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ABSTRACT: North American avalanche practitioners developed nine Avalanche Characters, based on 
risk treatment strategies, weak layer, and slab characteristics of avalanches. Previous research in Cana-
da and the United States classified the avalanche character in fatal avalanche accidents. In this study, we 
used a similar automated classification to categorize the avalanche character of avalanche events rec-
orded by the Colorado Avalanche Information Center during avalanche years 2011-2016. The classifica-
tion scheme  categorized 52% (n=8546) of the avalanche events into Character. There was insufficient 
data recorded to categorize the remaining 48% of events. Storm and Wind Slab avalanches accounted 
for 22% of events, Persistent Slab 13%, Deep Persistent Slab 2%, Loose Wet 11%, and Wet Slab 3%. 
Compared to our previous study of avalanche fatalities, Persistent or Deep Persistent Slab avalanches 
resulted in 90% of fatalities, but only 15% of events. This highlights the hazard that Deep Persistent and 
Persistent Slab avalanches pose to the recreating public. Our research allows for year-to-year and even 
day-to-day characterization. This could be used as a further tool to characterize current events and com-
pare against past avalanche cycles.  
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1. INTRODUCTION 

The Avalanche Character (AC) classification sys-
tem segregates potential avalanche events into 
risk treatment categories. In 2004, Roger Atkins 
proposed a framework for considering avalanches 
“tied directly to different risk-management strate-
gies” (Atkins 2004). In the intervening years the list 
was simplified into nine categorizes and incorpo-
rated into the Conceptual Model of Avalanche 
Hazard, a structured approach to evaluating ava-
lanche hazard (Statham et al. 2010). Eventually 
AC became one element of a tool to communicate 
the avalanche hazard in public safety products in 
North America, South America, and New Zealand 
(Lazar et al. 2013).  

The Colorado Avalanche Information Center 
(CAIC) now uses AC as the organizing framework 
for their public avalanche forecasts. We are con-
tinuing to improve our understanding of this sys-
tem as we rely more and more on the concept. In 
past studies, we examined the frequency of the 
different categories involved in fatal avalanche 
accidents (Logan and Greene 2014). 

In this study, we use similar methods to examine 
the AC category of actual avalanche events. The 

CAIC records observed avalanche event charac-
teristics (Greene et al. 2010) in a database. The 
CAIC typically documents about 2700 avalanches 
each avalanche year. A better understanding of 
the distribution and frequency of avalanche that fit 
into the AC categories, and timing of different 
events will improve the CAIC forecasting and pub-
lic messaging. 

2. METHODS 

We used an automated classification schema to 
sort observed avalanches into AC categories. 

2.1 

The state of Colorado is located in the central 
Rocky Mountains of North America (Fig. 1). It is 
characterized by a continental snow climate 
(McClung and Schaerer 2006). Winter tempera-
tures are relatively cold, leading to persistent 
structural weaknesses in the snowpack. 

Study location and Dataset 

The CAIC issues backcountry avalanche forecasts 
for ten zones in the state (Fig. 1). The CAIC col-
lects avalanche occurrence data from a variety of 
sources. CAIC staff contributes the majority of the 
data, recording highway mitigation results, natural 
or triggered occurrences, and backcountry ava-
lanches. Avalanche professionals, including ski 
patroller and guides, and the recreating public 
contribute the rest of the data. 
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Fig 1: Map of the study area in western Colorado, 
USA. CAIC forecast zones are outlined in 
white. All avalanche events within the 
dataset occurred within a forecast zone. 

2.2 

We used Avalanche Type (AT), destructive size, 
and bed surface (Greene et al. 2010) to categorize 
recorded avalanches into one of seven AC catego-
ries. We combined Storm Slab and Wind Slab 
avalanches because AT and sliding surface were 
insufficient to distinguish between them. We did 
not include Glide avalanches because there are 
very few events in the CAIC database that fell into 
this category. The categorization schema was re-
fined from a previous effort (Logan and Greene 
2014) and is similar to that used in Canada (Ja-
mieson et al. 2010). 

Categorizing Avalanche Character 

Avalanche Type was the primary categorization 
factor (Fig. 2). We used this portion of the ava-
lanche occurrence record to categorize four AC, 
Loose Dry (L), Loose Wet (LW), Wet Slab (WS), 
and Cornice (C) avalanches. Hard and soft slab 
avalanches required further categorization. Storm 
Slab and Wind Slab avalanches (S/W) had a bed 
surface within or at the storm snow interface. They 

could not be further differentiated based on infor-
mation in the occurrence data. Bed surfaces in old 
snow or the ground separated the storm issues 
from persistent weak layers. Destructive size and 
average fracture depth were used to differentiate 
Persistent avalanche (PS) from Deep Persistent 
Slab avalanche (DPS) categories, with DPS re-
quiring a D3 or greater size or average crown 
depth of 1 m or greater.  

 

Fig. 2: Classification schema for the automated 
selection of AC category  

3. RESULTS 

There were 16270 avalanche events recorded in 
the CAIC database over the six years. 

3.1 

The classification schema was able to categorize 
52% (8546) of the total avalanches (Tbl. 1). Of 
characters associated with dry snow, Storm and 
Wind Slab avalanches (S/W) was the largest 
group at 22%, followed by Persistent Slab ava-
lanches (PS) at 13%. Deep Persistent Slab ava-
lanches (DPS) accounted for 2% of the total 
avalanches, and Cornice avalanches(C) less than 
1%. Eleven percent of avalanches were catego-

Categorizing Avalanche Character 
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rized as Loose Wet avalanches (LW), and 3% as 
Wet Slab avalanches (WS). 

There were 7724 avalanches that could not be 
categorized (UNK). For 1257 avalanches, observ-
ers did not report an AT category. The majority 
(6202) of UNK were soft or hard slab avalanches 
where observers did not report a bed surface or 
dimensions. 

Tbl. 1: AC categories by avalanche year 

 
Avalanche Year 

 AC 11 12 13 14 15 16 Total 

LD           204 204 

S/W 1598 372 573 353 397 301 3594 

PS 177 388 550 409 255 269 2048 

DPS 45 62 96 64 11 44 322 

C 32 4 14 1 0 14 65 

LW 292 84 336 172 585 306 1775 

WS 83 59 73 52 216 55 538 

UNK 1497 1265 1205 958 1496 1303 7724 

 3724 2234 2847 2009 2960 2496 16270 
 

3.2 

The number of avalanches recorded per year var-
ied from about 2000, in 2014, to 3700 in 2011 (Tbl. 
1), with a median of 2672. The number of events 
in each AC varied greatly from year to year. None 
of the categories showed statistically significant 
linear trends from season to season. 

Character by Avalanche Year 

3.3 

The CAIC frequently summarized avalanche ac-
tivity in aspect elevation diagrams (Fig. 3). Ava-
lanches were recorded as starting Below Treeline, 
Near Treeline, or Above Treeline, which also cor-
respond to elevation bands in the public forecast 
products. Starting zone aspects were recorded as 
a single ordinal direction. Figure 4 shows as-
pect/elevation diagrams for the three dry-slab 
ACs, summed over the six years of the study. We 
compared aspect elevation diagrams from year to 
year to examine yearly differences (Fig. 5). 

Character by Aspect and Elevation 

3.4 

We converted calendar dates into day of ava-
lanche year (October 1 is day 1, September 30 of 
the following year day 365). Doing so allowed us 
to compare avalanche cycles and timing from 

character to character and year-to-year (Figs. 6 
and 7). 

Character by day of the Avalanche Year 

   
    

N 
    

   
 

B 
  

B 
  

B 
 

   
  

N 
 

N 
 

N 
  

   
   

A A A 
   

   W B N A 
 

A N B E 

   
   

A A A 
   

   
  

N 
 

N 
 

N 
  

   
 

B 
  

B 
  

B 
 

   
    

S 
     

Fig. 3: Aspect/elevation diagram keyed to show 
aspects and elevation bands used by the CAIC 
(B=below treeline, N=near treeline, A=above 
treeline) 

 
Fig. 4: Aspect/elevation diagrams for the three dry-

slab AC summed over all six years. The 
color ramp runs from 0 in pale yellow to 
400 in dark orange. 
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Fig. 5: Comparison of aspect/elevation diagrams 

for DPS for each of the six winters. The 
color ramp runs from 0 in pale yellow to 17 
in dark orange. 

4. DISCUSSION 

4.1 

Avalanche Character and Avalanche Type classi-
fication systems approach avalanche phenomena 
from different directions. Avalanche Type uses 
physical properties to describe actual events. Ava-
lanche Character uses risk treatment strategies, 
physical properties, and formation features to sort 
potential events. We attempted to connect the two 
approaches with the categorization schema de-
scribed in the in the methods section. 

Categorization Schema 

The automated schema successfully sorted over 
half of the records in the CAIC database. It pro-
vides additional detail than the AT classification 
and added to our understanding of the dry slab 
avalanche occurrence data by incorporating size, 
bed surface, and slab type into one group (Fig. 8). 

Avalanche forecasters use many elements of the 
avalanche occurrence data when evaluating an 
avalanche cycle. This schema will not replace the 
eye of an experienced forecaster, but it does pro-
vide an effective summary of events, encompass-
ing multiple factors. You can see the utility of this 
approach  in the aspect/elevation distributions for 
PS and DPS (Fig. 4), or the changes in W/S, PS, 
and DPS through an avalanche cycle (Figs. 6 and 
7). 

 

Fig. 8: Automated AC categories of Soft and Hard 
Slab Avalanche Types. 

The data sorted by the automated schema has 
some limitations. The event database is comprised 
of observations and documents only reported ava-
lanches.  In limited cases, the database is a nearly 
complete record of avalanche activity, such as 
avalanches larger than D2 in size that affect a 
highway section. However, the database likely 
includes only a small fraction of the total ava-
lanche occurrence. 

From a risk treatment perspective, the terrain lo-
calization or formation process is the primary dif-
ference between Storm and Wind Slab 
avalanches. Many of the records in the CAIC da-
tabase do not include enough detail for us to sepa-
rate the two ACs automatically.  

The automated AC schema failed to categorize a 
large portion of avalanches, mostly when the oc-
currence record was incomplete (i.e. missing da-
ta). Assuming similar proportions of S/W to PS 
and DPS that were categorized, about 3700 of the 
UNK could be estimated as S/W, 2100 as PS, and 
310 as DPS. 
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Fig. 6: The number of Persistent Slab (PS) and Deep Persistent Slab (DPS) avalanches plotted by day of 
avalanche year for 2013 (an “unstable” year) and 2016 (a “stable” year). Fatalities are plotted in 
red, at a value of 5 for Persistent Slab and 8 for Deep Persistent Slab avalanches.. 

 

 

Fig. 7: January 8 to February 17, 2016, avalanche year day 100 to 140. The upper panel shows observed 
AC and recorded human involvement for each day. The lower panel shows the number of zones 
(maximum of 10) where Storm Slab or Wind Slab avalanches were included in the forecast. Per-
sistent Slab avalanches where included in all forecast zones for the entire period.  
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A further limitation of the automated AC schema 
was the reliance on Avalanche Type. Type was 
the only categorization factor for WL, WS, LD and 
C. The schema did not add additional insight to 
those events. With WL and WS, the year-to-year 
aspect/elevation and timeline methods discussed 
in this paper did indicate large year-to-year differ-
ences and distinct relationships with time of year. 
Future operational forecasting efforts could incor-
porate these techniques.  

4.2 

We found no significant linear trends in the num-
ber or proportion of events categorized into each 
AC from year to year. We would expect significant 
trends if the CAIC staff changed the way they rec-
orded events as they became more familiar with 
the Conceptual Model. The lack of trends sug-
gests that differences between years are not due 
elements of data recording. 

Year-to-year differences 

The number of events categorized as PS or DPS 
each year parallels the general characterization of 
the CAIC forecasters. 2013 and 2014 were notably 
“unstable” winters, with dangerous conditions and 
a large number of avalanche accidents associated 
with DPS (Tbl. 2; Logan and Greene 2014).  Both 
winters had a high number of both PS and DSP 
avalanches. Especially in comparison to 2016 and 
2015, which forecasters characterized as “relative-
ly stable” and safer winters (Fig. 5).  

The categorization schema provided an indication 
of the relative frequency of different ACs. We es-
timated odds ratios by combining the frequency of 
AC in events with the AC in fatal accidents. That 
provides an over-approximation of the odds ratio 
with values ranging from 1.5 to 15 for each of the 
six years in this study. The rough calculations indi-
cate that being exposed to (caught in) PS or DPS 
avalanches leads to a much greater chance of 
death. For all other problems, the odds ratios were 
much less than one. 

4.3 

The time series highlight additional differences 
year-to-year (Fig. 6). In both 2013 and 2016 there 
were PS and DPS avalanche cycles in late De-
cember and early January (around day 90), and 
again in late January and early February (around 
day 120). The numbers of reported PS and DPS 
avalanches were much higher in 2013, and the 
cycles extended over longer periods. In 2016, PS 
and DSP avalanches tapered off after the Febru-
ary cycles, and the rest of the season was relative-
ly quiet. Avalanche cycles continued through  

Time series 

Tbl. 2: Percentage of events and events associat-
ed with a fatal accident, categorized into 
AC by avalanche year. 

Avalanche 
Year 11 12 13 14 15 16 

A
C

 E
ve

nt
s 

Total 2227 969 1642 1051 1464 1193 

% S/W 72 38 35 34 27 25 

% PS 8 40 33 39 17 23 

% DPS 2 6 6 6 1 4 

Fa
ta

lit
ie

s 

Total 7 7 11 8 3 5 

% S/W 14 0 0 13 0 0 

% PS 71 86 27 25 100 80 

% DPS 14 0 64 63 0 0 
 

March of 2013 (through day 180), with a resur-
gence of DPS and associated accidents in late 
April (day 195). 

The time series also showed the temporal evolu-
tion of problems. By definition, S/W avalanche ac-
tivity happens during or a few days after 
snowstorms. Continuing avalanches then become 
PS, on the assumption that the bed surface is old 
snow and no longer storm instabilities or storm 
interfaces (Lazar et al. 2013). 

The January and February 2016 avalanche cycles 
illustrated the evolution well. Figure 8 shows the 
period from 8 January to 17 February 2016, days 
100 to 145. The S/W avalanches indicate the 
near-weekly storms through January. Lower-
frequency PS avalanches continued between 
storms. There are only a few DPS avalanches pri-
or to day 124, 1 February 2016, when a four-day 
cycle of DPS avalanches began. 

The lower panel of Figure 8 shows the corre-
sponding AC from the CAIC backcountry zone 
forecasts. For the most part, forecasters intro-
duced Storm Slab avalanches into the forecasts at 
the onset of the storms. The lower panel suggests 
that forecasters retained Storm or Wind Slab ava-
lanches longer than necessary during this period. 

Persistent Slab avalanches were included in each 
zone for the period displayed in Figure 8. PS ava-
lanches occurred every few days during the peri-
od, which supports the forecaster’s continued use 
of this AC. Forecasters never included DPS ava-
lanches during the period. The automated AC 
schema categorized 12 avalanche events as DPS 
between days 124 and 128. CAIC forecasters dis-
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cussed adding Deep Persistent Slab avalanches 
to the forecasts during this period, but felt their 
inclusion made the public messaging too confus-
ing, and that the of Persistent Slab avalanches 
conveyed risk strategies adequately. This under-
scored the difference between using AC to com-
municate risk to public safety verses a 
categorization of avalanche events. 

5. CONCLUSIONS 

The automated AC categorization schema is an 
experiment to see if we can use a system created 
to describe potential events, to describe observed 
ones. The criteria for each AC category contain a 
mix of factors that range from physical characteris-
tics to suggested risk management behaviors. Ex-
perienced avalanche forecasters are quite adept 
at using the AC system to group potential events. 
With the current descriptions, it is much more diffi-
cult to determine the AC of an observed event. As 
with any classification system that attempts to sort 
all events into a limited number of categories, 
many events fall easily into one group. Other 
events lie on the border and are more difficult to 
sort correctly. Although many of the unclassified 
events were due to missing portions of the data 
record, the automated scheme failed to sort about 
half of the avalanches in the dataset.  

The AC schema appears to be a useful technique 
despite some limitations. Occurrence data run 
through this filter show greater detail than data 
sorted by Avalanche Type, the classification used 
since the early 1970s. Aspect and elevation dia-
grams of the filtered data correlate with forecaster 
perception of year-to-year variability. The filter and 
this visualization also shows the change in expo-
sure (in this case an allegory for encounter proba-
bility) of backcountry travelers during different 
avalanche years.    

The automated scheme provides some insight into 
the utility of the AC system. Although the system 
makes intuitive sense to avalanche forecasters, it 

is unclear if it offers much as a risk communication 
tool. The percentage of different AC events com-
pared to the percentage of AC accidents suggests 
that using AC could be a useful communication 
tool. Although we observe far more Wind and 
Storm Slab avalanches each year, more people 
die in Persistent and Deep Persistent Slab ava-
lanches. This automated version of the AC system 
successfully collected the events with the greatest 
potential danger. 

ACKNOWLEDGEMENTS 
Many thanks to everyone who reports and documents 
avalanche events and accidents. Our work relies entire-
ly on the information gathered by avalanche profession-
als and the interested public from around Colorado. 

REFERENCES 
Atkins, R. 2004: An avalanche characterization checklist for 

backcountry travel decisions. Proceedings of the Interna-
tional Snow Science Workshop, Jackson Hole, WY, 462-
468. 

Greene, E., D. Atkins, K. Birkeland, K. Elder, C. Landry, B. 
Lazar, I. McCammon, M. Moore, D. Sharaf, C. Sterbenz, B. 
Tremper, and K. Williams, 2010. Snow, Weather and Ava-
lanches: Observation Guidelines for Avalanche Programs 
in the United States. American Avalanche Association, 
Pagosa Springs, CO. 

Jamieson, B., P. Haegeli, D. Gauthier, 2010: Avalanche Acci-
dents in Canada. Volume 5, Canadian Avalanche Associa-
tion, 431 pp. 

Lazar, B., E. Greene, and K. W. Birkeland,  2013: Avalanche 
Problems and Public Advisories. The Avalanche Review 
Volume 31 Number 2. 

Logan, S. and E. Greene, 2014. The Distribution of Fatalities 
by Avalanche Problem in Colorado, 1998-99 to 2012-13. 
Proceedings of the International Snow Science Workshop 
2014, Banff AB. 

McClung, D. M. and P. A. Schaerer, 2006: The Avalanche 
Handbook. 3rd ed The Mountaineers, 347 pp. 

Statham, G. , P. Haegeli, K. W. Birkeland, E. Greene, C. 
Israelson, B. Tremper, C. Stethem, B. McMahon, B. White, 
J. Kelly, 2010: A conceptual model of avalanche forecast-
ing. Proceedings of the International Snow Science Work-
shop, Squaw Valley, CA, 686 

 

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016

355

http://arc.lib.montana.edu/snow-science/item.php?id=2075�
http://arc.lib.montana.edu/snow-science/item.php?id=2075�



