Content-Length: 52230 | pFad | https://dlmf.nist.gov/./../././././././././././././bib/.././././.././bib/.././13.17#p3

DLMF: §13.17 Continued Fractions ‣ Whittaker Functions ‣ Chapter 13 Confluent Hypergeometric Functions
About the Project
13 Confluent Hypergeometric FunctionsWhittaker Functions

§13.17 Continued Fractions

If κ,μ such that μ±(κ12)1,2,3,, then

13.17.1 zMκ,μ(z)Mκ12,μ+12(z)=1+u1z1+u2z1+,

where

13.17.2 u2n+1 =12+μ+κ+n(2μ+2n+1)(2μ+2n+2),
u2n =12+μκ+n(2μ+2n)(2μ+2n+1).

This continued fraction converges to the meromorphic function of z on the left-hand side for all z. For more details on how a continued fraction converges to a meromorphic function see Jones and Thron (1980).

If κ,μ such that μ+12±(κ+1)1,2,3,, then

13.17.3 Wκ,μ(z)zWκ12,μ12(z)=1+v1/z1+v2/z1+,

where

13.17.4 v2n+1 =12+μκ+n,
v2n =12μκ+n.

This continued fraction converges to the meromorphic function of z on the left-hand side throughout the sector |phz|<π.

See also Cuyt et al. (2008, pp. 336–337).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././././././././././bib/.././././.././bib/.././13.17#p3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy