Content-Length: 109457 | pFad | https://dlmf.nist.gov/./././././././././././bib/.././.././././10.51

DLMF: §10.51 Recurrence Relations and Derivatives ‣ Spherical Bessel Functions ‣ Chapter 10 Bessel Functions
About the Project
10 Bessel FunctionsSpherical Bessel Functions

§10.51 Recurrence Relations and Derivatives

Contents
  1. §10.51(i) Unmodified Functions
  2. §10.51(ii) Modified Functions

§10.51(i) Unmodified Functions

Let fn(z) denote any of 𝗃n(z), 𝗒n(z), 𝗁n(1)(z), or 𝗁n(2)(z). Then

10.51.1 fn1(z)+fn+1(z) =((2n+1)/z)fn(z),
nfn1(z)(n+1)fn+1(z) =(2n+1)fn(z),
n=1,2,,
10.51.2 fn(z) =fn1(z)((n+1)/z)fn(z),
n=1,2,,
fn(z) =fn+1(z)+(n/z)fn(z),
n=0,1,.
10.51.3 (1zddz)m(zn+1fn(z)) =znm+1fnm(z),
m=0,1,,n,
(1zddz)m(znfn(z)) =(1)mznmfn+m(z),
m=0,1,.

§10.51(ii) Modified Functions

Let gn(z) denote 𝗂n(1)(z), 𝗂n(2)(z), or (1)n 𝗄n(z). Then

10.51.4 gn1(z)gn+1(z) =((2n+1)/z)gn(z)
ngn1(z)+(n+1)gn+1(z) =(2n+1)gn(z),
n=1,2,,
10.51.5 gn(z) =gn1(z)((n+1)/z)gn(z),
n=1,2,,
gn(z) =gn+1(z)+(n/z)gn(z),
n=0,1,.
10.51.6 (1zddz)m(zn+1gn(z)) =znm+1gnm(z),
m=0,1,,n,
(1zddz)m(zngn(z)) =znmgn+m(z),
m=0,1,.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./././././././././././bib/.././.././././10.51

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy