Content-Length: 124076 | pFad | https://dl.acm.org/doi/10.1016/j.scico.2013.11.004

Recent software developments for special functions in the Santander-Amsterdam project | Science of Computer Programming skip to main content
research-article

Recent software developments for special functions in the Santander-Amsterdam project

Published: 15 September 2014 Publication History

Abstract

We give an overview of published algorithms by our group and of current activities and future plans. In particular, we give details on methods for computing special functions and discuss in detail two current lines of research. Firstly, we describe the recent developments for the computation of central and non-central -square cumulative distributions (also called Marcum Q-functions), and we present a new quadrature method for computing them. Secondly, we describe the fourth-order methods for computing zeros of special functions recently developed, and we provide an explicit example for the computation of complex zeros of Bessel functions. We end with an overview of published software by our group for computing special functions.

References

[1]
D.E. Amos, Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order, ACM Trans. Math. Softw., 12 (1986) 265-273.
[2]
S. András, Á. Baricz, Y. Sun, The generalized Marcum Q-function: an orthogonal polynomial approach, Acta Univ. Sapientiae, Math., 3 (2011) 60-76.
[3]
S.K. Ashour, A.I. Abdel-Samad, On the computation of noncentral chi-square distribution function, Commun. Stat., Simul. Comput., 19 (1990) 1279-1291.
[4]
C. Chiarella, A. Reichel, On the evaluation of integrals related to the error function, Math. Comput., 22 (1968) 137-143.
[5]
A. Deaño, A. Gil, J. Segura, New inequalities from classical Sturm theorems, J. Approx. Theory, 131 (2004) 208-230.
[6]
A. Deaño, J. Segura, N.M. Temme, Identifying minimal and dominant solutions for Kummer recursions, Math. Comput., 77 (2008) 2277-2293.
[7]
A. Deaño, J. Segura, N.M. Temme, Computational properties of three-term recurrence relations for Kummer functions, J. Comput. Appl. Math., 233 (2010) 1505-1510.
[8]
A.R. DiDonato, A.H. Morris, Computation of the incomplete gamma function ratios and their inverse, ACM Trans. Math. Softw., 12 (December 1986) 377-393.
[9]
A.R. DiDonato, A.H. Morris, Algorithm 654: FORTRAN subroutines for computing the incomplete gamma function ratios and their inverse, ACM Trans. Math. Softw., 13 (1987) 318-319.
[10]
S. Dyrting, Evaluating the noncentral chi-square distribution for the Cox-Ingersoll-Ross process, Comput. Econ., 24 (2004) 35-50.
[11]
B.R. Fabijonas, Algorithm 838: Airy functions, ACM Trans. Math. Softw., 30 (2004) 491-501.
[12]
B.R. Fabijonas, D.W. Lozier, F.W.J. Olver, Computation of complex Airy functions and their zeros using asymptotics and the differential equation, ACM Trans. Math. Softw., 30 (2004) 471-490.
[13]
W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev., 9 (1967) 24-82.
[14]
W. Gautschi, Algorithm 542: Incomplete gamma functions, ACM Trans. Math. Softw., 5 (1979) 482-489.
[15]
W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Softw., 5 (1979) 466-481.
[16]
A. Gil, J. Segura, A code to evaluate prolate and oblate spheroidal harmonics, Comput. Phys. Commun., 108 (1998) 267-278.
[17]
A. Gil, J. Segura, Evaluation of toroidal harmonics, Comput. Phys. Commun., 124 (2000) 104-122.
[18]
A. Gil, J. Segura, DTORH3 2.0: A new version of a computer program for the evaluation of toroidal harmonics, Comput. Phys. Commun., 139 (2001) 186-191.
[19]
A. Gil, J. Segura, A Maple package for computing the zeros of special functions, in preparation, 2012.
[20]
A. Gil, J. Segura, N.M. Temme, On nonoscillating integrals for computing inhomogeneous Airy functions, Math. Comput., 70 (2001) 1183-1194.
[21]
A. Gil, J. Segura, N.M. Temme, Algorithm 819: AIZ, BIZ: two Fortran 77 routines for the computation of complex Airy functions, ACM Trans. Math. Softw., 28 (2002) 325-336.
[22]
A. Gil, J. Segura, N.M. Temme, Algorithm 822: GIZ, HIZ: two Fortran 77 routines for the computation of complex Scorer functions, ACM Trans. Math. Softw., 28 (2002) 436-447.
[23]
A. Gil, J. Segura, N.M. Temme, Computing complex Airy functions by numerical quadrature, Numer. Algorithms, 30 (2002) 11-23.
[24]
A. Gil, J. Segura, N.M. Temme, Computation of the modified Bessel function of the third kind of imaginary orders: uniform Airy-type asymptotic expansion, J. Comput. Appl. Math., 153 (2003) 225-234.
[25]
A. Gil, J. Segura, N.M. Temme, Computing special functions by using quadrature rules, Numer. Algorithms, 33 (2003) 265-275.
[26]
A. Gil, J. Segura, N.M. Temme, On the zeros of the Scorer functions, J. Approx. Theory, 120 (2003) 253-266.
[27]
A. Gil, J. Segura, N.M. Temme, Algorithm 831: Modified Bessel functions of imaginary order and positive argument, ACM Trans. Math. Softw., 30 (2004) 159-164.
[28]
A. Gil, J. Segura, N.M. Temme, Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments, ACM Trans. Math. Softw., 30 (2004) 145-158.
[29]
A. Gil, J. Segura, N.M. Temme, Integral representations for computing real parabolic cylinder functions, Numer. Math., 98 (2004) 105-134.
[30]
A. Gil, J. Segura, N.M. Temme, The ABC of hyper recursions, J. Comput. Appl. Math., 190 (2006) 270-286.
[31]
A. Gil, J. Segura, N.M. Temme, Algorithm 850: real parabolic cylinder functions U ( a, x ), V ( a, x ), ACM Trans. Math. Softw., 32 (2006) 102-112.
[32]
A. Gil, J. Segura, N.M. Temme, Computing the real parabolic cylinder functions U ( a, x ), V ( a, x ), ACM Trans. Math. Softw., 32 (2006) 70-101.
[33]
A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions, SIAM, Philadelphia, PA, 2007.
[34]
A. Gil, J. Segura, N.M. Temme, Numerically satisfactory solutions of hypergeometric recursions, Math. Comput., 76 (2007) 1449-1468.
[35]
A. Gil, J. Segura, N.M. Temme, Computing the conical function P - 1 / 2 + i ¿ µ ( x ), SIAM J. Sci. Comput., 31 (2009) 1716-1741.
[36]
A. Gil, J. Segura, N.M. Temme, Algorithm 914: parabolic cylinder function W ( a, x ) and its derivative, ACM Trans. Math. Softw., 38 (2011).
[37]
A. Gil, J. Segura, N.M. Temme, Fast and accurate computation of the Weber parabolic cylinder function W ( a, x ), IMA J. Numer. Anal., 31 (2011) 1194-1216.
[38]
A. Gil, J. Segura, N.M. Temme, Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios, SIAM J. Sci. Comput., 34 (2012) A2965-A2981.
[39]
A. Gil, J. Segura, N.M. Temme, An improved algorithm and a Fortran 90 module for computing the conical function P - 1 / 2 + i ¿ m ( x ), Comput. Phys. Commun., 183 (2012) 794-799.
[40]
A. Gil, J. Segura, N.M. Temme, Computation of the Marcum Q-function, ACM Trans. Math. Softw. (2013).
[41]
C.W. Helstrom, Computing the generalized Marcum Q-function, IEEE Trans. Inf. Theory, 38 (1992) 1422-1428.
[42]
L. Knüsel, B. Bablok, Computation of the noncentral gamma distribution, SIAM J. Sci. Comput., 17 (1996) 1224-1231.
[43]
J.I. Marcum, A statistical theory of target detection by pulsed radar, Trans. IRE, IT-6 (1960) 59-267.
[44]
F.W.J. Olver, Asymptotics and Special Functions, A.K. Peters Ltd., Wellesley, MA, 1997.
[45]
F.W.J. Olver, Airy and related functions, in: NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 193-213.
[46]
G.H. Robertson, Computation of the noncentral F distribution (CFAR) detection, IEEE Trans. Aerosp. Electron. Syst., AES-12 (1976) 568-571.
[47]
A.H.M. Ross, Algorithm for calculating the noncentral chi-square distribution, IEEE Trans. Inf. Theory, 45 (1999) 1327-1333.
[48]
B.I. Schneider, J. Segura, A. Gil, X. Guan, K. Bartschat, A new Fortran 90 program to compute regular and irregular associated Legendre functions, Comput. Phys. Commun., 181 (2010) 2091-2097.
[49]
J. Segura, Computing the complex zeros of special functions, Numer. Math. (2013).
[50]
J. Segura, Reliable computation of the zeros of solutions of second order linear ODEs using a fourth order method, SIAM J. Numer. Anal., 48 (2010) 452-469.
[51]
J. Segura, N.M. Temme, Numerically satisfactory solutions of Kummer recurrence relations, Numer. Math., 111 (2008) 109-119.
[52]
D.A. Shnidman, The calculation of the probability of detection and the generalized Marcum Q-function, IEEE Trans. Inf. Theory, 35 (1989) 389-400.
[53]
G. Szeg¿, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1975.
[54]
N.M. Temme, Asymptotic and numerical aspects of the noncentral chi-square distribution, Comput. Math. Appl., 25 (1993) 55-63.
  1. Recent software developments for special functions in the Santander-Amsterdam project

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Science of Computer Programming
        Science of Computer Programming  Volume 90, Issue PA
        September 2014
        66 pages

        Publisher

        Elsevier North-Holland, Inc.

        United States

        Publication History

        Published: 15 September 2014

        Author Tags

        1. Incomplete gamma functions
        2. Marcum's Q-function
        3. Numerical software
        4. Special functions
        5. Zeros of special functions

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 23 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media









        ApplySandwichStrip

        pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


        --- a PPN by Garber Painting Akron. With Image Size Reduction included!

        Fetched URL: https://dl.acm.org/doi/10.1016/j.scico.2013.11.004

        Alternative Proxies:

        Alternative Proxy

        pFad Proxy

        pFad v3 Proxy

        pFad v4 Proxy