Content-Length: 500655 | pFad | https://dlmf.nist.gov/././bib/.././././././././bib/.././bib/.././bib/.././.././idx/S#sixjsymbols
DLMF: Index S ‣ Index
Index S
-
-matrix scattering
-
saddle points
§2.4(iv)
-
sampling expansions
-
parabolic cylinder functions
§12.16
-
scaled gamma function
§8.18(ii)
-
scaled Riemann theta functions
-
scaled spheroidal wave functions
§30.15—§30.15(v)
-
scaling laws
-
for diffraction catastrophes
§36.6
-
scattering problems
-
scattering theory
-
Schläfli-type integrals
-
Schläfli–Sommerfeld integrals
-
Schläfli’s integrals
-
Schottky group
-
Schottky problem
-
Schröder numbers
-
Schrödinger equation
-
Schrödinger operator
-
Schrödinger Operators
-
Schrödinger–Coulomb problem
-
Schur parameters
§18.33(vi)
-
Schwarz reflection principle
§1.10(ii)
-
Schwarz’s lemma
§1.10(v)
-
Schwarzian derivative
§1.13(iv)
-
Scorer functions
§9.12
-
secant function, see trigonometric functions.
-
second order differential operators
-
second order linear differential operator
-
sectorial harmonics
§14.30(i)
-
Selberg integrals
-
Selberg-type integrals
-
self-adjoint differential operators
-
self-adjoint extensions of a symmetric operator
-
self-adjoint extensions of differential operators
-
self-adjoint operator
-
semi-classical orthogonal polynomials
§18.2(xii)
-
separable Gauss sum
-
separation of variables in 3D
§18.39(ii)
-
Shanks’ transformation
-
Sheffer polynomials
-
ship wave
§36.13—§36.13
-
sieve of Eratosthenes
-
sigma function, see Weierstrass elliptic functions.
-
signal analysis
-
simple closed contour
§1.9(iii)
-
simple closed curve
§1.6(iv)
-
simple discontinuity
§1.4(ii)
-
simple zero
§1.10(i)
-
simply-connected domain
§1.13(i)
-
Sinc function
§3.3(vi)
-
sine function, see trigonometric functions.
-
sine integrals
§6.2(ii)
-
sine transform
-
sine-Gordon equation
-
Sines
-
singular continuous spectra
-
singularities
-
singularity
-
symbols
-
symbols
§34.4
-
SL bilinear transformation
§23.15(i)
-
Sobolev orthogonal polynomials
§18.36(ii)
-
soliton theory
-
solitons
-
space
-
spatio-temporal dynamics
-
special distributions
-
spectral methods
-
numerical solution of differential equations
§18.38(i)
-
spectral problems
-
spectrum of a self-adjoint extension of a linear differential operator
-
set of eigenvalues, taking multiplicities into account
§1.18(iv)
-
spectrum of an operator
-
spherical Bessel functions
Ch.10
-
spherical Bessel transform
§10.74(vii)
-
spherical coordinates §1.5(ii), §18.39(ii)
-
spherical harmonics §14.30(i), §18.39(ii)
-
spherical polar coordinates, see spherical coordinates.
-
spherical triangles
-
spherical trigonometry
-
sphero-conal coordinates
§29.18(i)
-
spheroidal coordinates, see oblate spheroidal coordinates and prolate spheroidal coordinates.
-
spheroidal differential equation
§30.2(i)
-
spheroidal harmonics
-
spheroidal wave functions
§30.1
-
spline functions
-
splines
-
square-integrable function
§1.4(v)
-
stability problems
-
stable polynomials
§1.11(v)
-
statistical analysis
-
multivariate
-
functions of matrix argument
§35.9
-
statistical applications
-
functions of matrix argument
§35.9
-
statistical mechanics
-
statistical physics
-
Bernoulli and Euler polynomials
§24.18
-
Painlevé transcendents
§32.16
-
Steed’s algorithm
-
steepest-descent paths
-
Stickelberger codes
-
Stieltjes
-
integral
-
measure
-
measure with jumps
§1.4(v)
-
Stieltjes fraction (-fraction)
§3.10(ii)
-
Stieltjes measure
-
Stieltjes polynomials
-
Stieltjes transform
-
Stieltjes–Perron inversion
§18.40(ii)
-
Stieltjes–Wigert polynomials
§18.27(vi)
-
asymptotic approximations
§18.29
-
Stirling cycle numbers
§26.13
-
Stirling numbers (first and second kinds)
-
Stirling’s formula
§5.11(i)
-
Stirling’s series
§5.11(i)
-
Stokes line
§2.11(iv)
-
Stokes multipliers
§2.7(ii)
-
Stokes phenomenon
§2.11(iv)
-
Stokes sets
§36.5(i)—§36.5(iv)
-
Stokes’ theorem for vector-valued functions
§1.6(v)
-
string theory
-
structure relation §18.2(xii), §18.9(iii)
-
Struve functions, see Struve functions and modified Struve functions.
-
Struve functions and modified Struve functions
Ch.11
-
analytic continuation
§11.4(iii)
-
applications
-
approximations
§11.15(i)
-
argument
§11.8
-
asymptotic expansions
-
computation
§11.13(i)
-
definitions
§11.2
-
derivatives
§11.4(v)
-
differential equations
§11.2(ii)—§11.2(iii)
-
graphics Figure 11.3.1, Figure 11.3.1, Figure 11.3.1, Figure 11.3.10, Figure 11.3.10, Figure 11.3.10, Figure 11.3.11, Figure 11.3.11, Figure 11.3.11, Figure 11.3.12, Figure 11.3.12, Figure 11.3.12, Figure 11.3.13, Figure 11.3.13, Figure 11.3.13, Figure 11.3.14, Figure 11.3.14, Figure 11.3.14, Figure 11.3.15, Figure 11.3.15, Figure 11.3.15, Figure 11.3.16, Figure 11.3.16, Figure 11.3.16, Figure 11.3.17, Figure 11.3.17, Figure 11.3.17, Figure 11.3.18, Figure 11.3.18, Figure 11.3.18, Figure 11.3.19, Figure 11.3.19, Figure 11.3.19, Figure 11.3.2, Figure 11.3.2, Figure 11.3.2, Figure 11.3.20, Figure 11.3.20, Figure 11.3.20, Figure 11.3.3, Figure 11.3.3, Figure 11.3.3, Figure 11.3.4, Figure 11.3.4, Figure 11.3.4, Figure 11.3.5, Figure 11.3.5, Figure 11.3.5, Figure 11.3.6, Figure 11.3.6, Figure 11.3.6, Figure 11.3.7, Figure 11.3.7, Figure 11.3.7, Figure 11.3.8, Figure 11.3.8, Figure 11.3.8, Figure 11.3.9, Figure 11.3.9, Figure 11.3.9
-
half-integer orders
§11.4(i)
-
incomplete
§11.14(v)
-
inequalities
§11.4(ii)
-
integral representations
-
integrals
-
Kelvin-function analogs
§11.8
-
notation
§11.1
-
order
§11.1
-
power series
§11.2(i)
-
principal values
§11.2(i)
-
recurrence relations
§11.4(v)
-
relations to Anger–Weber functions
§11.10(vi)
-
series expansions
-
sums
§11.7(v)
-
tables
§11.14(ii)
-
zeros
§11.4(vii)
-
Struve’s equation, see Struve functions and modified Struve functions, differential equations.
-
Sturm-Liouville form
-
Sturm–Liouville eigenvalue problems
-
ordinary differential equations
§3.7(iv)
-
summability methods for integrals
-
summability methods for series
-
summation by parts
§2.10(ii)
-
summation formulas
-
sums of powers
-
supersonic flow
-
support
-
surface, see parametrized surfaces.
-
surface harmonics of the first kind
§14.30(i)
-
surface-wave problems
-
swallowtail bifurcation set
-
swallowtail canonical integral
§36.2(i)
-
asymptotic approximations
§36.11—§36.12(iii)
-
convergent series
§36.8
-
differential equations
§36.10(ii)
-
formulas for Stokes set
§36.5(ii)
-
integral identities
§36.9
-
picture of Stokes set
§36.5(iv)
-
pictures of modulus Figure 36.3.2, Figure 36.3.2, Figure 36.3.2, Figure 36.3.3, Figure 36.3.3, Figure 36.3.3, Figure 36.3.4, Figure 36.3.4, Figure 36.3.4, Figure 36.3.5, Figure 36.3.5, Figure 36.3.5
-
pictures of phase Figure 36.3.14, Figure 36.3.14
-
scaling laws
§36.6
-
zeros
§36.7(iv)
-
swallowtail catastrophe §36.2(i), Figure 36.5.2, Figure 36.5.2, Figure 36.5.3, Figure 36.5.3, Figure 36.5.4, Figure 36.5.4, Figure 36.5.7, Figure 36.5.7
-
symmetric elliptic integrals
§19.16(i)
-
addition theorems
§19.26—§19.26(iii)
-
advantages of symmetry
§19.15—§19.15
-
applications
-
arithmetic-geometric mean
§19.22(ii)
-
asymptotic approximations and expansions §19.27—§19.27(vi), §2.6(ii)
-
Bartky’s transformation
§19.22(i)
-
change of parameter of
§19.21(iii)
-
circular cases §19.20(iii)—§19.20(iii), §19.21(iii)
-
complete
§19.1
-
computation
§19.36—§19.38
-
connection formulas
§19.21
-
degree
§19.16(ii)
-
derivatives
§19.18(i)
-
differential equations §19.18(ii), §19.18(ii)
-
duplication formulas
§19.26(iii)
-
elliptic cases of
§19.16(iii)
-
first, second, and third kinds
§19.1
-
Gauss transformations §19.15, §19.22(iii)—§19.22(iii)
-
general lemniscatic case §19.20(i), §19.20(iv)
-
graphics
§19.17—§19.17
-
hyperbolic cases §19.20(iii)—§19.20(iii), §19.21(iii)
-
inequalities
-
integral representations
§19.23
-
integrals of
§19.28—§19.28
-
Landen transformations §19.15, §19.22(iii)—§19.22(iii)
-
notation
§19.1
-
permutation symmetry §19.15, §19.16(ii)
-
power-series expansions
§19.19—§19.19
-
reduction of general elliptic integrals
§19.29—§19.29(iii)
-
relations to other functions
-
special cases
§19.20—§19.20(v)
-
tables
§19.37(iv)
-
transformations replaced by symmetry §19.15, §19.22(iii), §19.25(i)
-
symmetric operators
-
symmetries
-
Szegő class
§18.2(xi)
-
type 2 Pollaczek polynomials counterexample
§18.35(ii)
-
Szegő recurrence relations
§18.33(vi)
-
Szegő–Askey polynomials
§18.33(iv)
-
Szegő–Szász inequality
-
Szegő’s theorem
§18.33(vi)
--- a PPN by Garber Painting Akron. With Image Size Reduction included!Fetched URL: https://dlmf.nist.gov/././bib/.././././././././bib/.././bib/.././bib/.././.././idx/S#sixjsymbols
Alternative Proxies:
Alternative Proxy
pFad Proxy
pFad v3 Proxy
pFad v4 Proxy