Content-Length: 88461 | pFad | https://dlmf.nist.gov/./../././././././././././././bib/.././././.././10.12
DLMF: §10.12 Generating Function and Associated Series ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions
§10.12 Generating Function and Associated Series
For z ∈ ℂ and t ∈ ℂ ∖ { 0 } ,
10.12.1
e 1 2 z ( t − t − 1 ) = ∑ m = − ∞ ∞ t m J m ( z ) .
Jacobi–Anger expansions: for z , θ ∈ ℂ ,
10.12.2
cos ( z sin θ )
= J 0 ( z ) + 2 ∑ k = 1 ∞ J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z sin θ )
= 2 ∑ k = 0 ∞ J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
10.12.3
cos ( z cos θ )
= J 0 ( z ) + 2 ∑ k = 1 ∞ ( − 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z cos θ )
= 2 ∑ k = 0 ∞ ( − 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .
10.12.4
1 = J 0 ( z ) + 2 J 2 ( z ) + 2 J 4 ( z ) + 2 J 6 ( z ) + ⋯ ,
10.12.5
cos z
= J 0 ( z ) − 2 J 2 ( z ) + 2 J 4 ( z ) − 2 J 6 ( z ) + ⋯ ,
sin z
= 2 J 1 ( z ) − 2 J 3 ( z ) + 2 J 5 ( z ) − ⋯ ,
10.12.6
1 2 z cos z
= J 1 ( z ) − 9 J 3 ( z ) + 25 J 5 ( z ) − 49 J 7 ( z ) + ⋯ ,
1 2 z sin z
= 4 J 2 ( z ) − 16 J 4 ( z ) + 36 J 6 ( z ) − ⋯ .
--- a PPN by Garber Painting Akron. With Image Size Reduction included! Fetched URL: https://dlmf.nist.gov/./../././././././././././././bib/.././././.././10.12
Alternative Proxies:
Alternative Proxy
pFad Proxy
pFad v3 Proxy
pFad v4 Proxy