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Evaluation of Gaussian

Molecular Integrals
II. Kinetic-Energy Integrals

Minhhuy H6
Julio Manuel Hernandez-Pérez

This article carries out the evaluation of kinetic energy integrals
using Gaussian-type functions with arbitrary Cartesian angular
values. As an example, we calculate the kinetic matrix for the
water molecule in the STO-3G basis set.

Introduction

In this article, the second of a series describing algorithms for evaluating molecular inte-
grals, we detail the evaluation of the kinetic energy integrals. Detailed accounts of molecu-
lar integrals can be found in the references of [1]. The electronic kinetic energy in atomic
units (m, = e =h =1/4mey = 1) involves integrals of the type

1
K=fm)(a(r;Oz,A,a)(—EV2])(b(r;,3,B,b)dr, 6]

in which y,(r) is an unnormalized Cartesian Gaussian primitive centered at the nucleus
A ={A Ay A

Xal'; @, A, 2) = (x= A)™ (y— A))" (- A% e AT =
(x =A™ e‘”"“A“|2(y - Ay)ay e AP (7 = A% el Al = (2)

Xa(X; @, Ay, ay) - Xa(y; a, Ay’ ay) ‘Xz @, Az, ay).
Here « is the orbital exponent and the polynomial represents the angular part, in that the
sum of the Cartesian angular momenta a, +a,+a; =0,1,2,3, ... corresponds to func-
tions of type s, p, d, f, .... One notable property of the Gaussian function, which will be

used here, is that the derivative of a Gaussian function can be expressed as a sum contain-
ing Gaussians of lower and higher Cartesian angular values. In particular,
0

a_Xa(X; @, Ay, ay) = ay Yo @, A, ax— 1) = 2@ xo(x; @, Ay, ax + 1). (3)
X
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Similarly, % Xa(x; a, Ay ay) = — % Xa(x; @, Ay, ay). This property is useful in integrals in-

volving differential operators, such as the kinetic energy; in calculations involving the gra-
dient of the energy or Hamiltonian; and in deriving one of the most important algorithms
of Gaussian function computation, the recurrence relation.

The Kinetic operator, expressed in Cartesian coordinates as —~ V2 = — < (i + > + i)
p » €Xp 2 T 2\a oy a2 )
enables separation of the Kinetic integrals into three components K = K, + K, + K. For
example,
1 &
K, =- > fw)ca(r; @ A, a) — x,(r; 5, B, b)dr. “)
o 0

X

Furthermore, if we also separate ), into its Cartesian components, K, becomes a product
of three integrals

1
K, =- 5 jw)(a(x; a, Ay, ay)

82

a_sz(X; ﬁa Bx,bx)dxfo/\/a(y; a/’Ay,ay)'Xb(y; ﬁ’ By’by) (5)
X -0

dy f Yol @ A @) (& BB by dz.

m Derivative of Gaussian Functions

The last two integrals in K, are simply overlap integrals and can be evaluated as outlined
in [1]. Integrating by parts, the first integral is

1
X=00

0
- E[Xa(X; a, Axa ax) a_)(b(X; B? Bx’ bx) |x=—oo
X

d 0
_f_Xa(X; a,Ax,ax)—X,,(x,,B,Bx,bx)dx]: (6)

00X ox

1f8 (0. Are ) -y o By by) d
- - ax;a” x,ax - x9 9 X X X
2 —ooc')xX 8xXb

where, according to the property mentioned above, the first term can be expanded into
two Gaussian products, which vanish at the integral limits.
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Next, we consider the first term of the integrand. Expressing equation (3) in terms of (1)
and rearranging, we get

e (x — Ax)ax e—a(X—Ax)z —
0x
7
ay(x — A)%! o C=A) | (=2 a(x— A (x — A )™ oA _ [ (7)
ay(x =A@ -2 a(x - A )] e A,

Substituting the result into equation (6), we have

1
5 f [a; (x = A)* " -2 a(x- Ax)**]

oA [bx(x -B)> -2 B(x-B x)b-*”] ¢~ BB’ dx,

®)

and expanding the polynomial part yields
! b
S fw |axbi(x = A7 (x= By -
2ab(x-Ax)* (x =B —2a, Bx — A= (x = BP ! +
4aBx- A)EH (x = Bx)bx+1] o~ =AY —BU-B? g

(€))

We can now express the first integral of equation (5) in terms of one-dimensional Gaus-
sian primitives:

1
Jacbe [t @A g = 1 xutos BB by~ 1 da -

2a by fw)(a(x; @, Ay, a,+ 1) xp(x; B, By, by —1)dx —
= (10)

2axB Xa(X; a, Axa ax_l)'Xb(X; ,B, Bx’ bx+1)dx+

—00

40 | yaxa, Ay ax+1)- yp(x B, B, by + 1) dx].

—00

m Kinetic-Energy Integral

We have now shown that the kinetic-energy integral can be written as a product of overlap
integrals. The x component, for example, is given by

1
K, = E[axbxfw/\/a()(f; @, Ay, ax— 1) xp(x; B, By, by —1)dx -
Zabxf)ﬂ)(a()a aaneax+1)'Xb(X; ﬁ’Bx’bx_l)dx_

2a, B Xa(xs @, Ay, a,— 1) xp(x; B, By, by + 1) dx +
- (1)
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4a,8f/\/a(x; a, Ay, a;+ 1) xp(x; B, By, by + l)dx]
f)(a(y; a, Ay, ay) : Xb(y; B, By’ b}’) dy

fm)(a(z; a, A, a) xp(z B, B, b;)dz.

O Recurrence Relations

Using the notation of [1], where the overlap integral of two Gaussians is expressed in
terms of its orthogonal components,

S = ija(X; a, Axa ax) 'Xb(X; B? Bx’ bx) dx =

N (12)
EAB[ ] Sx(am bx) Sy(aya by) sz(az-: bz)7
a+
the x component of the kinetic-energy integral, equation (11), can be written as
1 T3
Ke= = Eap| —— | achesdac—1,be= D =2abysdac+1,be= 1)~
2 a+
2a, Bs (ax—1,by+ 1) +4afsax+1,b,+ 1)} sy(ay, by) (13)

3/2
sz(az, bz) = EAB[ ] ke(ax, by) Sy((ly, by) s;(az, bz)v

a+pf
where the factor % has been absorbed into the definition of the kinetic integral k,(ay, b;).
We will derive the recurrence relation for this term k.(ay, b,). For a, = b, = 0, the first
three terms of equation (13) are zero, and we are left with £,(0,0) = 2 @ 55,(1, 1). Analo-
gously, for a, = 0 or b, = 0, we have

ky(ae,0) = —a, Bs(a,—1, D) +2a Bsa,+1,1),

ke(0,by) = —abys(1,by,—1)+2a Bs(1,by+1),
and the recurrence relation for the kinetic integral function with any two Cartesian angular
momenta generalizes to

(14)

1
ky(ac, by) = —lacbys(ay—1,by—1)=2ab,s(a,+1,b—1)—
2 (15)

2ay Bsi(a,—1,by+1)+4aBs(a,+1,b,+1)].

The Mathematica Journal 15 © 2013 Wolfram Media, Inc.



Evaluation of Gaussian Molecular Integrals 5

O Implementation

The function Kin evaluates the kinetic integral of two Gaussian primitives; here alpha,
beta, RA,RB, LA, and LB are @, 3, A, B, a, and b as defined earlier. The first step is the

evaluation of the overlap integral as described in [1].

Kin[alpha , beta_, RA_, RB_, LA_, LB_] :=
Module[ {EAB, Kinetic},
Do [
(*» Initial Conditions for overlap recurrence
relation x)

s[i, 0, O]

s[i, 1, 0]

-(RA[[1]] - ((alpha*xRA[[i]] +beta*xRB[[1i]]) /
(alpha + beta)));

1;

(* Recurrence Index =*)

s[i_, a_, 0] :=
-(RA[[i]] - (alpha*RA[[i]] +beta*RB[[i]]) /
(alpha + beta))
*s[i, a-1, 0] +
((a-1) / (2% (alpha+beta))) »s[i, a-2, 0];

(*» Transfer Equation =)

s[i_, a_,b_]:=s[i, a+1l, b-1]+
(RA[[i]] -RB[[i]]) *s[i, a, b-1];

(# Initial Conditions for kinetic integral function %)

k[i, 0, O] = 2*alphax*betaxs[i, 1, 1];

k[i_, a_, 0] :=-axbetaxs[i, a-1, 1] +
2xalphaxbetaxs[i, a+1, 1];

k[i_, 0, b_] :=-alphaxb*s[i, 1, b-1] +
2xalphaxbetaxs[i, 1, b+1];

(* Kinetic Energy Integral =)

k[i_,a_, b _]:=(a*xbxs[i, a-1, b-1]
-2xaxbeta*s[i, a-1, b+1]
-2+alphax*bs*s[i, a+1, b-1]
+4 xalphaxbetaxs[i, a+1, b+1]) /2;

, {1, 1, 3}]; (* Loop over three Cartesian
components *)

(*» Exponential Overlap Factor =)
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EAB = Exp[- (alpha x beta / (alpha + beta)) *
(RA-RB).(RA-RB)];

(* Kinetic Energy Integral =)

Kinetic = EAB % ((Pi/ (alpha+beta)) *(3/2))
*
(k[1, LA[[1]], LB[[1]]] *s[2, LA[[2]], LB[[2]]] *
s[3, LA[[3]], LB[[3]]]
+s[1, LA[[1]], LB[[1]]] xk([2, LA[[2]], LB[[2]]] *
s[3, LA[[3]], LB[[3]]]
+s[1, LA[[1]], LB[[1]]] *s([2, LA[[2]], LB[[2]]] *
k[3, LA[[3]], LB[[3]]])
1

We describe in detail the evaluation of the kinetic-energy matrix for the water molecule
(rog = 1.86942 bohr, ipoy = 100.0269 °, the geometry optimized at the HF/STO-3G
level). The molecule lies in the y-z plane with Cartesian coordinates in atomic units.

R={{0., 1.43233673, -0.96104039},
{0., -1.43233673, -0.96104039},
{0., 0., 0.24026010}};

In the STO-3G basis set, each atomic orbital is approximated by a sum of three Gaussians;
their unnormalized primitive contraction coefficients and orbital exponents (taken from
[2]) are as follows.

PrimCoeff = {{0.1543289673, 0.5353281423, 0.4446345422},
{0.1543289673, 0.5353281423, 0.4446345422},
{0.1543289673, 0.5353281423, 0.4446345422},
{-0.09996722919, 0.3995128261, 0.7001154689},
{0.155916275, 0.6076837186, 0.3919573931},
{0.155916275, 0.6076837186, 0.3919573931},
{0.155916275, 0.6076837186, 0.3919573931}};

OrbCoeff = {{3.425250914, 0.6239137298, 0.168855404},
{3.425250914, 0.6239137298, 0.168855404} ,
{130.7093214, 23.80886605, 6.443608313},
{5.033151319, 1.169596125, 0.38038896} ,
{5.033151319, 1.169596125, 0.38038896},
{5.033151319, 1.169596125, 0.38038896},
{5.033151319, 1.169596125, 0.38038896}};
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Here are basis function origins and Cartesian angular values of the orbitals, listed in the or-
der Hy(1 5), Hy(1 5), O3(1 5), 03(2 5), 03(2 py), O3(2 py), and O3(2 py).

FCenter = {R[[1]], R[[2]], R[[3]], R[[3]], R[[3]],
R[[3]], R[[3]1};

Cartang = {{0, O, 0}, {0, O, O}, {0, O, O}, {0, O, O},
{1, o, 0}, {0, 1, 0}, {0, O, 1}};

Specifically, for the kinetic-energy integral of the first primitive of the 1 s orbital of hydro-
gen atom 1, yq;(r), and the first primitive of the 2 p, orbital of the oxygen atom, y7;(r),

1
rX11(r) (— 5 VZ] x71(r) dr =

o] 16

r fw f g3 42923091 Ir ~Run (— S V2) (z—0.24026010) x (16)

_ _ 2
o~5033151319 [r Ros| dxdydz,

where the indices y;; indicate primitive j of basis function i. The Kinetic integral in terms
of the kinetic and overlap function is then

EAB[aj ]3/2
B

(17)
{k+(0,0) 5,(0, 0) 5,0, 1) + 540, 0) ky(0, 0) 5-(0, 1) + 5,(0, 0) 5,(0, 0) k.(0, 1)}
We start with @ = {0, 0, 0} and b = {0, 0, 1}, and from the first four equations of the mod-

ule, we use the recurrence scheme to build up the overlap values needed for k,(0, 1). We
will need values up to s,(1, 2),

sZ(O’O) = 1’

aHl,+ 50
5,(1,0) = —|H1, - —————| = 0.714831,

a+f
sz(z’ O) =
aHl,+ 50, -
-|Hl, - ————— |5,(1,0) + ——— 5,(0, 0) = 0.570096,
a+p 2(a+p) (18)
aHl, + B0, -

3
5,(3,0) = —(H1Z - ]sz(Z, 0) + ——— s.(1, 0) = 0.492034,
2(a+p)

a+pf

s:(1,1) = 5.(2,0) + (H1, - 0,) 5.(1, 0) = —0.28863,
5.2, 1) = 5.(3,0) + (H1, — 0,) 5.(2, 0) = —0.192823,
5:(1,2) = 5,2, 1) + (H1, - 0,) s,(1, 1) = 0.153908,

leading to k,(0, 1) = —a - 1-5,(1,0) + 2 - B-s,(1,2) = 2.85821.
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Similarly, for k.(0,0), we will need s,(1,1) which, in turn, comes from s,(1,0) and
5¢(2,0). We have

sx(1,0) =0,

sx(2,0) = 0.0591128,

sx(1,1) =0.0591128,
leading to k,(0,0) =2 a Bs,(1, 1) = 2.03819.
For the y component,

sy(1,0) = —0.852308,

5,(2,0) =0.785542,

sy(1,1) =—0.43525,
leading to k,(0, 0) = 15.0073.

With Exg = 0.000806444, the kinetic integral of equation (16) is K = 0.00167343, which
we can also obtain from the module Kin.

Kin[OrbCoeff[[1, 1]], OrbCoeff[[7, 1]], FCenter|[[1l]],
FCenter[[7]], CartAng[[1l]], CartAng[[7]]]

0.00167343

Three Gaussian primitives y,(r) for each atomic orbital ¢;(r) result in nine integrals of the
type that we have just evaluated. For example, the K;; element of the kinetic-energy
matrix,

3

: 1
K = ZZNUNwdlidwau(r) [—EVz]Xn(r)dr, (19)

i=1 j=1
is f; ¢(r) (— % VZ) ¢7(r) dr, derived via a contraction scheme that requires the following

normalization factor.

NormCoeff[a_, {ax_, ay_, az_}] :=

[2 a)3/4 (4 a) (ax+ay+az) /2

n ((2ax-1) 11 (2ay-1) 1! (2az-1) 11)¥2
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This calculates K.

Sum|[

NormCoeff [OrbCoeff[[1, i]], CartAng[[1]]]

* NormCoeff [OrbCoeff[[7, j]], CartAng[[7]]]

* PrimCoeff[[1, i]]

* PrimCoeff[[7, j]]

* Kin[OrbCoeff[[1, i]], OrbCoeff[[7, j]1],
FCenter[[1]], FCenter[[7]],
CartAng[[1]], CartAng[[7]]]

» {1, 3}, {3, 3}]

-0.167203

For larger basis sets, one needs only to replace the summation upper limit 3 in equation
(19) with the appropriate number of primitives belonging to a particular basis function and
an additional summation for the basis functions.

Finally, here is the resulting kinetic energy matrix.

Table[Sum][

NormCoeff [OrbCoeff[[p, i]], CartAng[[p]]]

* NormCoeff [OrbCoeff[[q, j]], CartAng[[q]]]

* PrimCoeff[[p, i]]

* PrimCoeff[[q, j]]

* Kin[OrbCoeff[[p, i]], OrbCoeff[[q, j]],
FCenter[[p]], FCenter[[q]],
CartAng[[p]], CartAng[[q]]]

. {i, 3}, {3, 3}, {p, 1, 7}, {q, 1, 7}] // MatrixForm //

Chop
0.760032 0.0083216 -0.00453868 0.113758 0 0.1
0.0083216 0.760032 -0.00453868 0.113758 0 -0.1
-0.00453868 -0.00453868 29.0032 -0.168011 0
0.113758 0.113758 -0.168011 0.808128 0
0 0 0 0 2.52873
0.199359 -0.199359 0 0 0 2.t
-0.167203 -0.167203 0 0 0

Since the kinetic-energy matrix is symmetrical, we need only to calculate the upper ele-
ments. The value of the elements K;; = K5, = 0.760032 hartree is the electronic kinetic en-
ergy of the hydrogen atom described by the STO-3G basis set (compared to the exact
value of 0.5 hartree). Analogously, the element K33 is the corresponding kinetic energy of
an electron in the 1 s orbital of the oxygen atom, and so forth.
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m Conclusion

Minhhuy Hé6 and Julio Manuel Herndndez-Pérez

We have provided an introduction to the evaluation of kinetic-energy integrals involving
Gaussian-type basis functions both analytically and by use of recurrence relations. The re-
sults are sufficiently general so that no modification of the algorithm is needed when
larger basis sets with more Gaussian primitives or primitives with larger angular momenta

are employed.
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