Content-Length: 131088 | pFad | https://dlmf.nist.gov/./../././././././././././././bib/.././././././1.7#iv.info

DLMF: §1.7 Inequalities ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods
About the Project
1 Algebraic and Analytic MethodsTopics of Discussion

§1.7 Inequalities

Contents
  1. §1.7(i) Finite Sums
  2. §1.7(ii) Integrals
  3. §1.7(iii) Means
  4. §1.7(iv) Jensen’s Inequality

§1.7(i) Finite Sums

In this subsection A and B are positive constants.

Cauchy–Schwarz Inequality

1.7.1 (j=1najbj)2(j=1naj2)(j=1nbj2).

Equality holds iff aj=cbj, j; c= constant.

Conversely, if (j=1najbj)2AB for all bj such that j=1nbj2B, then j=1naj2A.

Hölder’s Inequality

For p>1, 1p+1q=1, aj0, bj0,

1.7.2 j=1najbj(j=1najp)1/p(j=1nbjq)1/q.

Equality holds iff ajp=cbjq, j; c= constant.

Conversely, if j=1najbjA1/pB1/q for all bj such that j=1nbjqB, then j=1najpA.

Minkowski’s Inequality

For p>1, aj0, bj0,

1.7.3 (j=1n(aj+bj)p)1/p(j=1najp)1/p+(j=1nbjp)1/p.

The direction of the inequality is reversed, that is, , when 0<p<1. Equality holds iff aj=cbj, j; c= constant.

§1.7(ii) Integrals

In this subsection a and b (>a) are real constants that can be , provided that the corresponding integrals converge. Also A and B are constants that are not simultaneously zero.

Cauchy–Schwarz Inequality

1.7.4 (abf(x)g(x)dx)2ab(f(x))2dxab(g(x))2dx.

Equality holds iff Af(x)=Bg(x) for all x.

Hölder’s Inequality

For p>1, 1p+1q=1, f(x)0, g(x)0,

1.7.5 abf(x)g(x)dx(ab(f(x))pdx)1/p(ab(g(x))qdx)1/q.

Equality holds iff A(f(x))p=B(g(x))q for all x.

Minkowski’s Inequality

For p>1, f(x)0, g(x)0,

1.7.6 (ab(f(x)+g(x))pdx)1/p(ab(f(x))pdx)1/p+(ab(g(x))pdx)1/p.

The direction of the inequality is reversed, that is, , when 0<p<1. Equality holds iff Af(x)=Bg(x) for all x.

§1.7(iii) Means

For the notation, see §1.2(iv).

1.7.7 HGA,

with equality iff a1=a2==an.

1.7.8 min(a1,a2,,an)M(r)max(a1,a2,,an),

with equality iff a1=a2==an, or r<0 and some aj=0.

1.7.9 M(r)M(s),
r<s,

with equality iff a1=a2==an, or s0 and some aj=0.

§1.7(iv) Jensen’s Inequality

For f integrable on [0,1], a<f(x)<b, and ϕ convex on (a,b)1.4(viii)),

1.7.10 ϕ(01f(x)dx)01ϕ(f(x))dx,
1.7.11 exp(01ln(f(x))dx)<01f(x)dx.

For exp and ln see §4.2.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././././././././././bib/.././././././1.7#iv.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy