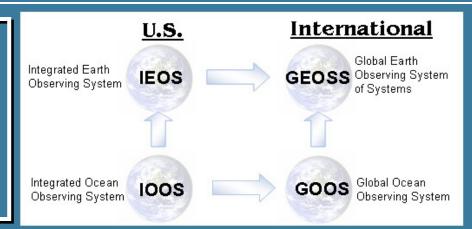
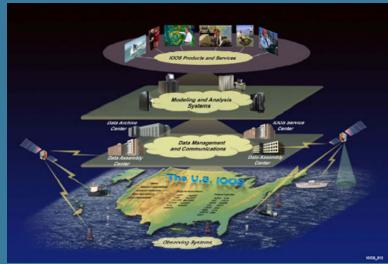
United States Ocean Observing Initiatives: A Look to the Future

Zdenka Willis, Kimberly Cohen, Dr. Jeff de La Beaujardiere, Jessica Geubtner, NOAA

Dr. Alexandra Isern, Dr. Shelby Walker, National Science Foundation Dr. Jonathan Berkson, United States Coast Guard Dr. John Haines, United States Geological Survey William Birkemeier, United States Army Corp of Engineers Dr. Brian D. Melzian, United States Environmental Protection Agency Ray Toll, Science Applications International Corporation Dr. Ralph Rayner, United States Consortium for Ocean Leadership

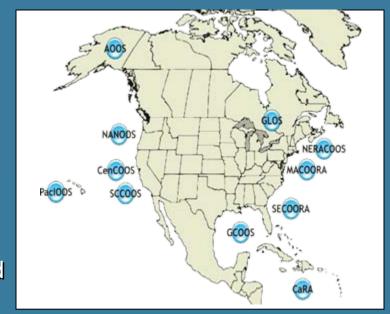

GODAE Meeting November 15, 2008

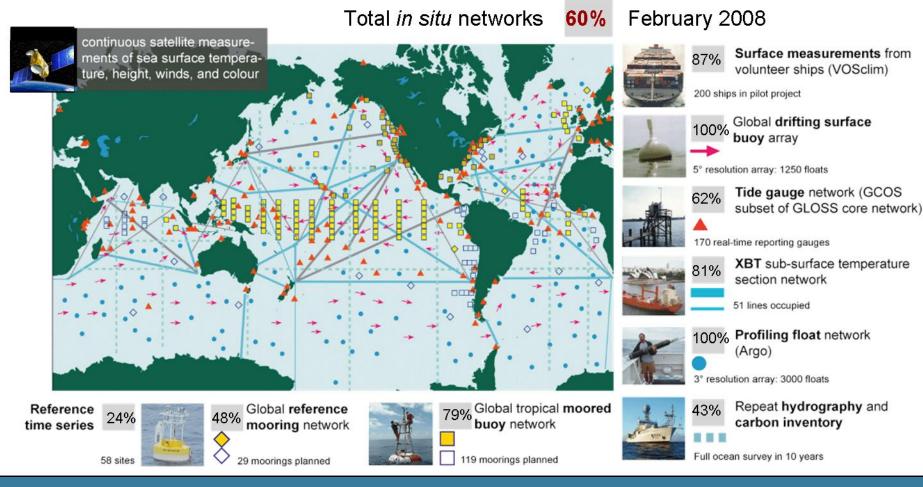


Background: US IOOS®

IOOS® Development Plan defines:

- 1) Global Component
- 2) Coastal Component17 Federal Agencies11 Regional Associations




3 Subsystems: Observing, Data Management and Communication (DMAC), Modeling and Analysis;

2 Cross Cuts: Research and Development and Education

Initial Global Ocean Observing System for Climate Status against the GCOS Implementation Plan and JCOMM targets

Global Climate Observing System (GCOS)
Joint WMO-IOC Commission on Oceanography and
Marine Meteorology (JCOMM)

Background: IOOS® – Coastal Component

Societal Challenges

- The global climate is not well understood
- Coastal populations are at risk from weather, climate & natural hazards
- Our ocean, coastal and Great Lakes ecosystems are complex; many are at risk
- Expanding the Marine Transportation System

Information Needs

- Characterize the state of the global climate system and its variability
- Improved models (e.g., hurricane intensity, coastal inundation, and harmful algal bloom models)
- Improved ecosystem assessments
- Updated management approaches
- Improved access to data and scientific information

IOOS Variables

Temperature
Salinity
Sea Level
Surface currents
Ocean color
Bathymetry

Surface waves

Ice distribution
Contaminants

Dissolved nutrients

Integration

Long-term data series, coordinated

in space and time

Fish species

Fish abundance Zooplankton species

Optical properties

Heat flux

Bottom character

Pathogens

Dissolved O₂

Phytoplankton species

Zooplankton abundance

Winds*

NOAA Decision Tools

Hurricane Intensity Model

Coastal Inundation Model

Harmful Algal Bloom Model

Integrated Ecosystem Assessment

Data Integration Framework (DIF)

Months 0-12

Month 18

Month 24

Month 36

Integration

Model Ingest

Benchmark

Performance Assessment & Monitoring

Requirements

Temperature

Salinity

Water Level

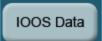
Currents

Winds

Waves

Ocean Color

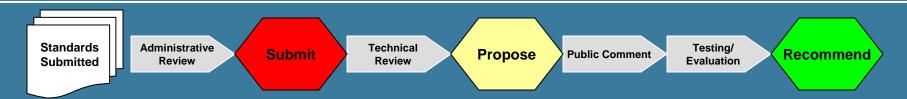
Data Standards



Coastal Inundation

Harmful Algal Bloom Forecast

Hurricane Intensity Forecast


Integrated Ecosystem Assessment

http://ioos.noaa.gov/dif/

1005[®] DMAC Standards

- Interagency & Non-Federal, community-based process
 - Approach: Adopt, Adapt, Build new
 - Multiple standards per variable increases complexity
- Process re-initiated October 2007
 - Developed web-based, collaborative tools: http://ioosdmac.fedworx.org
 - 270 day review process: 2 formal cycles per year
- STATUS: 12 standards "submitted"; 4 "proposed"; final "recommended" status still pending

International Standards Coordination

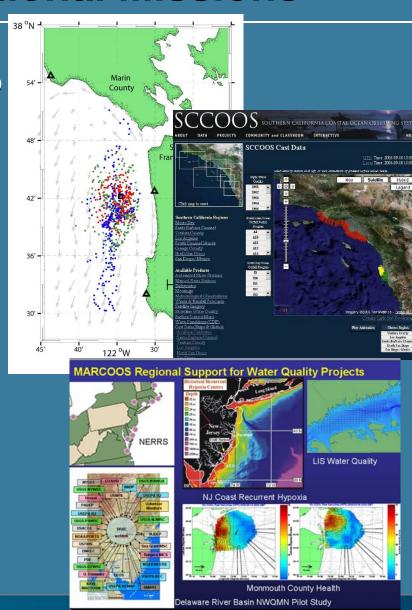
- Forum on Oceanographic Data Management and Exchange Standards was held January 2008
 - Objective: General agreement and commitment to adopt key ocean data standards
 - Who: Representatives from organizations who are extensively involved in ocean data management
 - Way Ahead:
 - Establish a pilot project organized under the IODE
 - Document the standards process and promote it at national and international meetings
 - Website (www.oceandatastandard.org) promotes adoption

Regional Enterprise Partnership

 11 Regional Associations (RAs) develop and operate the Regional Coastal Ocean Observing Systems (RCOOS)

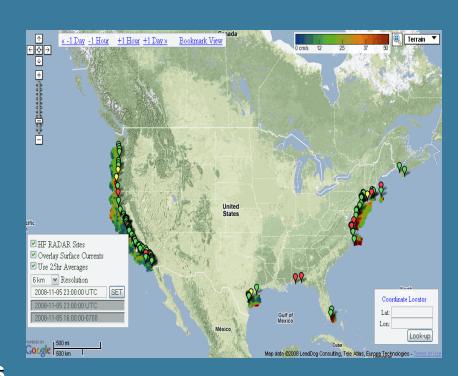
- RAs are the conduit between their local regions and other United States Federal and State agencies
- RAs contribute to the National IOOS® through:
 - Identify user needs at the local level
 - in situ observing capability
 - remotely sensed measurements (e.g., HF radar)
 - data management and communication
 - modeling / analytical capability

Regions Meet National Missions

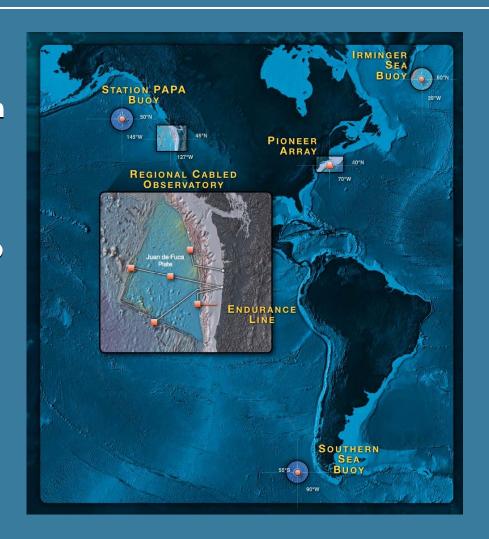

- Oil spill tracking: CeNCOOS spill trajectories and real-time surface current maps within hours of M/V Cosco Busan spill
- <u>Marine Weather Observations and Forecasts:</u> Southeastern Portal, developed by NOAA National Weather Service (NWS) and SECOORA, is a one-stop shop for marine weather.
- Marine Transportation: Ports and Harbor Modeling in 3 Regions; Customized website for the entrance to the Los Angeles and Long Beach Harbor and San Pedro Channel
- Atmospheric Modeling: MACOORA improved local weather forecast model and severe weather alerts, incorporating R/T oceanographic data (transitioned to NWS Weather Forecast Office Mt Holly)
- Harmful Algal Blooms: NERACOOS observing assets support preoperational, near real time nowcasts in Gulf of Maine
- <u>Aquaculture:</u> NANOOS-NERRS partnership provides real-time water quality information to support shellfish grower industry; CeNCOOS support to Monterey Abalone Company

Regions Meet National Missions

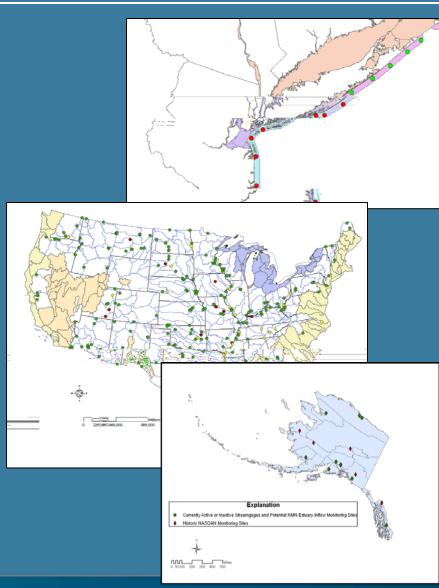
- Fisheries Climate
 - SCCOOS: 50 years of CalCOFI web accessible in '09
- Water Quality
 - SCCOOS: Hyperion Treatment
 Plant Diversion
 - CeNCOOS: Effluent trajectories
 - MACOORA: Delaware River Basin NMQWM Pilot Study
 - SECOORA: Surface currents monitoring to mitigate impacts of dredged material on nearby reefs
- Instrument Testing and Validation
 - Alliance for Coastal Technologies



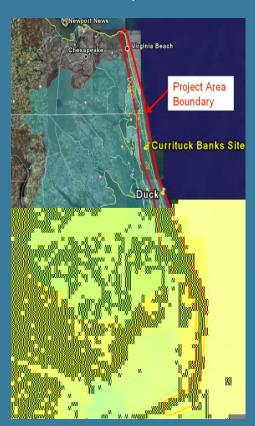
High Frequency Radar (HFR)


- Partners: Federal, State and Local agencies
- Significant non-federal ~\$55M investment
- Serves many missions
- Implemented national HFR servers and data management system
- Permanent radio frequency allocations
- Challenge: Funding for operations and maintenance and new systems
- Enhanced data quality control and product development is underway

Ocean Observatories Initiative (OOI)


- Major National Science Foundation (NSF) investment
- Constructed over 5 years with expected 25-30 year lifetime
- Multi-scale network-global, regional, coastal
- Multi-disciplinary approach to study complex natural systems and non-linear processes
- Expanded power and bandwidth to the seafloor
- Long time-series
- Ability to investigate shortterm episodic events
- Open data policy

National Water Quality Monitoring Network


- Partners: US Geological Survey (USGS), Environmental Protection Agency (EPA), NOAA
- Network: Water quality data elements (WQDE) selected by working group for comparability, sharing, and value of data.
- 3 Pilot Projects
 - Delaware
 - San Francisco
 - Great Lakes
- Future Plans:
 - Complete demonstration studies
 - Implement network
- Linked to IOOS® through data management and network design

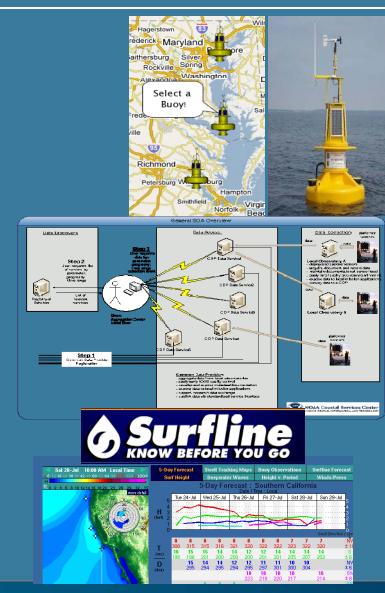
Integrated Ocean and Coastal Mapping (IOCM)

- Acquiring, managing, integrating and disseminating ocean and coastal geospatial data, so data and their products can be easily accessed and used by and for the greatest range of users and purposes - <u>Map Once</u>, <u>Use Many Times</u>
- Involves participation by Federal, State, academic, NGO and private sector partners
- North Carolina Integrated Coastal Mapping Project
 - Location: NC coastal area from Cape Hatteras to Currituck Banks
 - Partnership: 3 Federal agencies and 3 State agencies
 - Data: High-resolution topography and bathymetry, and aerial imagery to characterize habitat
 - Products: Coastal orthophotos, shoreline maps, habitat classification, maps, updated nautical charts
- California Seafloor Mapping
 - Location: CA coast from shoreline out to 3 nautical miles
 - Partnership: State-led with Federal, NGO and industry
 - Data: Bathymetry, acoustic backscatter, geological and biological ground-truthing to characterize habitat
 - Products: Coastal and habitat base maps, updated nautical charts

1005[®] Benefits Business

Practical applications of IOOS®

- All businesses are vulnerable to risks associated with adverse weather and climate change.
- Events such as hurricane Katrina and mid-west flooding demonstrated just how much the weather can disrupt business activity.
- IOOS® is the key to enhancing, coordinating and connecting information, unlocking improved weather forecasts and climate projections, and providing critical information to businesses far removed from the coast or operations at sea.



Roles of Industry

Examples of industry partnerships

- Observing
 - Chesapeake Bay Interactive Buoy System (CBIBS)
 - International Tsunami buoys
- DMAC
 - Boeing, SAIC, and ASA working with NANOOS, CeNCOOS and MARCOOS
- Modeling
 - Noblis, Inc. Chesapeake Bay Inundation Prediction System (CIPS)
- Partnerships
 - Oil and gas companies provide data to the National Data Buoy Center
 - Shell and NOAA
- Value Add Companies
 - Surfline
 - ROFFS™ Roffer's Ocean Fishing Forecasting Service, Inc.

Questions?

"Providing information needed to improve safety, enhance our economy and protect our environment"

http://ioos.noaa.gov

Back Up

Recommended Web Services and Data Encodings

Data Type

Web Service

Encoding

In-situ data (buoys, piers, towed sensors)

OGC Sensor Observation Service (SOS) XML based on OGC
Observations and
Measurements (O&M)

Gridded data (model outputs, satellite)

OGC Web Coverage Service (WCS) NetCDF using Climate and Forecast (CF) conventions

Images of data

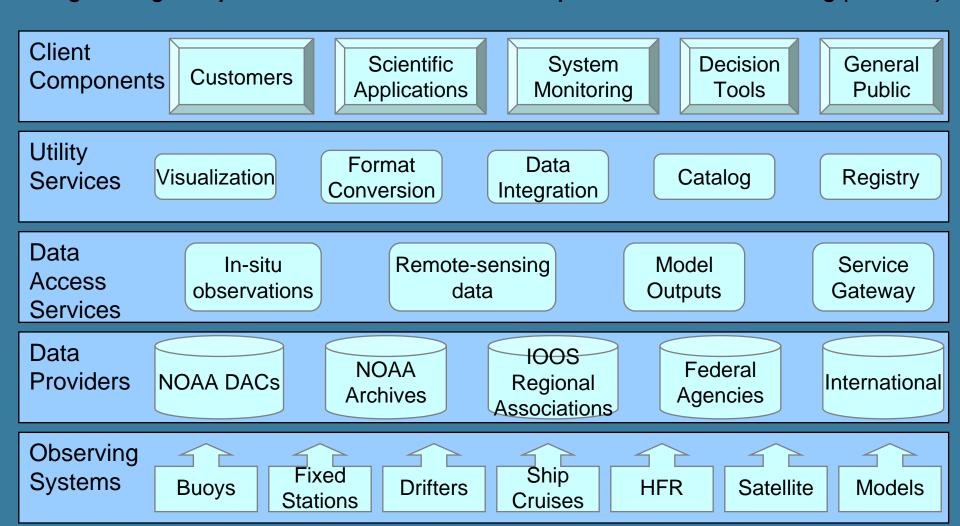
OGC Web Map Service (WMS)

GeoTIFF, PNG etc.
-possibly with
standardized styles

[*OGC = Open Geospatial Consortium]

DIF Data Provider Status – end of CY08

Data Integrated from One Provider **Web Coverage Service Sensor Observation Service** & OPeNDAP Data Content & Encoding Standards **NDBC** NDBC DAC DART DAC TAO DAC - buoys, **IOOS DAC High-Frequency** - Deep-Ocean - Tropical C-MAN, VOS, - Regional Radar (HFR) Assessment and **Atmosphere** Reporting of NOS NERRS. observations surface currents Ocean **Tsunamis** etc. NDBC Data Assembly Centers (DACs) CO-OPS Data Integrated from One Provider **Sensor Observation Service** User Requests Data Content & Encoding Standards **PORTS**® **National Water Level Observation Network** SECOORA **Sensor Observation Service** Data Integrated from One Provider Data Content & Encoding Standards Federal, State, Local, and Industry data CoastWatch **Web Coverage Service** Data Integrated from One Provider & OPeNDAP Data Content & Encoding Standards Satellite Ocean Color 100S Variables: temperature, salinity, currents. (Aqua MODIS, Terra water level, winds, waves, ocean color (chlorophyll) MODIS, SeaWiFS)


Component Implementations for DIF

Technology Viewpoint from Reference Model for Open Distributed Processing (RM-ODP) Legend: Testing Starting Planning Client HAB-FS **OSMC ERDDAP** IEA HI G.Earth **Browser ESRI** Components **NOAA Customers Utility GEOSS GEOSS** Integration **WMS ERDDAP** Services Service Registry Catalog Data OpenDAP/WCS **OpenDAP WCS** SOS Access Gateway Services Data Federal **Providers NDBC** CO-OPS **IOOS RAs** CoastWatch Others.. Agencies Observing IOOS DART TAO NWLON PORTS HFR MODIS **NDBC** Model others. **Systems** moorings **RCOOS** Currents

Component Types Needed for IOOS®

Engineering Viewpoint from Reference Model for Open Distributed Processing (RM-ODP)

Geographic Location of Regional Associations

Regional Association	Primary geographic location
Great Lakes Observing System (GLOS)	The Great Lakes, its interconnecting waterways, and the St. Lawrence River
Northeast Regional Association (NERA)	Maine to Massachusetts, including the Canadian provinces of New Brunswick and Nova Scotia
Mid-Atlantic Coastal Ocean Observing Regional Association (MACOORA)	Cape Cod, MA, to Cape Hatteras, NC
Southeast Coastal Ocean Observing Regional Association (SECOORA)	North Carolina to the Atlantic coast of Florida
Caribbean Regional Association (CaRA)	Puerto Rico, U.S. Virgin Islands, and the island of Navassa
Gulf of Mexico Coastal Ocean Observing System (GCOOS)	Gulf Coast of Florida to Texas
Southern California Coastal Ocean Observing System (SCCOOS)	Southern California Bight
Central and Northern California Ocean Observing System (CeNCOOS)	Central and Northern California
Northwest Association of Networked Ocean Observing Systems (NANOOS)	Washington, Oregon, and northern California
Alaska Ocean Observing System (AOOS)	Gulf of Alaska, Bering Sea and Aleutian Islands, and the Arctic
Pacific Islands Integrated Ocean Observing System (PacIOOS)	Hawaii, U.S. territories in the Pacific, and the Freely Associated States in the Pacific

