

Supplement of

Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences

Ke Li et al.

Correspondence to: Ke Li (keli@seas.harvard.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1. Meteorological drivers of summer MDA8 ozone in China, 2013–2019. The figure shows the 1st most important meteorological variable with a statistically significant relationship with daily MDA8 ozone (p < 0.05) for each $0.5^{\circ} \times 0.625^{\circ}$ grid cell. Tmax: daily maximum 2-m air temperature; U10: 10-m zonal wind; V10: meridional wind; PBLH: planetary boundary layer height; TCC: total cloud area fraction; Rain: rainfall; SLP: sea level pressure; RH: relative humidity; V850: 850-hPa meridional wind.

Figure S2. Same with Figure S1 but for the 2nd most important meteorological variable.

Figure S3. Same with Figure S1 but for the 3rd most important meteorological variable.

Figure S4. Coefficient of determination (R^2) for fitting deseasonalized monthly MDA8 summer ozone trends over 2013–2019 with meteorological variables following the MLR model (see text). Only grid cells with statistical significance above the 95% confidence level are shown.

2013-2019 summertime MDA8 ozone trends

Figure S5. Same with Figure 2 but only for the sites with continuous records from 2013 to 2019.