Volcanic Disruption of the Equatorial lonosphere: ICON Observations of the Tonga Eruptlon
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lonospheric Impacts of Volcanic Eruptlons

The Hunga Tonga-Hunga Ha'apai
(hereafter called “Tonga’) volcano erupted
at ~4:15UT on 1/15/22, driving
atmospheric pressure waves around the
globe [1,2] (Fig 1). These waves
propagated into space, producing
traveling ionospheric disturbances (TIDs)
[3,4,5] which persisted for several days
after the eruption [6]. While direct Tonga eruption. (Credit: Mathew
modification of the ionosphere has been Barlow,/U Mass Lowell)
associated with the passage of atmospheric waves originating in the
lower atmosphere [7], the potentially larger electrodynamic effects
on the plasma have only recently been considered [8]. Here we
show immediate, global-scale dynamo effects of the eruption using
observations from NASA's lonospheric Connection Explorer (ICON).

Fig 1: NOAA GOES-West satellite
imagery reveals a global atmospheric
pressure wave launched by the

Data and Methods

The ICON mission explores
energy and momentum transfer
from solar and atmospheric
sources into the ionosphere [9],
so is apt to study Tonga’s
ionospheric effects. ICON’s lon
Velocity Meter (IVM) measures in
situ plasma densities and drifts
[10], MIGHTI remote-senses
neutral wind profiles [11], and
the Far Ultra-Violet (FUV) Imager
remote-senses plasma density
profiles [12] (Fig. 2). For the

geometry (cregit: UCB/SSL) relevant scale sizes (>1s,
>10km), IVM measurements can be extrapolated along the field

lines, providing remote sampling of the electric field.

To distinguish from quiet-time variability, we find the solar local time-
dependent ion drift climatology for Jan 8-13, 2022 (gray in Fig. 4c),
when magnetic conditions were quiet (Fig 3). We omit the day before
the eruption due to a geomagnetic storm. As noted by Harding et al.
(2022) [8], there is little evidence of penetration electric fields due
to the storm, so it is unlikely to confound our analysis.
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Fig 2: ICON instruments and observing
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Fig 3: Disturbance Storm Time (Dst) Index (https://wdc.kugi.kyoto-u.ac.jp/dstdir/) for Jan.
2022. The relatively quiet period over which we evaluated the climatology is highlighted in green

Observations: ICON’s First Glimpse of the Eruption

We report extreme zonal and
vertical ExB ion drifts (6.90 and
8.80 w.r.t to the climatology,
respectively) ~4000 km away
from Tonga within an hour of the
eruption, well before the arrival of
any atmospheric wave (Fig 4).

Fig 4: a) ICON's location and magnetic ‘ 2 | | | = ,—iwmmme
footpoint for its first orbit post—eruptiongml. s = e Jw@u Vg "
including wavefronts of disturbances: > s i
traveling at 900m/s (green), 600m,/< 25" E
(purple), and 310m/s (yellow, representingiw; =
a Lamb wave). b) The magnetic field lin
connected to ICON at its closest approach to c)
Tonga. A simple spherical wavefront mod el
shows that when the south magneti B —.
footpoint is north of the volcano the neutradsszaaa..
wind is expected to be mostly northward; ‘
driving a westward ExB ion drift. c) IVM
meridional and zonal drift measurement
during ICON's first Tonga encounter. The.— o=
climatologies are shown in gray (dark graym -~
line: median; dark gray region: 25t-7 5t
quantiles; light gray region: 10"-90 &=+
quantiles). Notice the extreme vertical and
zonal drifts within the region affected by s e ——————
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600m/s wavefront driven by the volcano.’

Theory: Disruptions to the E-Region Dynamo

With a spherically expanding
neutral wind model (Fig 4b), the
IVM south footpoint encounters
first a westward, then northward,
then eastward wind (Fig 5). We
use a simplified slab model
following Kelley 2009 [13] to
~0 determine the resulting electric
Sownward fields and ion drifts, considering
currents in only the Hall region
6 - e (~100-120km) and neglecting
e Pedersen currents. In this model,
- | a polarization electric field is
Hall region ~ B e UXB «B _
HRSITY ¢ uxe OF—+u N created to balance the wind-
R Nl o ~ .. driven current and find the
© ) vtesulting ExB drifts, which agree
-well with our observations.

Fig 5: Theoretical predictions from a
spherical neutral wind and simplified slab
model of Hall region currents driving the
ionospheric dynamo. The chart shows the
expected neutral wind input and the

* resulting predictions of vertical and zonal
drifts. The final panel shows perturbation
drifts derived from the observations in Fig
4c. The observations are consistent with
theoretically predicted drifts.
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Discussion and Conclusions

The region with extreme ion drifts was magnetically connected
to the E-region just 400km from Tonga, suggesting that the
wavefront expanding from Tonga created strong electric
potentials which were then transmitted along the magnetic
field (i.e., via Alfvén waves). A simple theoretical model (Fig. 5)
reveals that the observed drift signatures are consistent with
an expanding wave with a large (>200m/s) neutral wind
amplitude. These observations are the first direct detection in
space of the near-immediate dynamo effects of a volcanic
eruption and will prove essential for constraining ionospheric
models of impulsive lower atmospheric events.

Ongoing Work: ICON’s Later Tonga Encounters

ICON Orbit 12366 Summary Plot
MIGHTI Field Aligned Wind Perturbation

This work examined Tonga’s
iImmediate dynamo effects, _xo
studying ICON’s first orbit

post-eruption, when only the =5 =
IVM sampled the region
affected by the volcano.
Ongoing work will examine s S 1[N
ICON’s later orbits, %8
incorporating neutral wind |} - o
and density profile data to |
get a more complete picture
of how the eruption’s
ionospheric dynamo S
modification evolves. ool o e T os
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Fig 6: Summary plot of ICON’s second
orbit following the eruption, including sz===_

neutral wind perturbation and O+ :
density profile, as well as IVM ion drifts i
- - - >
and density. Notice the extreme field- 1 |
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increase followed by complete drop out lon Density
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