Content-Length: 180856 | pFad | https://dlmf.nist.gov/./.././././././33.2#i.p1

DLMF: Β§33.2 Definitions and Basic Properties β€£ Variables 𝜌,πœ‚ β€£ Chapter 33 Coulomb Functions
About the Project
33 Coulomb FunctionsVariables ρ,η

Β§33.2 Definitions and Basic Properties

Contents
  1. Β§33.2(i) Coulomb Wave Equation
  2. Β§33.2(ii) Regular Solution Fℓ⁑(Ξ·,ρ)
  3. Β§33.2(iii) Irregular Solutions Gℓ⁑(Ξ·,ρ),Hℓ±⁑(Ξ·,ρ)
  4. Β§33.2(iv) Wronskians and Cross-Product

Β§33.2(i) Coulomb Wave Equation

33.2.1 d2wdρ2+(1βˆ’2β’Ξ·Οβˆ’β„“β’(β„“+1)ρ2)⁒w=0,
β„“=0,1,2,….

This differential equation has a regular singularity at ρ=0 with indices β„“+1 and βˆ’β„“, and an irregular singularity of rank 1 at ρ=∞ (§§2.7(i), 2.7(ii)). There are two turning points, that is, points at which d2w/dρ2=0 (Β§2.8(i)). The outer one is given by

33.2.2 ρtp⁑(Ξ·,β„“)=Ξ·+(Ξ·2+ℓ⁒(β„“+1))1/2.

Β§33.2(ii) Regular Solution Fℓ⁑(Ξ·,ρ)

The function Fℓ⁑(Ξ·,ρ) is recessive (Β§2.7(iii)) at ρ=0, and is defined by

33.2.3 Fℓ⁑(Ξ·,ρ)=Cℓ⁑(Ξ·)⁒2βˆ’β„“βˆ’1⁒(βˆ“i)β„“+1⁒MΒ±i⁒η,β„“+12⁑(Β±2⁒i⁒ρ),

or equivalently

33.2.4 Fℓ⁑(Ξ·,ρ)=Cℓ⁑(Ξ·)⁒ρℓ+1⁒eβˆ“i⁒ρ⁒M⁑(β„“+1βˆ“i⁒η,2⁒ℓ+2,Β±2⁒i⁒ρ),

where Mκ,μ⁑(z) and M⁑(a,b,z) are defined in §§13.14(i) and 13.2(i), and

33.2.5 Cℓ⁑(Ξ·)=2ℓ⁒eβˆ’Ο€β’Ξ·/2⁒|Γ⁑(β„“+1+i⁒η)|(2⁒ℓ+1)!.

The choice of ambiguous signs in (33.2.3) and (33.2.4) is immaterial, provided that either all upper signs are taken, or all lower signs are taken. This is a consequence of Kummer’s transformation (Β§13.2(vii)).

Fℓ⁑(Ξ·,ρ) is a real and analytic function of ρ on the open interval 0<ρ<∞, and also an analytic function of Ξ· when βˆ’βˆž<Ξ·<∞.

The normalizing constant Cℓ⁑(Ξ·) is always positive, and has the alternative form

33.2.6 Cℓ⁑(Ξ·)=2ℓ⁒((2⁒π⁒η/(e2β’Ο€β’Ξ·βˆ’1))⁒∏k=1β„“(Ξ·2+k2))1/2(2⁒ℓ+1)!.

Β§33.2(iii) Irregular Solutions Gℓ⁑(Ξ·,ρ),Hℓ±⁑(Ξ·,ρ)

The functions Hℓ±⁑(Ξ·,ρ) are defined by

33.2.7 Hℓ±⁑(Ξ·,ρ)=(βˆ“i)ℓ⁒e(π⁒η/2)Β±i⁒σℓ⁑(Ξ·)⁒Wβˆ“i⁒η,β„“+12⁑(βˆ“2⁒i⁒ρ),

or equivalently

33.2.8 Hℓ±⁑(Ξ·,ρ)=eΒ±i⁒θℓ⁑(Ξ·,ρ)⁒(βˆ“2⁒i⁒ρ)β„“+1Β±i⁒η⁒U⁑(β„“+1Β±i⁒η,2⁒ℓ+2,βˆ“2⁒i⁒ρ),

where Wκ,μ⁑(z), U⁑(a,b,z) are defined in §§13.14(i) and 13.2(i),

33.2.9 θℓ⁑(Ξ·,ρ)=Οβˆ’Ξ·β’ln⁑(2⁒ρ)βˆ’12⁒ℓ⁒π+σℓ⁑(Ξ·),

and

33.2.10 σℓ⁑(Ξ·)=ph⁑Γ⁑(β„“+1+i⁒η),

the branch of the phase in (33.2.10) being zero when Ξ·=0 and continuous elsewhere. σℓ⁑(Ξ·) is the Coulomb phase shift.

Hβ„“+⁑(Ξ·,ρ) and Hβ„“βˆ’β‘(Ξ·,ρ) are complex conjugates, and their real and imaginary parts are given by

33.2.11 Hβ„“+⁑(Ξ·,ρ) =Gℓ⁑(Ξ·,ρ)+i⁒Fℓ⁑(Ξ·,ρ),
Hβ„“βˆ’β‘(Ξ·,ρ) =Gℓ⁑(Ξ·,ρ)βˆ’i⁒Fℓ⁑(Ξ·,ρ).

As in the case of Fℓ⁑(Ξ·,ρ), the solutions Hℓ±⁑(Ξ·,ρ) and Gℓ⁑(Ξ·,ρ) are analytic functions of ρ when 0<ρ<∞. Also, eβˆ“i⁒σℓ⁑(Ξ·)⁒Hℓ±⁑(Ξ·,ρ) are analytic functions of Ξ· when βˆ’βˆž<Ξ·<∞.

Β§33.2(iv) Wronskians and Cross-Product

With arguments η,ρ suppressed,

33.2.12 𝒲⁑{Gβ„“,Fβ„“}=𝒲⁑{Hβ„“Β±,Fβ„“}=1.
33.2.13 Fβ„“βˆ’1⁒Gβ„“βˆ’Fℓ⁒Gβ„“βˆ’1=β„“/(β„“2+Ξ·2)1/2,
β„“β‰₯1.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././././33.2#i.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy