Content-Length: 381648 | pFad | https://dlmf.nist.gov/./../././././././././././././bib/.././././.././bib/.././17.9#i.info

DLMF: Β§17.9 Further Transformations of {_{π‘Ÿ+1}}Ο•_π‘Ÿ Functions β€£ Properties β€£ Chapter 17 π‘ž-Hypergeometric and Related Functions
About the Project
17 q-Hypergeometric and Related FunctionsProperties

Β§17.9 Further Transformations of Ο•rr+1 Functions

Contents
  1. Β§17.9(i) Ο•12β†’Ο•22, Ο•13, or Ο•23
  2. Β§17.9(ii) Ο•23β†’Ο•23
  3. Β§17.9(iii) Further Ο•sr Functions
  4. Β§17.9(iv) Bibasic Series

Β§17.9(i) Ο•12β†’Ο•22, Ο•13, or Ο•23

F. H. Jackson’s Transformations

17.9.1 Ο•12⁑(a,bc;q,z) =(z⁒a;q)∞(z;q)βˆžβ’Ο•22⁑(a,c/bc,a⁒z;q,b⁒z),
17.9.2 Ο•12⁑(qβˆ’n,bc;q,z) =(c/b;q)n(c;q)n⁒bn⁒ϕ13⁑(qβˆ’n,b,q/zb⁒q1βˆ’n/c;q,z/c),
17.9.3 Ο•12⁑(a,bc;q,z) =(a⁒b⁒z/c;q)∞(b⁒z/c;q)βˆžβ’Ο•23⁑(a,c/b,0c,c⁒q/(b⁒z);q,q)+(a,b⁒z,c/b;q)∞(c,z,c/(b⁒z);q)βˆžβ’Ο•23⁑(z,a⁒b⁒z/c,0b⁒z,b⁒z⁒q/c;q,q),
17.9.3_5 Ο•12⁑(a,bc;q,z) =(c/a,c/b;q)∞(c,c/(a⁒b);q)βˆžβ’Ο•23⁑(a,b,a⁒b⁒z/cq⁒a⁒b/c,0;q,q)+(a,b,a⁒b⁒z/c;q)∞(c,a⁒b/c,z;q)βˆžβ’Ο•23⁑(c/a,c/b,zq⁒c/(a⁒b),0;q,q),
17.9.4 Ο•12⁑(qβˆ’n,bc;q,z) =(c/b;q)n(c;q)n⁒(b⁒zq)n⁒ϕ23⁑(qβˆ’n,q/z,q1βˆ’n/cb⁒q1βˆ’n/c,0;q,q),
17.9.5 Ο•12⁑(qβˆ’n,bc;q,z) =(c/b;q)n(c;q)n⁒ϕ23⁑(qβˆ’n,b,b⁒z⁒qβˆ’n/cb⁒q1βˆ’n/c,0;q,q).

Β§17.9(ii) Ο•23β†’Ο•23

Transformations of Ο•23-Series

17.9.6 Ο•23⁑(a,b,cd,e;q,d⁒e/(a⁒b⁒c)) =(e/a,d⁒e/(b⁒c);q)∞(e,d⁒e/(a⁒b⁒c);q)βˆžβ’Ο•23⁑(a,d/b,d/cd,d⁒e/(b⁒c);q,e/a),
17.9.7 Ο•23⁑(a,b,cd,e;q,d⁒e/(a⁒b⁒c)) =(b,d⁒e/(a⁒b),d⁒e/(b⁒c);q)∞(d,e,d⁒e/(a⁒b⁒c);q)βˆžβ’Ο•23⁑(d/b,e/b,d⁒e/(a⁒b⁒c)d⁒e/(a⁒b),d⁒e/(b⁒c);q,b),
17.9.8 Ο•23⁑(qβˆ’n,b,cd,e;q,q) =(d⁒e/(b⁒c);q)n(e;q)n⁒(b⁒cd)n⁒ϕ23⁑(qβˆ’n,d/b,d/cd,d⁒e/(b⁒c);q,q),
17.9.9 Ο•23⁑(qβˆ’n,b,cd,e;q,q) =(e/c;q)n(e;q)n⁒cn⁒ϕ23⁑(qβˆ’n,c,d/bd,c⁒q1βˆ’n/e;q,b⁒qe),
17.9.10 Ο•23⁑(qβˆ’n,b,cd,e;q,d⁒e⁒qnb⁒c) =(e/c;q)n(e;q)n⁒ϕ23⁑(qβˆ’n,c,d/bd,c⁒q1βˆ’n/e;q,q).

q-Sheppard Identity

17.9.11 Ο•23⁑(qβˆ’n,b,cd,e;q,q)=(e/c,d/c;q)n(e,d;q)n⁒cn⁒ϕ23⁑(qβˆ’n,c,c⁒b⁒q1βˆ’n/(d⁒e)c⁒q1βˆ’n/e,c⁒q1βˆ’n/d;q,q),
17.9.12 Ο•23⁑(a,b,cd,e;q,d⁒ea⁒b⁒c)=(e/b,e/c,c⁒q/a,q/d;q)∞(e,c⁒q/d,q/a,e/(b⁒c);q)βˆžβ’Ο•23⁑(c,d/a,c⁒q/ec⁒q/a,b⁒c⁒q/e;q,b⁒qd)βˆ’(q/d,e⁒q/d,b,c,d/a,d⁒e/(b⁒c⁒q),b⁒c⁒q2/(d⁒e);q)∞(d/q,e,b⁒q/d,c⁒q/d,q/a,e/(b⁒c),b⁒c⁒q/e;q)βˆžΓ—Ο•23⁑(a⁒q/d,b⁒q/d,c⁒q/dq2/d,e⁒q/d;q,d⁒ea⁒b⁒c),
17.9.13 Ο•23⁑(a,b,cd,e;q,d⁒ea⁒b⁒c)=(e/b,e/c;q)∞(e,e/(b⁒c);q)βˆžβ’Ο•23⁑(d/a,b,cd,b⁒c⁒q/e;q,q)+(d/a,b,c,d⁒e/(b⁒c);q)∞(d,e,b⁒c/e,d⁒e/(a⁒b⁒c);q)βˆžΓ—Ο•23⁑(e/b,e/c,d⁒e/(a⁒b⁒c)d⁒e/(b⁒c),e⁒q/(b⁒c);q,q).

Β§17.9(iii) Further Ο•sr Functions

Sears’ Balanced Ο•34 Transformations

With d⁒e⁒f=a⁒b⁒c⁒q1βˆ’n

17.9.14 Ο•34⁑(qβˆ’n,a,b,cd,e,f;q,q)=(e/a,f/a;q)n(e,f;q)n⁒an⁒ϕ34⁑(qβˆ’n,a,d/b,d/cd,a⁒q1βˆ’n/e,a⁒q1βˆ’n/f;q,q)=(a,e⁒f/(a⁒b),e⁒f/(a⁒c);q)n(e,f,e⁒f/(a⁒b⁒c);q)n⁒ϕ34⁑(qβˆ’n,e/a,f/a,e⁒f/(a⁒b⁒c)e⁒f/(a⁒b),e⁒f/(a⁒c),q1βˆ’n/a;q,q).

Watson’s q-Analog of Whipple’s Theorem

With n a nonnegative integer

17.9.15 (a⁒q,a⁒q/(d⁒e);q)n(a⁒q/d,a⁒q/e;q)n⁒ϕ34⁑(a⁒q/(b⁒c),d,e,qβˆ’na⁒q/b,a⁒q/c,d⁒e⁒qβˆ’n/a;q,q)=Ο•78⁑(a,q⁒a12,βˆ’q⁒a12,b,c,d,e,qβˆ’na12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,a⁒qn+1;q,a2⁒q2+nb⁒c⁒d⁒e).

Bailey’s Transformation of Very-Well-Poised Ο•78

17.9.16 Ο•78⁑(a,q⁒a12,βˆ’q⁒a12,b,c,d,e,fa12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,a⁒q/f;q,a2⁒q2b⁒c⁒d⁒e⁒f)=(a⁒q,a⁒q/(d⁒e),a⁒q/(d⁒f),a⁒q/(e⁒f);q)∞(a⁒q/d,a⁒q/e,a⁒q/f,a⁒q/(d⁒e⁒f);q)βˆžβ’Ο•34⁑(a⁒q/(b⁒c),d,e,fa⁒q/b,a⁒q/c,d⁒e⁒f/a;q,q)+(a⁒q,a⁒q/(b⁒c),d,e,f,a2⁒q2/(b⁒d⁒e⁒f),a2⁒q2/(c⁒d⁒e⁒f);q)∞(a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,a⁒q/f,a2⁒q2/(b⁒c⁒d⁒e⁒f),d⁒e⁒f/(a⁒q);q)βˆžΓ—Ο•34⁑(a⁒q/(d⁒e),a⁒q/(d⁒f),a⁒q/(e⁒f),a2⁒q2/(b⁒c⁒d⁒e⁒f)a2⁒q2/(b⁒d⁒e⁒f),a2⁒q2/(c⁒d⁒e⁒f),a⁒q2/(d⁒e⁒f);q,q).

Sears–Carlitz Transformation

With a=qβˆ’n and n a nonnegative integer,

17.9.17 Ο•23⁑(a,b,ca⁒q/b,a⁒q/c;q,a⁒q⁒zb⁒c)=(a⁒z;q)∞(z;q)βˆžβ’Ο•45⁑(a12,βˆ’a12,(a⁒q)12,βˆ’(a⁒q)12,a⁒q/(b⁒c)a⁒q/b,a⁒q/c,a⁒z,q/z;q,q).

Gasper’s q-Analog of Clausen’s Formula (16.12.2)

17.9.18 (Ο•34⁑(a,b,a⁒b⁒z,a⁒b/za⁒b⁒q12,βˆ’a⁒b⁒q12,βˆ’a⁒b;q,q))2=Ο•45⁑(a2,b2,a⁒b,a⁒b⁒z,a⁒b/za⁒b⁒q12,βˆ’a⁒b⁒q12,βˆ’a⁒b,a2⁒b2;q,q),

provided that the series expansions of both ϕ’s terminate.

Β§17.9(iv) Bibasic Series

Mixed-Base Heine-Type Transformations

17.9.19 βˆ‘n=0∞(a;q2)n⁒(b;q)n(q2;q2)n⁒(c;q)n⁒zn=(b;q)∞⁒(a⁒z;q2)∞(c;q)∞⁒(z;q2)βˆžβ’βˆ‘n=0∞(c/b;q)2⁒n⁒(z;q2)n⁒b2⁒n(q;q)2⁒n⁒(a⁒z;q2)n+(b;q)∞⁒(a⁒z⁒q;q2)∞(c;q)∞⁒(z⁒q;q2)βˆžβ’βˆ‘n=0∞(c/b;q)2⁒n+1⁒(z⁒q;q2)n⁒b2⁒n+1(q;q)2⁒n+1⁒(a⁒z⁒q;q2)n.
17.9.20 βˆ‘n=0∞(a;qk)n⁒(b;q)k⁒n⁒zn(qk;qk)n⁒(c;q)k⁒n=(b;q)∞⁒(a⁒z;qk)∞(c;q)∞⁒(z;qk)βˆžβ’βˆ‘n=0∞(c/b;q)n⁒(z;qk)n⁒bn(q;q)n⁒(a⁒z;qk)n,
k=1,2,3,….








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././././././././././bib/.././././.././bib/.././17.9#i.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy