical reasons, only women resid-
ing in Tahiti or Moorea, the 2 most populated and accessible 
islands, were invited to participate as controls.

Cross-Sectional Study
Because a rate of ≈50% Zika virus seropositive moth-
ers was expected in the control group of the case-control 
study, an additional cross-sectional study was designed 
to assess whether Zika virus infection in the mother was 
associated with delayed or abnormal early childhood de-
velopment (ECD) in the child. Two nurses were trained to 
conduct anthropometric and neurocognitive testing. ECD 
was then compared between children with seropositive or 
seronegative mothers.

Data Collection
During January–August 2016, mothers of case-patients and 
controls completed a face-to-face questionnaire on social 

and economic characteristics, clinical data, and environ-
mental factors, including exposure to chemicals (alcohol, 
tobacco, drugs, or deltamethrin pesticide spraying) during 
pregnancy. We retrieved information on seroconversion 
for Toxoplasma gondii and rubella virus during pregnancy 
from medical files; information on cytomegalovirus (CMV) 
seroconversion was available for case-patients only. We 
assessed exposure to deltamethrin by spatiotemporally 
linking outdoor spraying by the vector control teams with 
the mother’s residence address during pregnancy. We strat-
ified maternal socioeconomic status as low, medium, or 
high, adapting from the 4-factor Hollingshead scale (22). 
Gestational age was estimated by each mother’s primary 
obstetrician, using last menstrual period and first-trimester 
ultrasound measurements for each mother.

Laboratory Testing
We detected anti–Zika virus and anti–dengue virus 
(DENV) neutralizing antibodies in serum from mothers of 
the case-patients and the controls by using seroneutraliza-
tion tests, as previously described (9,23). We incubated se-
rial 2-fold dilutions (from 1:10 to 1:1,280) of each serum 
sample, previously heat inactivated, for 1 h with strains of 
Zika virus, DENV-1, DENV-2, DENV-3, or DENV-4. We 
then inoculated the serum–virus mixtures onto Vero cells 
and incubated then for 5–7 d. We used ELISA to show the 
presence of nonneutralized replicative virus in inoculated 
cells; the reciprocal serum dilution corresponding to the 
last well showing neutralization activity was the 50% neu-
tralization antibody titer for that serum sample (23,24). We 
determined Zika virus infection in mothers by detection 
of anti–Zika virus neutralizing antibodies (NAb) in serum 
collected 20–35 months after the expected beginning date 
of pregnancy. We defined mothers for whom the anti–Zika 
virus NAb titer was >20 as seropositive and those with a 
titer <20 as seronegative.

Assessment of Physical and Developmental  
Status of Children
We used 4 anthropometric indicators for children’s devel-
opmental status: weight for age, height for age, weight for 
height, and head circumference for age. We calculated Z 
scores (number of SDs of a value above or below the mean) 
using WHO Anthro software (25). We calculated birth an-
thropometric indicators (Z scores for weight, height, and 
head circumference) using INTERGROWTH-21st project 
software (26). We used the French version of the Child 
Development Assessment Scale, kindly provided by the 
Centre for Liaison on Intervention and Prevention in the 
Psychosocial Area, Canada (http://www.ged-cdas.ca), to 
assess ECD. The Child Development Assessment Scale, 
which is available in French and is well correlated with 
the Bayley scale 3rd edition (27), consists of questions and 
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observations adapted to children 0–5 years of age and has 
been validated for use by nonspecialized health or educa-
tion professionals (Vézina N. Elaboration and validation of 
the Child Development Assessment Scale, 0–5 years [the-
sis]. Québec City (QC, Canada): Université du Québec; 
2005). The scale is divided into 3 domains: socioemotional; 
cognitive, including language; and motor. In each domain, 
children are classified as adequate (no development issues), 
question (development to be monitored), or problem (spe-
cialized pediatric testing required).

Exposures, Outcomes, and Statistical Analysis
We used 2 measures of exposure: maternal Zika virus se-
ropositivity, a binary variable (yes/no) based on serology 
results; and reported Zika virus infection, a categorical 
variable, which used information reported by the mothers 
(Zika-like illness during or outside pregnancy), associ-
ated with serology results, and divided into symptomatic 
infection during pregnancy; asymptomatic infection, tim-
ing unknown; and no infection (seronegative mothers) and 
symptomatic infection when not pregnant. Zika-like illness 
corresponded to a clinical diagnosis of Zika virus disease 
or a recalled infectious episode characterized by rash, fe-
ver, or both associated with >2 of the following symptoms: 
conjunctivitis, arthralgia, myalgia, or limb edema.

Case-Control Study
We performed a conditional logistic regression analysis to 
assess whether CNS congenital defect was associated with 
the 2 measures of exposure: maternal Zika virus seroposi-
tivity and reported Zika virus infection. We conducted a 
univariate analysis using all identified potential maternal 
risk factors and confounders (reported chikungunya in-
fection, use of medical or recreational drugs, exposure to 
deltamethrin during pregnancy, age, socioeconomic status, 
history of miscarriage and/or termination of pregnancy), as 
well as parity and history of congenital defects in the fam-
ily. Variables at p<0.2 in the univariate analysis were fur-
ther tested by multivariate conditional logistic regression 
and were retained in the final model if p<0.1. When data 
sparsity did not allow adjustment for more variables, we 
retained only those at p<0.05; we grouped maternal mid-
dle and high socioeconomic status categories together and 
compared them with low socioeconomic status. We used 
a Wilcoxon signed-rank test to compare means between 
cases and controls and Pearson χ2 test to compare categori-
cal variables. We estimated the association between CNS 
congenital defects and maternal Zika virus infection by 
matched crude and adjusted odds ratios (ORs) with 95% 
CIs. We maximized the study power for the case-control 
study, for which we aimed to include all eligible cases (n = 
25), and we chose a control–case ratio of 5:1 to have 98.5% 
power to detect a bilateral (α = 5%) significant difference, 

assuming 50% of controls (28) and >90% of cases (9) were 
seropositive for Zika virus. The case-control study protocol 
was approved by the French Polynesia Ethics Committee 
on February 2, 2016.

Cross-Sectional Study
The main outcome was a binary variable derived from the 
results of the Child Development Assessment Scale (no ab-
normal development vs. abnormal development). We per-
formed a multivariate logistic regression analysis to assess 
the associations of ECD with maternal Zika virus seroposi-
tivity and reported Zika virus infection. We used the same 
method as described in the preceding section, with breast-
feeding as an additional risk factor/confounder. We per-
formed statistical analyses using Stata version 13.0 (Stata-
Corp LLC, College Station, TX, USA). For the comparison 
between the French-speaking Canadian children (n = 269) 
and the sample of our cross-sectional study (n = 107), we 
had a power of 80% to detect an effect size d = 0.32 at α = 
0.05. The observed effect size (Cohen d) for the cognitive 
domain is 0.31, and 0.2 for the motor dimension. For the 
affective dimension, the effect size (φ coefficient) is 0.03.

The cross-sectional study on ECD among controls was 
approved on June 3, 2016. We obtained written informed 
consent from all mothers.

Results

Case-Control Study
We identified 26 case-patients; 1 case-patient was later 
found to have a congenital defect with genetic etiology and 
thus was no longer eligible and was excluded from the analy-
sis, along with the related 5 controls. The mother of 1 child 
with microcephaly, already described by Besnard et al. (17), 
as well as the mothers of 2 newborns retrospectively identi-
fied with other CNS abnormalities, declined to participate 
in the study. Another child’s mother was lost to follow-up 
(Figure 1). Thus, a total of 21 case-patients (84% of those 
invited) and 102 controls (94%) were enrolled in the case-
control study. 

We recruited 5 controls per case-patient for all but 2 
case-patients; because of the tight matching and the lack of 
suitable controls, 1 case-patient had 4 matched controls and 
1 case-patient had 3. All controls and 17 case-patients were 
from Tahiti or Moorea (Figure 2). 

Of the 21 case-patients, 7 had microcephaly, 5 had 
brainstem dysfunction of the neonate characterized by an 
inability to suck and swallow, and 9 had other CNS con-
genital defects (Table 1). Moreover, 6 had ventriculomeg-
aly and 3 had arthrogryposis. Several case-patients had >1 
CNS abnormality. For 10 case-patients, pregnancy resulted 
in termination; of the remaining 11 newborns, 7 were still 
alive as of July 2017 (Table 1). Seven of the 11 newborns 
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had complete imaging, ophthalmoscopy, evoked otoacous-
tic emissions, and neuroclinical follow-up. 

Maternal toxoplasma serology was positive for 48% 
(10/21) of the case-patients and 60% (61/102) of the con-
trols; seroconversion occurred during pregnancy for 1 con-
trol. Rubella serology was positive for 81% (17/21) of the 
case-patients and 94% (96/102) of the controls; no sero-
conversion occurred in any group. We performed maternal 
CMV serologic testing for 86% (18/21) of the case-patients: 
2 were positive without signs of recent seroconversion, but 
further testing for CMV in amniotic fluid was negative (17). 
All study participants were seronegative for Treponema 

pallidum. The mother of 1 case-patient was known to be 
seropositive for HIV before the start of the pregnancy.

The gestational periods of fetuses and infants enrolled 
in the study started during June 2013–August 2014, and the 
infants were born during February 2014–May 2015. Me-
dian maternal age at conception was 27 years for case-pa-
tients and 28 years for controls. Case-patients and controls 
did not differ significantly in terms of fetal gender, ethnici-
ty, and maternal socioeconomic status. Excluding the cases 
that ended in termination of pregnancy, gestational age at 
birth did not differ significantly between case-patients and 
controls (Table 2).
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Figure 1. Flowchart for the 
recruitment of eligible cases 
for study of Zika virus infection 
during pregnancy and effects on 
early childhood development, 
French Polynesia, 2013–2016.

Figure 2. Geographic distribution 
of eligible cases for study of 
Zika virus infection during 
pregnancy and effects on early 
childhood development, French 
Polynesia, 2013–2016. Black 
text indicates islands with >1 
case (number of cases from 
each island is in parentheses); 
gray text indicates names of 
archipelagoes. Inset shows the 
location of French Polynesia in 
the Pacific Ocean. Data source: 
GADM version 2.8 (https://
gadm.org/download_country_
v2.html). Map production: World 
Health Organization Health 
Emergencies Programme.
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Maternal Zika virus seroprevalence was 95% among 
case-patients and 76% among controls (p = 0.07). We 
classified mothers of 38% of case-patients and 17% of 
controls as having had symptomatic Zika virus infection 
during pregnancy and mothers of 57% of case-patients 
and 60% of controls as having had asymptomatic infec-
tion (timing unknown, p = 0.07; Table 3). Of mothers who 
reported symptomatic Zika virus infection during preg-
nancy, for case-patients, 88% (7/8) reported it in the first 
trimester and 12% (1/8) in the second trimester, whereas 
for controls, 71% (12/17) reported it in the first trimester 
and 29% (5/17) in the second or third trimester. Compared 
with those with no evidence of Zika virus infection dur-
ing pregnancy, the matched crude OR for CNS congenital 
defects and maternal Zika virus seropositivity was 6.02, 
and for CNS congenital defects and symptomatic Zika 
virus infection during pregnancy, the matched crude OR 
was 6.79. After adjustment for maternal socioeconomic 
status, these ORs were 7.07 for the first group (95% CI 
0.86–58.3; likelihood ratio test p = 0.02), and 7.19 for the 
second (95% CI 1.39–37.2; likelihood ratio test p = 0.04). 
Further adjustment for other potential confounders made 
no difference to the results. Before and after adjustment 
for confounders, asymptomatic Zika virus infection (tim-
ing unknown) was not associated with CNS congenital 
defects (Table 3).

Cross-Sectional Study of Early  
Childhood Development
More than 1.5 years after the end of the Zika virus outbreak, 
during June–August 2016, we enrolled 107 children (me-
dian age 23 months) in a cross-sectional study and assessed 
them using the Childhood Development Assessment Scale. 
Of these children, 44 (41%) were girls, 17 (16%) were born 
prematurely, and 12 (11%) were classified as having low 
birthweight (<2,500 g). Except for 1 low birth length baby, 
anthropometry at birth was within reference range; at the 
time of evaluation, none of the children was underweight, 
had low length for age, had low weight for length, or had 

microcephaly (online Technical Appendix Table 1, https://
wwwnc.cdc.gov/EID/article/24/10/17-2079-Techapp1.pdf).

We noted evidence for a difference between mean 
scores of the study participants and the reference population 
(French-speaking Canadian children) only for the cognitive 
domain (p = 0.001) (online Technical Appendix Table 2). 
Neurocognitive testing using the Childhood Development 
Assessment Scale was normal for 93% of the children in 
the socioemotional domain, 64% in the cognitive domain, 
and 76% in the motor domain (online Technical Appendix 
Tables 3, 4). We found no evidence for a detrimental effect 
of maternal Zika virus seropositivity or reported Zika vi-
rus infection on ECD in children born without birth defects 
(Table 4). The weak univariate association of deltamethrin 
exposure during pregnancy with ECD delays was not sig-
nificant after adjustment for confounders. Low maternal 
socioeconomic status (adjusted odds ratio [aOR] 5.28, 95% 
CI 1.96–14.2) and not breast-feeding (aOR 4.00, 95% CI 
1.06–15.1) were associated with abnormal ECD.

Discussion
We report a case-control study assessing the role of Zika 
virus infection in CNS malformations, including, but not 
limited to, microcephaly, in newborns and fetuses whose 
gestation occurred during the Zika virus outbreak in French 
Polynesia during 2013–2014. We also report a population-
based developmental assessment of children born without 
birth defects after a Zika virus outbreak.

At the time of the outbreak in French Polynesia, risks 
associated with reported Zika virus infection were un-
known. Four years later, 1 case-control study from Brazil 
provided evidence that Zika virus infection during preg-
nancy is associated with microcephaly, and a few cohort 
studies described Zika virus–associated adverse preg-
nancy outcomes (11,14,18). Given widespread Zika vi-
rus transmission in the Western Hemisphere, clarifying 
the full spectrum of CZS is a critical public health prior-
ity. We conducted our study as part of the World Health 
Organization (WHO) effort in leading a multicountry  
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Table 1. Main and secondary diagnoses for 21 case-patients recruited in case-control study of Zika virus infection during pregnancy 
and effects on early childhood development, French Polynesia, 2013–2016 

Diagnoses No. (%) 
Pregnancy 
termination Live births 

Child alive,*  
n = 7 

Main diagnoses     
 Microcephaly 7 (33) 4 3 1 
 Brainstem dysfunction of the neonate 5 (24) 0 5 3 
 Other CNS congenital defects 9 (43) 6 3 3 
  Septal and/or corpus callosum agenesis 3 (14) 1 2 2 
  Intraventricular hemorrhage 1 (5) 0 1 1 
  Cerebral hemorrhage and placental calcifications 1 (5) 1 1 0 
  Polymalformative syndrome 2 (10) 2 0 0 
  Complete or sacral spina bifida 2 (10) 2 0 0 
Secondary diagnoses     
 Ventriculomegaly 6 (29) 4 2 2 
 Arthrogryposis 3 (14) 3 0 0 
*As of July 2017. 
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coordinated approach to data sharing, surveillance, and re-
search to establish the spectrum of CNS abnormalities at-
tributable to CZS (29).

We found evidence that maternal Zika virus seroposi-
tivity, with or without reported Zika-like illness during 
pregnancy, was associated with 7-fold increased odds of 
congenital CNS defects. Zika virus seroprevalence in the 
control mothers in the study was 76%, higher than the 49% 
prevalence detected in the general population of French 
Polynesia (28). Such a difference may exist because the 
previous Zika virus serosurvey was conducted on a repre-
sentative subset of the general population, with a median 
age of 43 years, involving both female and male partici-
pants, whereas our study involved only pregnant women, 
with a median age of 28 years.

Several studies have clearly shown unequal rates of 
Zika virus infection in men and women, possibly as a 
consequence of sexual transmission of Zika virus (30,31). 
Pregnant women may be more susceptible to Zika virus 
infection than nonpregnant women of the same age be-
cause of the immune tolerance induced by the pregnancy to 
tolerate paternal antigens (32). All the mothers of fetuses 
or children with microcephaly and other CNS congenital 
defects were seropositive, whereas 80% (4/5) of the moth-
ers of newborns with brainstem dysfunction were seroposi-
tive, compared with 78% (18/23) of their matched controls 
(matched crude OR 1.05, 95% CI 0.10–11.4). Although no 
association was found, this finding is inconclusive because 
the study had little power to perform subgroup analysis 
by congenital CNS defect. Excluding microcephaly, only 
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Table 2. Characteristics and comparison of case-patients and controls in study of Zika virus infection during pregnancy and early 
childhood development, French Polynesia, 2013–2016* 

Characteristics Cases, n = 21 Controls, n = 102 p value† 
Mother’s age at pregnancy, median (IQR) 26.8 (22.1–35.7) 27.8 (22.2–33.7) NA 
 15–24 8 (38) 37 (36) NA 
 25–34 7 (33) 43 (42) NA 
 >35 6 (29) 22 (22) NA 
Estimated pregnancy start date, median (IQR) 2013 Dec 11  

(2013 Oct 23–2014 May 9) 
2013 Dec 8  

(2013 Oct 16–2014 May 16) 
 

 January–September 2013 4 (19) 19 (19) NA 
 October 2013–December 2014 9 (43) 43 (42)  
 January–April 2014 2 (9) 10 (10)  
 May–August 2014 6 (29) 30 (29)  
Maternal socioeconomic status    
 Low 9 (43) 34 (34) 0.52 
 Middle 4 (19) 31 (31)  
 High 8 (38) 36 (36)  
Child’s birthweight, g n = 11 n = 100  
 <1,500 0 2 (2)  
 1,500–2,500 3 (27) 9 (9)  
 >2,500 8 (73) 89 (89)  
Child’s sex    
 F 10 (48) 42 (41) 0.64 
 M 11 (52) 60 (59)  
Child’s ethnicity    
 Polynesian 14 (74) 61 (71) 0.56 
 Caucasian 2 (11) 2 (2)  
 Mixed/other 3 (16) 23 (27)  
Pregnancy outcome    
 Termination of pregnancy 10 (48) NA NA 
 Gestational age at termination of pregnancy, median (IQR) 25.5 (23–29) NA NA 
 Live birth 11 (52) 102 (100) NA 
 Gestational age at child’s birth, median (IQR) 39 (36–40) 39 (38–40) 0.23 
  Term, >37 weeks 8 (73) 85 (83)  
  Premature, 27–36 weeks 3 (27) 17 (17)  
Mother’s past infection with dengue viruses    
 DENV-1 seropositivity 17 (81) 88 (87) 0.50 
 DENV-2 seropositivity 12 (57) 50 (50) 0.54 
 DENV-3 seropositivity 16 (76) 78 (77) 0.99 
 DENV-4 seropositivity 10 (48) 52 (51) 0.74 
Other risk factors/confounders    
 Family history of congenital abnormalities 6 (29) 24 (25) 0.84 
 Drug use during pregnancy‡ 9 (45) 34 (33) 0.23 
 Deltamethrin outdoor spraying during pregnancy 10 (48) 50 (51) 0.73 
*Values are no. (%) except as indicated. IQR, interquartile range; NA, not applicable. 
†Likelihood ratio using conditional logistic regression. 
‡Cannabis, cocaine, alcohol, or tobacco. 
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multicountry studies or meta-analyses can give a clear an-
swer on the causal link between Zika virus and each re-
ported rare CNS congenital defect (33,34).

Within the nested cross-sectional study, we assessed 
control children only on anthropometry and ECD. Both eye 
and hearing abnormalities have been described in children 
with CZS; we were unable to test for such abnormalities 
and cannot infer any conclusion about their burden among 
children born without diagnosed birth defects in French 
Polynesia (35–37).

Our cross-sectional study did not provide evidence 
that maternal Zika virus seropositivity or symptomatic Zika 
virus infection during pregnancy were associated with un-
usual developmental delay in children born without birth 
defects (Table 4; online Technical Appendix Table 4). 

Known risk factors for developmental delay (low mater-
nal socioeconomic status and lack of breast-feeding) were 
associated with abnormal childhood development in this 
study. This result supports the validity of our findings and 
suggests that if reported Zika virus infection was frequently 
associated with delayed ECD, we would have likely de-
tected it. However, this study lacked power to detect rare 
outcomes or minor developmental differences: only 17 
control mothers had clear evidence of Zika virus infection 
with symptoms during pregnancy.

The difference in the cognitive development score 
in children in French Polynesia compared with children 
in Canada (online Technical Appendix Table 2) is likely 
to be the result of confounding factors such as socio-
economic status or other population differences; for 
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Table 3. Crude and adjusted OR for congenital central nervous system abnormalities and maternal Zika virus infection status, French 
Polynesia, 2013–2016* 

Exposures 
Case-patients, 

no. (%) 
Controls, 
no. (%) 

Matched crude OR 
(95% CI) 

Matched adjusted OR† 
(95% CI) 

LRT  
p value 

Zika virus seropositivity 20 (95) 78 (76) 6.02 (0.77–47.1) 7.07 (0.86–58.3) 0.02 
Reported Zika virus infection  
 No infection during pregnancy‡ 1 (5) 24 (24) 1 1 0.04 
 Asymptomatic (timing unknown)§ 12 (57) 61 (60) 2.05 (0.54–7.80) 1.93 (0.47–7.96)  
 Symptomatic during pregnancy¶ 8 (38) 17 (17) 6.79 (1.36–33.8) 7.19 (1.39–37.2)  
*LRT, likelihood ratio test; NA, not applicable; OR, odds ratio. 
†Adjusted for maternal socioeconomic status.  
‡Seronegative mothers and seropositive mothers who reported Zika-like illness outside pregnancy. 
§Seropositive mothers who did not report Zika-like illness during or outside pregnancy. 
¶Seropositive mothers who reported Zika-like illness during pregnancy. 

 

 
Table 4. Crude and adjusted odds ratios for maternal Zika virus infection and other risk factors and early childhood development, 
French Polynesia, 2013–2016* 

Risk factors 

Early childhood development 

Adequate in 
all domains, 

no. (%) 

Question or 
problem in >1 

domain, no. (%) 

Adequate in all domains versus question or problem 
in >1 domain 

Crude OR  
(95% CI) 

Adjusted OR  
(95% CI) 

LRT  
p value 

Zika virus seropositivity, n = 107      
 No 13 (50) 13 (50) 1 1 0.07 
 Yes 46 (57) 35 (43) 0.76 (0.31–1.84) 0.35 (0.11–1.13)†  
Reported Zika infection, n = 107      
 No infection during pregnancy‡ 19 (56) 15 (44) 1 1 0.19 
 Asymptomatic, timing unknown§ 30 (54) 26 (46) 1.09 (0.47–2.59) 0.51 (0.16–1.58)†  
 Symptomatic during pregnancy¶ 10 (59) 7 (41) 0.89 (0.27–2.88) 0.58 (0.14–2.51)†  
Deltamethrin outdoor spraying during pregnancy, n = 104    
 No 34 (69) 15 (31) 1 1 0.07 
 Yes 24 (44) 31 (56) 2.92 (1.30–6.57) 2.69 (0.92–7.84)#  
Maternal socioeconomic status,** n = 106 
 Middle and high 47 (66) 24 (34) 1 1 <0.001 
 Low 11 (31) 24 (69) 4.27 (1.80–10.2) 5.28 (1.96–14.2)††  
Breast-feeding,** n = 106      
 Yes, including artificial feeding 52 (57) 39 (43) 1 1 0.03 
 No 6 (40) 9 (60) 2.00 (0.66–6.09) 4.00 (1.06–15.1)‡‡  
*LRT, likelihood ratio test; OR, odds ratio. 
†Adjusted for deltamethrin outdoor spraying during pregnancy, maternal socioeconomic status, breastfeeding, and date of pregnancy start (divided into 4 
categories based on risk of exposure to Zika virus; see Table 2). 
‡Seronegative mothers and seropositive mothers who reported Zika-like illness outside pregnancy. 
§Seropositive mothers who did not report Zika-like illness during or outside pregnancy. 
¶Seropositive mothers who reported Zika-like illness during pregnancy. 
#Adjusted for ZIKV seropositivity (main exposure), maternal socioeconomic status, breastfeeding, and date of pregnancy start. 
**No interaction (test for interaction p = 0.26) and no multicolinearity were detected for maternal socioeconomic status and breastfeeding. 
††Adjusted for ZIKV seropositivity (main exposure), deltamethrin outdoor spraying during pregnancy, breastfeeding, and date of pregnancy start. 
‡‡Adjusted for ZIKV seropositivity (main exposure), deltamethrin outdoor spraying during pregnancy, maternal socioeconomic status, and date of 
pregnancy start. 
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example, the cognitive scale include items that may be 
influenced by the cultural context. Furthermore, children 
in Canada were recruited in Quebec’s public network of 
kindergartens, which have programs to stimulate chil-
dren’s development.

The main limitation of our study is the low number 
of cases (n = 21), which makes the study underpowered to 
detect a strong association between maternal Zika virus se-
ropositivity and birth defects, as illustrated by the 95% CI 
crossing the null value. Another limitation is how the expo-
sure was assessed. We used maternal Zika virus seroposi-
tivity as a proxy for Zika virus infection during pregnancy, 
but it is probable that some women were infected with Zika 
virus outside the gestational period. However, misclassifi-
cation of mothers, which is likely to be nondifferential as-
suming they were infected during pregnancy when, in fact, 
they were infected outside the gestational period, would 
weaken any association between fetal CNS abnormalities 
and Zika virus seroconversion. We adjusted for the rapid 
variations in exposure over a short time by matching con-
trols to cases by date of conception.

Our second measure of exposure, reported Zika vi-
rus infection, includes a rough estimate of time of infec-
tion (outside or during pregnancy), based on serology data 
combined with recalled information. This measure may be 
susceptible to recall bias, because mothers of case-patients 
are more likely to recall Zika-like illness during pregnancy. 
However, serology data were compatible with recalled in-
formation for both cases and controls (only 1 of 26 moth-
ers who reported Zika-like illness during pregnancy was 
seronegative). Because of the geographic spread of French 
Polynesia and the lack of funding, controls could not be 
residents of any island other than Tahiti or Moorea, which 
contain >70% of the overall population. We also excluded 
private hospitals, where 40% of deliveries occur. There-
fore, it is likely that socioeconomic status confounded the 
associations, which is why we adjusted for maternal socio-
economic status in the analysis.

Our study confirms the association between maternal 
Zika virus infection and CNS congenital defects. Among 
children with no known congenital defects, we found no 
evidence that congenital Zika virus infection had a ma-
jor negative effect on the early stages of childhood de-
velopment. Because the first large Zika virus outbreak 
occurred in French Polynesia about 2 years before the 
Zika outbreaks in Latin America, children exposed to 
Zika in utero in French Polynesia are now older than 
those in other countries, but it may still be early to detect 
subtle developmental delays. Although our data are en-
couraging, systematic in-depth assessment of childhood 
development in larger cohorts of exposed children, and 
at older ages, is needed to detect potential developmen-
tal and learning delays.
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Technical Appendix 

Technical Appendix Table 1. Anthropometry and comparison between Zika virus seropositive and Zika virus seronegative controls* 

Data 
All, n = 107 (n,% or 

median, range) 

Zika seropositive,  
n = 81 (n,% or median, 

range) 

Zika seronegative,  
n = 26 (n,% or median, 

range) p value† 
Child corrected age‡ (months) 22.5 (13.4–28.3) 23.2 (13.6–28.3) 19.1 (13.4–25.4) 0.0046 
 12–14.9 17 (16) 13 (16) 4 (15) 0.009 
 15–17.9 13 (12) 5 (6) 8 (31)  
 18–20.9 12 (11) 10 (12) 2 (8)  
 21–23.9 35 (33) 26 (32) 9 (35)  
 24–30.9 30 (28) 27 (33) 3 (12)  
Anthropometry at birth n, % or median, IQR n, % or median, IQR n, % or median, IQR  
 Weight (kg) 3.254 (2.950–3.682) NA NA  
 Weight Z score§ 1.26 (0.68–2.01) 1.43 (0.81–2.03) 0.99 (0.39–2.01) 0.14 
  Underweight (Z<2 SD) 0 (0)    
 Length (cm) 49 (47–50) NA NA  
 Length Z score 1.01 (0.43–1.64) 1.09 (0.43–1.72) 0.84 (0.00–1.48) 0.19 
  Stunted (Z<2SD) 1 (1) 1 (1) 0 (0) NA 
 Head circumference Z score 1.14 (0.44–2.16) 1.16 (0.45–2.28) 0.99 (0.37–1.80) 0.36 
  Microcephaly (Z<2 SD) 0 (0)    
Anthropometry at enrollment n, % or median, IQR n, % or median, IQR n, % or median, IQR  
 Weight (kg) 12.0 (10.8–13) NA NA  
 Weight for age (Z score) 0.46 (0.17 to 1.07) 0.52 (0.21 to 1.18) 0.32 (0.01–0.81) 0.61 
  Underweight (Z<2 SD) 0 (0) NA NA  
 Height/length (cm) 84 (80–87.5) NA NA  
 Height/length for age (Z score) 0.05 (0.89 to 0.69) 0.06 (0.89 to 0.62) 0.17 (0.19 to 0.87) 0.66 
  Stunted (Z<2 SD) 0 (0)    
 Weight for height/length (Z score) 0.63 (0.12 to 1.28) 0.62 (0.12 to 1.33) 0.66 (0.12 to 1.14) 0.54 
  Wasted (Z<-2 SD) 0 (0)    
 Head circumference (cm) 48 (47–49) NA NA  
 Head circumference for age (Z score) 0.57 (0.04–1.33) 0.63 (0.11–1.33) 0.41 (0.04–0.89) 0.38 
  Microcephaly (Z<2SD) 0 (0)    

*IQR, interquartile range; NA, not applicable; SD, standard deviation 

† aPearson 2 test for proportions and Mann-Whitney test for means 
‡ Theoretical age if children were born at term. 
§ Z-scores were generated using Intergrowth-21st for anthropometry at birth (1) and using the WHO 2005 growth charts (2) for anthropometry during 
the visit. A Z-score is defined as the deviation from the mean value of the gender-specific and age-specific reference populations, divided by the 
standard deviation for the reference population. 

 

 
Technical Appendix Table 2. Early childhood development scores for French Polynesian children and reference children aged 12–30 
months* 

ECD domain 

Reference (n = 269) Study participants (n = 107) 
p value† Mean score SD Mean score SD 

 Socioemotional 90 10 92 10 0.69‡ 
 Cognitive 64 19 57 26 0.001 
 Motor 64 20 60 20 0.08 
*ECD, early childhood development; SD, standard deviation 
†t-test unless specified. 

‡2-test using information on children with suspected “abnormal” development (7/107 among study participants and 21/248 among the reference 
population). The t-test was not done because socioemotional scores were not normally distributed. 
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Technical Appendix Table 3. Early childhood development and maternal Zika virus infection status, French Polynesia, 2013–2016*  

Mothers 

1. Socioemotional domain 2. Cognitive domain 3. Motor domain 
A, 

n (%) 
Q, 

n (%) 
P, 

n (%) 
p 

value† 
A, 

n (%) 
Q, 

n (%) 
P, 

n (%) 
p 

value 
A, 

n (%) 
Q, 

n (%) 
P, 

n (%) 
p 

value 
All (N = 107) 100 (93) 3 (3) 4 (4) NA 68 (64) 23 (22) 16 (15) NA 81 (76) 20 (18) 6 (6) NA 
Zika virus 
seropositivity 

            

 No 25 (96) 1 (4) 0 (0) 0.63 18 (69) 6 (23) 2 (8) 0.54 19 (73) 6 (23) 1 (4) 0.84 
 Yes 75 (93) 2 (2) 4 (5) NA 50 (62) 17 (21) 14 (17) NA 62 (76) 14 (17) 5 (6) NA 
History of Zika 
infection 

            

No infection 
during 
pregnancy‡ 

33 (97) 1 (3) 0 (0) 0.67 24 (71) 8 (24) 2 (6) 0.48 25 (74) 8 (24) 1 (3) 0.26 

Asymptomatic 
(timing 
unknown)§ 

51 (91) 2 (4) 3 (5) NA 33 (59) 12 (21) 11 (20) NA 44 (79) 10 (18) 2 (4) NA 

Symptomatic 
during 
pregnancy¶ 

16 (94) 0 (0) 1 (6) NA 11 (65) 3 (18) 3 (18) NA 12 (71) 2 (12) 3 (18) NA 

*A, Adequate; NA, not applicable; Q, Question; P, Problem 
†P values obtained using Fisher’s exact test. 
‡Seronegative mothers and seropositive mothers who reported Zika-like illness outside pregnancy. 
§ Seropositive mothers who did not report Zika-like illness during or outside pregnancy. 
¶ Seropositive mothers who reported Zika-like illness during pregnancy. 

 

 

 
Technical Appendix Table 4. Crude OR for the association of ECD by domain with Zika virus infection, French Polynesia, 2013–2016*  

Category 

1. Socioemotional domain† 
(logistic regression, Adequate 

vs. Question/Problem) 

2. Cognitive domain 
(ordered logistic regression, 
Adequate vs. Question vs. 

Problem) 

3. Motor domain 
(ordered logistic regression, 
Adequate vs. Question vs. 

Problem) 
Crude OR 
(95% CI) 

LRT 
p-value 

Crude OR 
(95% CI) 

LRT 
p-value 

Crude OR 
(95% CI) 

LRT 
p value 

Zika virus seropositivity 2.00 (0.23–17.4) 0.50 1.51 (0.60–3.81) 0.37 0.87 (0.32–2.36) 0.74 
History of Zika virus infection       
 Asymptomatic (timing unknown)‡ 3.24 (0.36–28.9) 0.50 1.55 (0.60–4.00) 0.66 0.77 (0.27–2.17) 0.63 
 Symptomatic during pregnancy§ 2.06 (0.12–35.1) NA 1.37 (0.38–4.89) NA 1.37 (0.35–5.31) NA 
*CI, confidence interval; LRT, likelihood ratio test; OR, odds ratio 
†Because of the limited number of observations in the socioemotional domain, Question and Problem categories were grouped together and logistic 
regression was performed. 
‡Seropositive mothers who did not report Zika-like illness during or outside pregnancy. 
§Seropositive mothers who reported Zika-like illness during pregnancy. 
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