Content-Length: 106915 | pFad | https://dlmf.nist.gov/./././22.10

DLMF: §22.10 Maclaurin Series ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions
About the Project
22 Jacobian Elliptic FunctionsProperties

§22.10 Maclaurin Series

Contents
  1. §22.10(i) Maclaurin Series in z
  2. §22.10(ii) Maclaurin Series in k and k

§22.10(i) Maclaurin Series in z

Initial terms are given by

22.10.1 sn(z,k)=z(1+k2)z33!+(1+14k2+k4)z55!(1+135k2+135k4+k6)z77!+O(z9),
22.10.2 cn(z,k)=1z22!+(1+4k2)z44!(1+44k2+16k4)z66!+O(z8),
22.10.3 dn(z,k)=1k2z22!+k2(4+k2)z44!k2(16+44k2+k4)z66!+O(z8).

Further terms may be derived by substituting in the differential equations (22.13.13), (22.13.14), (22.13.15). The full expansions converge when |z|<min(K(k),K(k)).

§22.10(ii) Maclaurin Series in k and k

Initial terms are given by

22.10.4 sn(z,k)=sinzk24(zsinzcosz)cosz+O(k4),
22.10.5 cn(z,k)=cosz+k24(zsinzcosz)sinz+O(k4),
22.10.6 dn(z,k)=1k22sin2z+O(k4),
22.10.7 sn(z,k)=tanhzk24(zsinhzcoshz)sech2z+O(k4),
22.10.8 cn(z,k)=sechz+k24(zsinhzcoshz)tanhzsechz+O(k4),
22.10.9 dn(z,k)=sechz+k24(z+sinhzcoshz)tanhzsechz+O(k4).

Further terms may be derived from the differential equations (22.13.13), (22.13.14), (22.13.15), or from the integral representations of the inverse functions in §22.15(ii). The radius of convergence is the distance to the origen from the nearest pole in the complex k-plane in the case of (22.10.4)–(22.10.6), or complex k-plane in the case of (22.10.7)–(22.10.9); see §22.17.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./././22.10

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy