Content-Length: 150942 | pFad | https://dlmf.nist.gov/./../././././././././././././bib/.././././.././17.8#E6

DLMF: Β§17.8 Special Cases of {_π‘Ÿ}πœ“_π‘Ÿ Functions β€£ Properties β€£ Chapter 17 π‘ž-Hypergeometric and Related Functions
About the Project
17 q-Hypergeometric and Related FunctionsProperties

§17.8 Special Cases of ψrr Functions

Jacobi’s Triple Product

17.8.1 βˆ‘n=βˆ’βˆžβˆž(βˆ’z)n⁒qn⁒(nβˆ’1)/2=(q,z,q/z;q)∞;

compare (20.5.9).

Analytic Continuation

Note that for the equations below, the constraints are included to guarantee that the infinite series representation (17.4.3) of the ψrr functions converges. These equations can also be used as analytic continuation of these ψrr functions.

Ramanujan’s ψ11 Summation

17.8.2 ψ11⁑(ab;q,z)=(q,b/a,a⁒z,q/(a⁒z);q)∞(b,q/a,z,b/(a⁒z);q)∞,
|b/a|<|z|<1.

Quintuple Product Identity

17.8.3 βˆ‘n=βˆ’βˆžβˆž(βˆ’1)n⁒qn⁒(3⁒nβˆ’1)/2⁒z3⁒n⁒(1+z⁒qn)=(q,βˆ’z,βˆ’q/z;q)∞⁒(q⁒z2,q/z2;q2)∞.

Apart from Jacobi’s triple product identity (17.8.1) and the quintuple product identity (17.8.3) (see Cooper (2006) for a review), there also exist higher-order tuple product identities. One may see Pascadi (2021) for discussions and derivations of sextuple, septuple, octuple, nonuple and undecuple product identities. These identities are all given in terms of sums and products of basic bilateral hypergeometric series.

Bailey’s Bilateral Summations

17.8.4 ψ22⁑(b,c;a⁒q/b,a⁒q/c;q,βˆ’a⁒q/(b⁒c)) =(a⁒q/(b⁒c);q)∞⁒(a⁒q2/b2,a⁒q2/c2,q2,a⁒q,q/a;q2)∞(a⁒q/b,a⁒q/c,q/b,q/c,βˆ’a⁒q/(b⁒c);q)∞,
|q⁒a|<|b⁒c|,
17.8.5 ψ33⁑(b,c,dq/b,q/c,q/d;q,qb⁒c⁒d) =(q,q/(b⁒c),q/(b⁒d),q/(c⁒d);q)∞(q/b,q/c,q/d,q/(b⁒c⁒d);q)∞,
|q|<|b⁒c⁒d|,
17.8.6 ψ44⁑(βˆ’q⁒a12,b,c,dβˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d;q,q⁒a32b⁒c⁒d)=(a⁒q,a⁒q/(b⁒c),a⁒q/(b⁒d),a⁒q/(c⁒d),q⁒a12/b,q⁒a12/c,q⁒a12/d,q,q/a;q)∞(a⁒q/b,a⁒q/c,a⁒q/d,q/b,q/c,q/d,q⁒a12,q⁒aβˆ’12,q⁒a32/(b⁒c⁒d);q)∞,
|q⁒a32|<|b⁒c⁒d|,
17.8.7 ψ66⁑(q⁒a12,βˆ’q⁒a12,b,c,d,ea12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e;q,q⁒a2b⁒c⁒d⁒e)=(a⁒q,a⁒q/(b⁒c),a⁒q/(b⁒d),a⁒q/(b⁒e),a⁒q/(c⁒d),a⁒q/(c⁒e),a⁒q/(d⁒e),q,q/a;q)∞(a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,q/b,q/c,q/d,q/e,q⁒a2/(b⁒c⁒d⁒e);q)∞,
|q⁒a2|<|b⁒c⁒d⁒e|.

Sum Related to (17.6.4)

17.8.8 ψ22⁑(b2,b2/cq,c⁒q;q2,c⁒q2/b2)=12⁒(q2,q⁒b2,q/b2,c⁒q/b2;q2)∞(c⁒q,c⁒q2/b2,q2/b2,c/b2;q2)∞⁒((c⁒q/b;q)∞(b⁒q;q)∞+(βˆ’c⁒q/b;q)∞(βˆ’b⁒q;q)∞),
|c⁒q2|<|b2|.

For similar formulas see Verma and Jain (1983).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././././././././././bib/.././././.././17.8#E6

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy