

2019 Southern Hemispheric SSW triggered Q6DW-Tide-GW interactions observed by meteor radars at 30° S

Zishun Qiao (HAO, Embry-Riddle), Alan Z. Liu (Embry-Riddle), N. M. Pedatella (HAO), Gunter Stober (U Bern, Switzerland), lain Reid (U Adelaide, Australia), Javier Fuentes (GEMINI, Chile), Chris Adami (ATRAD, Australia)

Email: qiaoz1@my.erau.edu

Introduction & Motivation

- 2019 SH Sudden Stratospheric Warming (SSW) is a rare SH
 SSW (NH SSWs occur ~6 times per decade);
- 2. Quasi-6-Day Wave (Q6DW) are greater than the average in Sep., globally observed in the MLT region and ionosphere;
- 3. Motivation: Does this strong Q6DW activity impact on tides and Gravity Waves (GW) propagation?

Data & Methodology

Instruments

Table 1. Specs of two meteor radars used in this work.

Table 1. Speed of two fileteer radius asea in this work.			
	Radar Specs	Site, lat, long, Height	Status during SSW
CONDOR	Freq: 35.15MHz High power (48kW) & high detection rate (30,000/day/site)	ALO, 30° S, 71°W, 2520m	From 06/26/2019
		SCO, 31° S, 70°W, 1140m	From 07/14/2019
		LCO, 29° S, 71°W, 2339m	From 02/20/2020
Buckland Park MR	Freq: 55Mhz Power: 18kW	Main, 35°S, 139°E, 302m	ST mode not MLT
		Remote, 35°S, 138°E, 2m	10 days of wind used

Methodology

Input: Meteor radar observations with high temporal & spatial resolution

bipolar distribution coefficient D_{lpha}

Line-of-sight velocity

Temperature gradient model

[Hocking et al. 1999]

$$T_{radar} = S \cdot log_{10} \left[e \left(2 \frac{dT}{dz} + \frac{mg}{k} \right) \right]$$

 $\frac{dT}{dz} \simeq -1.2, \frac{mg}{k} \simeq 33.2$

Note that S is the slope of D_{α} at peak height.

Q6DW

3DVAR: GW dynamics on regional scales

[Stober et al., 2021]

$$\Lambda = \Sigma \left((v'_{rad})^2 - (v'_{radm})^2 \right)^2$$

 \checkmark Minimize \land

Get Partially differentiated $u^{2}, v^{2}, w^{2}, u^{\prime}v^{\prime}, u^{\prime}w^{\prime}, v^{\prime}w^{\prime\prime}$

Time averaged Eliassen-Palm flux

 $\mathbf{F} = \hat{\mathbf{j}}F_y + \hat{\mathbf{k}}F_z$

 $F_y = -\overline{u_0'v_0'} = -\frac{1}{2}\Re\{\tilde{u}_{Q6DW}\tilde{v}_{Q6DW}^*\}$

 $F_z = \frac{gf}{N^2} \frac{\overline{\theta_0' v_0'}}{\theta_c} = \frac{gf}{N^2} \frac{\Re \left\{ \tilde{\theta}_{Q6DW} v_{Q6DW}^* \right\}}{2\theta_c}$

Momentum flux

Compare with

SD-WACCM-X

simulations

Heat flux

E-P flux indicates the energy propagation of PWs Divergence of E-P flux suggests the energy source/sink.

Figure 1. 151.75° longitudinally spaced CONDOR and Buckland Park meteor radar winds are combined to diagnose the parameters of Q6DW.

SSW max time

Result 3: Radar & Model Q6DW E-P flux

Figure 3. Q6DW E-P flux vectors derived from (a) CONDOR observation and (b) SD-WACCM-X simulation.

- First result of meteor radar observed Q6DW E-P flux exhibits a good agreement with simulation.
- Enhancement of the E-P flux suggests potential energy/ momentum deposition in the background atmosphere.

Figure 2. Morse wavelet spectrum of Q6DW in (a) V, (c) U, (e) T; diurnal tide amplitude in (b) V and (d) U; (f) GW variance in meridional wind at 90km.

Conclusion

- A strong W1 Q6DW activity associated with the rare 2019 SH minor SSW is determined by two meteor radars at 30° S.
- Both GW wind variance and diurnal tide amplitude indicate a strong, clear quasi-6-day periodicity in meridional winds.
- First result of meteor radar observed Q6DW E-P flux is presented and exhibits a good agreement with SD-WACCM-X simulation, indicating equatorward heat flux and time varying momentum flux.
- Q6DW-Diurnal Tides-GW interactions in the MLT region may contribute to the reported ionospheric 6-day variability [Yamazaki et al., 2020].
- The manuscript related to this poster is to be submitted to GRL.

Acknowledgement: NSF MRI grant AGS-1828589 & NCAR